
Content Manager OnDemand

AFP2PDF Transform User's Guide

SC19-2944-00

����

Content Manager OnDemand

AFP2PDF Transform User's Guide

SC19-2944-00

����

This edition replaces SC19-1287-01.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

© Copyright InfoPrint Solutions Company 2007, 2010.

© Copyright IBM Corporation 2008, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this publication ix
Understanding syntax notation ix
Related information x

Summary of Changes xi

Chapter 1. Overview 1
Benefits 1
AFP2PDF Transform limitations 1

Chapter 2. Installing AFP2PDF
Transform 3
Installing AFP2PDF Transform on Windows 3
Installing AFP2PDF Transform on AIX, HP-UX,
Solaris, and Linux 3
Installing AFP2PDF Transform on an IBM i
OnDemand server 3
Installing AFP2PDF Transform with OnDemand . . 4
Installing AFP2PDF Transform with eClient 4
Removing AFP2PDF Transform 5

Chapter 3. Configuration 7
AFP2PDF Transform command 7

Syntax 7
Parameters 7
Return codes 9

AFP2PDF Transform options file 10
split_afp2pdf command 19

Syntax 19
Parameters 20
Using AFP resources 22

AFP2PDF Transform security 23

Chapter 4. Mapping fonts 25
Files supplied for mapping fonts 25

Coded Font File 26
Character set definition file 27
Code page definition file 29
Code page map file. 30
Alias file 31

Process for mapping fonts 32
Using custom AFP raster font files. 32
Embedding Type 1 fonts 34

File location 35
Mapping the AFP font to the embedded Type 1
font 35

Using custom font metric files 35
Mapping AFP TrueType fonts 37

File location 37
Character encoding 37

Chapter 5. Mapping AFP images. . . . 39
Creating the image map configuration file 39
Identifying AFP images in the image map
configuration file 40
Removing images using the image map
configuration file 41
Substituting existing images with AFP2PDF
Transform 41
Substituting AFP shaded images with colored areas 43
Adding an image to the transform output 44
Storing frequently used images with AFP2PDF
Transform 46

Chapter 6. Application programming
interfaces 47
Packaging information. 47

Windows server 47
UNIX server 48
IBM i OnDemand server 48

Loading code and obtaining function pointers . . . 49
Windows server 49
UNIX server 50
IBM i OnDemand server 52

AFP2PDF Transform API 53
Input options structure 53
Available programming functions 56

Notices 61
Trademarks 63

Glossary 65

Index 69

© Copyright IBM Corp. 2008, 2010 iii

|
||

||

||
||
||

||

||

iv AFP2PDF Transform User's Guide

Figures

1. Example of a coded.fnt file 26
2. CHARSET section of csdef.fnt file 27
3. FGID section of csdef.fnt file 28
4. CODEPG section of cpdef.fnt file 29
5. Code page map file example 31
6. Alias file example 31
7. Font mapping file example 34
8. Transform options file example 34
9. Custom font metric files defined in the alias.fnt

file 36
10. Example of a custom font metric file 37
11. Image information in the image map

configuration file. 40
12. Empty entries in the image map configuration

file 41
13. Example of existing images in the image map

configuration file. 42
14. Example of abbreviated image entries in the

image map configuration file. 42
15. Example of colored areas in the image map

configuration file. 44
16. Example of abbreviated colored areas in the

image map configuration file. 44
17. Example of an image added to PDF output 46
18. Example of stored images in image map

configuration file. 46

19. File structure for AFP2PDF Transform APIs on
Windows servers. 48

20. File structure for AFP2PDF Transform APIs on
UNIX servers 48

21. Directory structure for AFP2PDF Transform on
IBM i OnDemand servers 49

22. File structure for AFP2PDF Transform APIs on
IBM i Ondemand servers 49

23. Example of loading a Windows API DLL 50
24. Example of obtaining the function pointer to

the API options in Windows 50
25. Example of loading an API shared library on

AIX 50
26. Example of loading an API shared library on

Sun and Linux 51
27. Example of loading an API shared library on

z/OS UNIX System Services 51
28. Example of obtaining the function pointer to

API options on AIX 51
29. Example of obtaining the function pointer to

API options on Sun or Linux. 52
30. Example of obtaining the function pointer to

API options on z/OS UNIX System Services . 52
31. Example of loading an API shared library on

an IBM i OnDemand server 52
32. Input options structure. 53

© Copyright IBM Corp. 2008, 2010 v

|
||
|
||

|
||

vi AFP2PDF Transform User's Guide

Tables

1. Font files and subdirectories 25
2. Coded font files 26
3. Attribute values for CHARSET 27

4. Attribute Values for FGID. 28
5. CODEPG attributes 29
6. Defined values for the Flags parameter 36

© Copyright IBM Corp. 2008, 2010 vii

viii AFP2PDF Transform User's Guide

About this publication

This publication provides information about using AFP2PDF Transform. This
publication helps you:
v Plan for transforming data from Advanced Function Presentation (AFP) format

to Adobe® Acrobat Portable Document Format (PDF).
v Install and configure AFP2PDF Transform.
v Map fonts and images.
v Use application programming interfaces (APIs).

The information in this publication is for system programmers who install and
configure AFP2PDF Transform, and for operators who use AFP2PDF Transform.
This publication assumes that you are experienced using Microsoft® Windows®,
UNIX®, or IBM® i systems, or the OnDemand or eClient applications of IBM DB2®

Content Manager.

Understanding syntax notation
These rules apply to syntax and coding illustrations throughout this publication:
v Bold highlighting identifies commands and other items whose names are

predefined by the system, information you should actually type, or the actual
value you should set, such as True.

v Variable data is printed in italics. Enter specific data to replace the characters in
italics; for example, for filename you could enter Data.afp. Italics also identify the
names of publications.

v Monospacing identifies examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or files and directories; for
example, alias.fnt.

v Do not enter these symbols as part of a parameter or option:
Vertical Bar |
Underscore ___
Brackets []
Braces { }
Ellipsis ...

v A vertical bar between two values means that you select only one of the values.
v An underscored value means that if an option is not specified, the underscored

value, called the default, is used.
v Brackets around a value mean that you do not have to select the value; the value

is optional.
v Braces around a value mean that you must select one of the mutually exclusive

values. For example, { THIS | THAT }

v An ellipsis following a command or set of commands indicates the command or
set of commands can be repeated.

© Copyright IBM Corp. 2008, 2010 ix

|
|
|
|
|

Related information
For information about the AFP2HTML Transform, see Data Transforms AFP2HTML
Transform User's Guide, SC19-1288.

For information about AFP, see this Web site: www.infoprint.com

x AFP2PDF Transform User's Guide

www.infoprint.com

Summary of Changes

Summary of Changes for AFP2PDF Transform User's Guide, SC19–1287–02

This publication contains additions and changes to information previously
presented in AFP2PDF Transform User's Guide, SC19–1287–01. The technical
additions and changes are marked with revision bars (|) in the left margin.

These changes have been made throughout the publication:
v References to the i5/OS® operating system have been changed to “IBM i”.
v A note has been added indicating that the file examples are specified for the

Windows environment but to use the examples in a UNIX environment, use the
UNIX file naming convention for any file name. For example, the file
c:\images\form1.jpg in Windows could be /tmp/form1.jpg in a UNIX
environment.

This information is new or updated:
v “AFP2PDF Transform limitations” on page 1 has been updated.
v IBM i Common Server has been added to the server requirements in Chapter 2,

“Installing AFP2PDF Transform,” on page 3.
v IBM i Portable Application Solutions Environment (PASE) has been added to the

UNIX environments in “Installing AFP2PDF Transform on AIX, HP-UX, Solaris,
and Linux” on page 3.

v A new section, “Installing AFP2PDF Transform on an IBM i OnDemand server”
on page 3, has been added.

v The documentation for “Installing AFP2PDF Transform with OnDemand” on
page 4 has been updated.

v A new section, “Installing AFP2PDF Transform with eClient” on page 4, has
been added for using the AFP2PDF Transform with the IBM DB2 Content
Manager eClient.

v In the AFP2PDF Transform options file, these parameters have been added:
– DotDensity on page 13
– GOCA_Pattern on page 14
– Ignore_Data_Font_Height on page 15
– TrueType_Directory on page 18
– UDC_Range on page 18

Also, the Locale_Path parameter on page 15 has been updated.
v The split_afp2pdf command has been updated with the -k parameter on page

21.
v Table 1 on page 25 for the AFP2PDF Transform font support files has been

updated with TrueType outline fonts files.
v The “wincp” attribute in Table 5 on page 29 for CODEPG attributes has been

updated.
v A new section, “Mapping AFP TrueType fonts” on page 37, has been added.
v The types of AFP2PDF Transform APIs have been updated in Chapter 6,

“Application programming interfaces,” on page 47.

© Copyright IBM Corp. 2008, 2010 xi

v A new section that describes API packaging information has been added for
“IBM i OnDemand server” on page 48.

v A new section that describes dynamically loading the API code has been added
for “IBM i OnDemand server” on page 52.

v The definition of "integrated file system" has been added to the “Glossary” on
page 65.

xii AFP2PDF Transform User's Guide

Chapter 1. Overview

AFP2PDF Transform converts Advanced Function Presentation (AFP) documents
into Adobe Acrobat Portable Document Format (PDF) files. AFP2PDF Transform
maps AFP format to PDF format exactly, making it a more robust solution than
AFP2HTML.

AFP2PDF Transform lets you:
v Operate on multiple operating systems, including AIX®, HP-UX, IBM i, Linux®,

Sun Solaris, Windows, and z/OS®.
v Integrate multiple servers with little to no client workstation modifications.

AFP2PDF Transform runs on your Web server or other back-end application
server.

v View documents with the same fidelity as if they were printed. If the Adobe
Acrobat plug-in is installed with a Web browser, you can view and print these
documents within the browser application.

v Use configuration files to customize how AFP documents are transformed.
v Fully integrate with the IBM DB2 Content Manager OnDemand Web Enablement

Kit and the IBM Enterprise Information Portal (EIP).
v Fully integrate with the IBM DB2 Content Manager eClient.

Benefits
AFP2PDF Transform gives you these added benefits:
v Reduce costs associated with printing and mailing by delivering documents

electronically.
v Quickly retrieve your information within multi-page documents using Adobe

Acrobat search and navigation features.
v Print AFP2PDF Transform documents on any local printer using the print

function in Adobe Acrobat.
v Increase control over your information with an added layer of security and

encryption. Define an owner to control modification, copying and printing;
define end-user passwords to control document access; and add a digital
signature to provide more security.

AFP2PDF Transform limitations
The current limitations with the AFP2PDF Transform include:
v The following set of bar codes are generated in the output PDF when using the

Bar Code Object Content Architecture (BCOCA) in AFP data. Any other bar
codes are ignored during conversion.
– Code 39 (3-of-9 Code), AIM USS-39
– Interleaved 2-of-5, AIM USS-I 2/5
– POSTNET
– Code 128, AIM USS-128
– Japan Postal Bar Code
– Data Matrix
– USPS Four-State

© Copyright IBM Corp. 2008, 2010 1

|
|

|

– PDF417
– QR code
– Codabar

v When AFP data formatted for N-up partitioning is encountered, the multiple
partitions that make up the physical AFP page are converted to separate pages
in the PDF file.

v Only limited support is available for object containers with TIFF and JFIF image
formats.

2 AFP2PDF Transform User's Guide

|

|

Chapter 2. Installing AFP2PDF Transform

These are the server requirements and the client requirements for AFP2PDF
Transform:
v Server requirements

– HP-UX 11.0 for Itanium or later
– IBM AIX 5.1 or later
– IBM i Common Server 5.4 or later
– IBM z/OS UNIX System Services V1.8 or later
– Microsoft Windows 2003 Server R2 or later
– Linux Kernel 2.4.5 or later (IBM System x/System p/System z)
– Sun Solaris 8 or later (SPARC only)

v Client requirements
– Adobe Acrobat, Acrobat Reader, or Acrobat Plug-In 5.0 or later (Digital

certificate support requires 7.0.5 or later)

If you plan to use the transform in conjunction with the IBM DB2 Content
Manager OnDemand Web Enablement Kit, install the AFP2PDF Transform on the
same workstation or server.

To use the transform with the IBM DB2 Content Manager eClient, install the
AFP2PDF Transform on the eClient server.

Installing AFP2PDF Transform on Windows
To install AFP2PDF Transform on Windows, run the afp2web.exe file. By default,
all files are installed to the C:\Program Files\IBM\AFP2web directory.

Installing AFP2PDF Transform on AIX, HP-UX, Solaris, and Linux
To install AFP2PDF Transform on AIX, HP-UX, Solaris, and Linux, run the afp2web
file. By default, all files are installed to the Content Manager OnDemand server
directory/afp2web directory.

Installing AFP2PDF Transform on an IBM i OnDemand server
For an IBM i server with Content Manager OnDemand, the AFP2PDF Transform is
delivered in two save files, QRLMINSA2P (installation code) and QRLMA2P
(installation objects).

To install the transform:
1. Copy both save files to the QRDARS library on your IBM i system.
2. Enter this command to restore the installation program from the QRLMINSA2P

save file:
RSTOBJ OBJ(QRLMINSA2P) SAVLIB(QRDARS) DEV(*SAVF) SAVF(QRDARS/QRLMINSA2P) RSTLIB(QRDARS)

3. Run this program call:
CALL QRDARS/QRLMINSA2P

© Copyright IBM Corp. 2008, 2010 3

|

|

|
|

|

|
|
|

|

|

|
|
|

|

|

Notes:

1. Symbolic links to the directory object in /QIBM/ProdData/OnDemand/www/binpdf
have been created in /QIBM/UserData/OnDemand/www/binpdf.

2. IBM recommends that you use the UserData directory when referencing the
installed objects. If you create any additional objects, do not save them in the
/QIBM/ProdData/OnDemand/www/binpdf directory, which might get replaced when
upgrading to a new release or installing PTF updates.

Installing AFP2PDF Transform with OnDemand
To use the AFP2PDF Transform with the Content Manager OnDemand Web
Enablement Kit, see the appropriate documentation for more details about
configuring the programs to operate together:
v IBM DB2 Content Manager OnDemand for Multiplatforms: Web Enablement Kit

Implementation Guide, SC18-9231
v IBM DB2 Content Manager OnDemand for z/OS and OS/390: Web Enablement Kit

Implementation Guide, SC18-1215
v IBM Content Manager OnDemand for i: Common Server Web Enablement Kit

Installation and Configuration Guide, SC27-1163 (Versions 5.4 and 6.1) or SC19–2791
(Version 7.1 or later)

Specifically, you must modify the arswww.ini file to call the AFP2PDF Transform
when processing an AFP file. At a minimum, you must make these configuration
changes:
v The AFPViewing option must be “pdf” in the browser sections.
v The InstallDir option in the afp2pdf section must point to the directory on the

server that contains the AFP2PDF Transform.

Installing AFP2PDF Transform with eClient
To use the AFP2PDF Transform with the Content Manager eClient, the AFP2PDF
Transform must be installed on the same server where the eClient is installed.
Refer to IBM DB2 Content Manager: Installing, Configuring, and Managing the eClient,
SC27–1350, to install the eClient. See “Installing AFP2PDF Transform on Windows”
on page 3 or “Installing AFP2PDF Transform on AIX, HP-UX, Solaris, and Linux”
on page 3 to install the AFP2PDF Transform. Be sure to make note of the directory
where you installed the transform.

To use the AFP2PDF Transform with the Content Manager eClient:
1. Locate the eClient configuration file, IDMadminDefaults.properties:
v For eClient 8.3, the default location is:

– %IBMCMROOT%\CMeClient on Windows
– $IBMCMROOT/CMeClient on UNIX systems

where IBMCMROOT is the location of the IBM directory for the eClient
program files. For example, c:\program files\IBM on Windows.

v For eClient 8.4, the default location is:
– was_profile_home\installedAPPs\hostnameNode01Cell\eClient.ear\

eclient.war on Windows
– was_profile_home/installedAPPs/hostnameNode01Cell/eClient.ear/

eclient.war on UNIX systems

where was_profile_home is the location of the WebSphere application server
profile for the server that runs the eClient WebSphere application. For

4 AFP2PDF Transform User's Guide

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

example, c:\program files\IBM\WebSphere\AppServer\profiles\AppSrv01 on
Windows or /opt/IBM/WebSphere/AppServer/profiles/AppSrv01 on UNIX.

2. Edit IDMadminDefaults.properties and replace the application/pdf=launch
line with application/pdf=don't launch. Setting the application/pdf type to
“don't launch” indicates that the PDF application should be converted to a
viewable format that can be handled by a browser.

3. From the AFP2PDF Transform directory, ...\java_api on Windows or
.../java_api on UNIX systems, run this command:
java -jar a2peip.jar AFP2PDF

4. Follow the prompts and specify this information:
v The fully qualified path where the AFP2PDF Transform is installed.
v The fully qualified path where the cmbview81.jar file is installed. The default

location is %IBMCMROOT%\lib on Windows or $IBMCMROOT/lib on UNIX
systems.

v The fully qualified path where the a2peip.jar file is installed.
v TRUE to enable logging or FALSE to turn logging off.

5. Correct any errors that are displayed on the console. Otherwise, a new jar file
named cmbview81.jar.NEW is created in the same directory as the original.

6. Rename the original cmbview81.jar file to cmbview81.jar.original in case you
need to recover your system later.

7. Rename cmbview81.jar.NEW to cmbview81.jar.
8. Make sure the new cmbview81.jar file has the same permissions and ownership

as cmbview81.jar.original.
9. Restart the eClient server.

You can now use AFP2PDF Transform with the eClient.

Removing AFP2PDF Transform
On Windows, to remove AFP2PDF Transform, select Start -> Control Panel -> Add
or Remove Programs.

On AIX, HP-UX, Solaris, and Linux, to remove AFP2PDF Transform, run the
Content Manager OnDemand server directory/afp2web/_uninst850afp2web/
uninstallafp2web file.

Chapter 2. Installing AFP2PDF Transform 5

|
|

|
|
|
|

|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|

|

6 AFP2PDF Transform User's Guide

Chapter 3. Configuration

This chapter describes the commands and files used during the configuration
process. It also describes AFP resources and security for the transform.

Note: The directory and file examples in this chapter are specified for the
Windows environment. To use these examples in a UNIX environment, use
the UNIX file naming convention for any file name. For example,
\font\maps in Windows is /font/maps in a UNIX environment, or the input
AFP file c:\documents\afpdoc.afp in Windows would be
/documents/afpdoc.afp in a UNIX environment.

AFP2PDF Transform command
The afp2pdf command transforms AFP files and resources into PDF files that you
can distribute over the Internet and view with a Web browser installed with the
Adobe Acrobat plug-in. If the plug-in is not installed on your Web browser, you
can view the PDF files with Adobe Acrobat Reader.

Syntax
Only a portion of the parameters needed to control the AFP2PDF Transform are
available with the command. The other parameters are specified in an options file.
By default, this file is named a2pxopts.cfg and must reside in the same directory
as the program module. See “AFP2PDF Transform options file” on page 10 for
more information about the options file.

The syntax for the afp2pdf command is:

�� afp2pdf
-a codes -e pw -f def

�

�
-g (YYYYMMDDHHmmSSOHH'mm') -i optfile -l -m

�

�
-n fontpath -o outfile -p page_no -r resfile

�

�
-s (YYYYMMDDHHmmSSOHH'mm') -t turn -u pw -v mapfile

�

� afpfile ��

Parameters
-a codes

When used with an owner password (-e pw), specifies which PDF display
functions are restricted. The codes for the display functions, which can be used
in any order, are:

a Add or modify text annotations and interactive form fields.

c Modify the document contents.

p Print the document.

© Copyright IBM Corp. 2008, 2010 7

|
|
|
|
|
|

s Copy text and graphics from the document.

-e pw
Specifies an alphanumeric password that gives permission to change document
security settings (also known as a master or owner password). For example, if
the printing function in the PDF display has been restricted (-a p), you must
supply a password to override the setting.

-f def
Specifies the fully qualified file name of the form definition resource that is
used when transforming an AFP file. For example:
afp2pdf -f c:\mydirectory\myformdef.fde afpfile.afp

-g (YYYYMMDDHHmmSSOHH'mm')
Sets a time stamp for when the document was created, where:
v YYYY is the year
v MM is the month
v DD is the day (01-31)
v HH is the hour (00-23)
v mm is the minute (00-59)
v SS is the second (00-59)
v O is the relationship of local time to Universal Time (UT), denoted by one of

the characters +, -, or Z
v HH is the absolute value of the offset from UT in hours (00-23)
v mm is the absolute value of the offset from UT in minutes (00-59)

-i optfile
Specifies the location and name of the transform options file that is different
from the default. This file name should not use relative paths and should be
fully qualified. See “AFP2PDF Transform options file” on page 10 for more
information about the options file.

-l Turns off all of the generated error and informational console messages and
sends them to the afp2pdf.err log file.

-m Generates a linearized PDF file which reorganizes the data for more efficient
processing in a network environment. Also known as Fast Web View PDF
documents, files generated with this parameter make it possible to view very
large documents without long download delays. To use this parameter, verify
that the Web server or Web application sending this PDF data over the
network provides the page-by-page downloading or "byte-serving" function.

-n fontpath
Specifies the location of the font definition files needed by the transform. This
parameter should be used if the font files are not located in the \font
subdirectory where the transform modules were installed.

-o outfile
Specifies the location and file name of the output PDF file that is different from
the default output file, which has the same location and name as the input file,
but with a file extension of “.pdf”. For example, when the PDF is generated
from an AFP file named afpdoc.afp, a file named afpdoc.pdf is created. You
can use this parameter to put the output file in a different directory than the
input file or give it a different file name.

-p page_no
Specifies the page number that is to be transformed in the AFP document. If

8 AFP2PDF Transform User's Guide

the specified page number does not fall within the document page range, the
first page in the document is transformed.

-r resfile
Specifies the fully qualified file name of the AFP resource group file to be used
when transforming the AFP file. For example:
afp2pdf -r c:\mydirectory\afpresfile.res afpfile.afp

-s (YYYYMMDDHHmmSSOHH'mm')
Sets a time stamp for when the document was signed, where:
v YYYY is the year
v MM is the month
v DD is the day (01-31)
v HH is the hour (00-23)
v mm is the minute (00-59)
v SS is the second (00-59)
v O is the relationship of local time to Universal Time (UT), denoted by one of

the characters +, -, or Z
v HH is the absolute value of the offset from UT in hours (00-23)
v mm is the absolute value of the offset from UT in minutes (00-59)

For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is
represented by the string: 19981223195200-08'00'

-t turn
Specifies the rotation value to use when transforming the file. Valid values are
0 , 90, 180, and 270. Some AFP files might have already been formatted with a
rotated orientation; therefore, you must use this parameter to align the text in
an upright position.

-u pw
Specifies an alphanumeric password that gives permission to open the PDF
document (also known as a user password).

-v mapfile
Specifies the location and name of the image map configuration file that is
different from the default, imagemap.cfg. This file name should not use relative
paths and should be fully qualified. See “Creating the image map
configuration file” on page 39 for more information about the image map
configuration file.

afpfile
Specifies the AFP input file that is to be transformed to PDF. This parameter is
required.

Return codes
When the afp2pdf command runs, you see one of these return code values:

0 Successful completion of the transform.

Nonzero
An error has occurred.

Chapter 3. Configuration 9

AFP2PDF Transform options file
Parameters to control settings for the AFP2PDF Transform are specified in an
options file. By default, the name of this file is a2pxopts.cfg. When running the
transform function with the afp2pdf command line program, the a2pxopts.cfg file
must reside in the same directory as the program module.

If running the transform function from the API, you can locate the options file in
any directory on the system and you can use any file name. By setting the
szOptionsFile option in the structure passed to the transform function, different
options files can be specified for different types of documents.

Parameters in the options file must be specified on separate lines and have the
format “parameter=value”. For example:
Disable_Compression=True
Auto_Rotate=True

Parameters and values are not case-sensitive. Lines starting with a semicolon (;) or
a pound (#) character are comments.

The AFP2PDF Transform option parameters are:

Append_Log_to_PDF=True | False
When Logging=Buffer, indicates whether the log file is appended to the PDF
output file.

Append_PDF_File=file,n
Indicates where a specified PDF file is appended to the generated PDF file,
where:

file Specifies the name and location of the PDF file that is to be appended to
the generated PDF file.

n Specifies 0 for the beginning of the file or 1 for the end of the file.

For example, Append_PDF_File="C:\term.pdf",0 appends the c:\term.pdf file
to the beginning of the generated PDF file, while Append_PDF_File="C:\
term.pdf",1 appends the c:\term.pdf file to the end of the generated PDF file.

Author=name
Specifies 1 to 62 characters for the Author name in the Info Dictionary of the
output PDF file. This information is displayed to the user if the "document
properties" function is selected in Adobe Acrobat. Enclose the text in double
quotes if the value contains blanks. For example: Author="InfoPrint
Solutions".

Auto_Rotate=True | False
Indicates whether the transform determines the orientation of each page and
rotates it so that the text appears right-side up. By default, the AFP document
is converted as is, so if the AFP page is formatted in a rotated orientation, the
output PDF is also rotated. Setting this parameter to True is useful when pages
in a document are rotated with different orientations.

If a document rotation setting is also given (an input parameter to rotate the
entire document), the Auto_Rotate parameter overrides this setting.

Bilevel_Image_Cnvt=True | False
Indicates whether the output device for the PDF data is changed to one that
supports gray-scale images. On some larger bi-level (black and white) images,

10 AFP2PDF Transform User's Guide

horizontal lines might appear by processing the image in smaller bands.
Setting this parameter to True might remove the horizontal lines at the band
boundaries.

Cache_AFP_Overlay=True | False
Indicates whether AFP overlays are saved during transformation. Setting this
parameter to True can result in a smaller PDF file and a faster conversion.

Note: This does not work on all AFP files.

Cache_Font_Image=True | False
Indicates whether font images are saved during transformation. Setting this
parameter to False can result in a larger PDF file; however, it might help the
rendering performance of the PDF files when using older Acrobat versions
(Acrobat 4) for display.

Certificate=pkcs12_file,pkcs12_password,cache_directory
Specifies the PKCS#12 certificate file used to sign the document, where:

pkcs12_file
Specifies the fully qualified name of the PKCS#12 certificate file.

pkcs12_password
Specifies the password needed to read the PKCS#12 file.

cache_directory
Specifies the fully qualified path to a directory that is used for certificate
storage. This is an optional value that can be used to improve the
performance of the conversion.

Certificate2=pkcs12_file,pwd_directory,cache_directory
Specifies the PKCS#12 certificate file used to sign the document, where:

pkcs12_file
Specifies the fully qualified name of the PKCS#12 certificate file.

pwd_directory
Specifies the fully qualified path to a file that contains the password
needed to read the PKCS#12 file.

cache_directory
Specifies the fully qualified path to a directory that is used for certificate
storage. This is an optional value that can be used to improve the
performance of the conversion.

Color=afpname,red,green,blue
Specifies the RGB value color setting that overrides the display of named color
values in the AFP OCA (graphics objects), where:

afpname
Specifies one of these colors defined in AFP: BLUE, BROWN, CYAN,
DARKBLUE, DARKCYAN, DARKGREEN, DARKGREY, DARKYELLOW,
GREEN, GREY, HIGHLIGHT0, HIGHLIGHT1, HIGHLIGHT2,
HIGHLIGHT3, MAGENTA, MUSTARD, ORANGE, PURPLE, RED, WHITE,
YELLOW.

red
green
blue

Specifies the RGB value settings in the range of 0 to 255.

Chapter 3. Configuration 11

For example, the AFP named color BLUE is changed to a light gray color with
these values:
Color=BLUE,220,220,220

Compression_Level=n
Specifies the compression level of the Flate compression used in the PDF file,
where n is 0 to 9. The larger the number the longer the conversion takes, but a
smaller PDF file should be created.

Creator=name
Specifies 1 to 62 characters for the Creator name in the Info Dictionary of the
output PDF file. This information is displayed to the user if the "document
properties" function is selected in Adobe Acrobat. Enclose the text in double
quotes if the value contains blanks. For example: Creator="InfoPrint
Solutions Company".

Default_Encryption_Permissions=[a, c, p, s][[,] 5[, e, d, i, q]]
Sets one or more default encryption permissions to be used when encrypting
the PDF output. The permission codes are:

a Adding or changing annotations or form fields is denied.

c Changing the document is denied in Acrobat.

p Printing the document is denied from Acrobat.

s Selecting and copying text and graphics is denied.

5 128-bit encryption is set (supported on Acrobat 5.0 or later; requires a
special transform package). You can set one or more of these codes with
128-bit encryption:

e Extracting text and graphics is denied.

d Assembling documents is denied.

i Editing form fields is denied.

q Printing high quality is denied.

Notes:

1. Using any of the 128-bit encryption codes produces a file that can only
be opened with Acrobat 5.0 or later.

2. Code 5 can be used in combination with one of the a, c, p, or s codes to
force 128-bit encryption without setting the i, e, d, or q codes.

Default_Linearization=True | False
Indicates whether the PDF output is linearized.

Default_Owner_Password=pw
Specifies a default owner encryption password, where pw is the alphanumeric
owner encryption password.

Default_User_Password=pw
Specifies a default user encryption password, where pw is the alphanumeric
user encryption password.

Disable_Bookmark_Generation=True | False
Indicates whether PDF bookmarks are created. If page level indexing
information is available in the input AFP document, PDF bookmarks are
automatically generated. If you do not want bookmarks created, you must set
this parameter to True .

12 AFP2PDF Transform User's Guide

Disable_Compression=True | False
Indicates whether the transform compresses PDF data. Setting this parameter
to True to turn off compression can be useful when trying to determine
problems that might exist in the PDF output file.

DotDensity,patternid,afpcolorname=red,green,blue
Specifies the RGB value color setting for the AFP Graphics Object Content
Architecture (GOCA) pattern that is used to fill the interior of an area, where:

patternid
Specifies the GOCA pattern identifier, which defines various dot fill
patterns of varying density. Pattern ID values of 1 to 8 are supported.

afpcolorname
Specifies one of these pattern foreground colors defined in AFP: BLACK,
BLUE, BROWN, CYAN, DARKBLUE, DARKGREEN, DARKTURQUOISE,
DEFAULT, GREEN, GREY, MAGENTA, MUSTARD, ORANGE, PURPLE,
RED, WHITE, YELLOW.

red
green
blue

Specifies the RGB value settings in the range of 0 to 255.

For example, DotDensity,5,GREY=220,220,220 specifies the RGB value of
220,220,220 for GOCA pattern 5 with a gray foreground color.

Enable_Auto_Font_Image=True | False
Indicates whether a font is mapped automatically. Setting this parameter to
True causes the font to be converted to image data if the font resources exist
and a font mapping does not exist.

Enable_Auto_Image_Cache=True | False
Indicates whether images are saved.

Note: This does not work with all AFP.

Enable_UDC=True | False
Indicates whether user-defined characters are enabled for double-byte
languages.

Expand_Index_Values=True | False
Indicates whether the subentries in the bookmark pane are automatically
expanded.

FontExt=*.extension
Specifies the file extension that is used when searching for font resources in
resource directories. For example, if FontExt=*.240 and the AFP document
references a font named C0FONTCS, the transform searches for a file named
C0FONTCS.240 in the resource directories.

Note: The extension value is case-sensitive on most operating systems.

Font_Image_Pad_Height=n
Specifies the number of additional padding rows used when generating raster
characters. Larger padding values enhance the display of small characters but
increase the PDF output size. The default value is 32.

Font_Image_Pad_Width=n
Specifies the number of additional padding columns used when generating

Chapter 3. Configuration 13

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

raster characters. Larger padding values enhance the display of small
characters but increase the PDF output size The default value is 32.

Font_Path=directory
Specifies the base directory that the transform uses to search for the font
configuration files. By default, this base directory is the \font subdirectory
where the transform modules were installed. If this parameter is used when
the font configuration files have been moved to a different location, the same
directory structure of the font configuration files must be preserved. For
example, if this entry was given: Font_Path=c:\fontfils, the code page map
files must reside in the c:\fontfils\maps directory.

Global_Scale=n.n
Applies a scaling factor to all the data on the page relative to the paper or
media represented in the PDF. For example, a scale of 50.0 reduces the data in
half relative to the page. The default value is 100.0.

GOCA_Pass1
Reserved for future use.

GOCA_Pass2
Reserved for future use.

GOCA_Pattern=patternid,var1,var2
Specifies the characteristics for the AFP Graphics Object Content Architecture
(GOCA) pattern that is used to fill the interior of an area, where:

patternid
Specifies the GOCA pattern identifier, which defines various line fill
patterns. Pattern ID values of 9 to 14 are supported.

var1
Defines the line width.

var2
Defines the line spacing.

For example: GOCA_PATTERN=9,10,250 specifies GOCA pattern 9 with a line
width of 10 and a line spacing of 250.

GOCA_Use_Circles=True | False
Indicates whether the transform uses circles for some GOCA patterns instead
shaded areas. Setting this parameter to True creates a large PDF file.

Honor_Constant_Forms=True | False
Indicates whether the transform generates extra pages created from the
constant forms control function, which is a function in AFP architecture that
produces one or more static overlays on a page without variable data from the
print file.

Honor_Media_Eject_Control=True | False
Indicates whether the transform tries to honor all of the media eject controls
specified in the AFP form definition resource. Setting this parameter to True
might cause extra blank pages to be placed in the output PDF.

Honor_Medium_Colored_Rules=True | False
Indicates whether objects that are drawn with the medium color are honored.
In the AFP architecture, objects can be drawn with the color of the medium,
such as paper. Depending on the order in which objects appear in the AFP
data, an object drawn with the color of the medium might cover up an object

14 AFP2PDF Transform User's Guide

|
|
|

|
|
|

|
|

|
|

|
|

that it overlaps. By default, the transform ignores objects that are drawn with
the medium color; however, if this parameter is set to True, overlapping objects
are allowed.

Horizontal_Offset=n
Applies a horizontal offset to all the data on the page relative to the paper or
media represented in the PDF. The units of this setting are in 1440 units per
inch.

Ignore_Data_Font_Height=True | False
Indicates whether the font height is ignored. By default, the transform honors
the font height value specified in the AFP data; however, if this parameter is
set to True, the font height setting in the AFP data is ignored and the font size
specified in the font configuration file, csdef.fnt, is used.

ImageMapEntries_File=file
Specifies the file that the transform uses to output the image information
contained in the AFP file. The information in this file can then be modified and
passed as input back into the transform function to change how individual
AFP images are transformed. See Chapter 5, “Mapping AFP images,” on page
39 for more information about mapping images.

Keywords=text
Specifies 1 to 120 characters for the Keywords entry in the Info Dictionary of
the output PDF file. This information is displayed to the user if the "document
properties" function is selected in Adobe Acrobat. Enclose the text in double
quotes if the value contains blanks. For example: Keywords="InfoPrint
Solutions Company Advanced Function Presentation"

Launch_Preview=True | False
Indicates whether the Adobe Acrobat automatically displays the PDF file just
created. This parameter is only valid when using the afp2pdf command on the
Windows server.

Locale_Path=path
Specifies the path location of the locale-specific information files needed during
the transform process. This parameter should only be used when converting
multiple-byte language files (Traditional Chinese, Simplified Chinese, Japanese,
Korean, or Unicode).

Logging={True | Append | Buffer},logdir
Specifies the type of tracing that is turned on for program debugging and
where the log file is located. The values are:

True
Traces on a document boundary and overwrites the trace data from a
previous document in the log file.

Append
Appends trace data to the end of the log file.

Buffer
Traces API functions. The A2PGetMessageBuffer API function returns the
trace text. When Append_Log_to_PDF=True, the log file is appended to
the PDF output file.

logdir
Specifies the directory where the log file is saved.

Max_Annotes
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Chapter 3. Configuration 15

|
|
|
|
|

|
|
|
|

Max_Fonts
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Max_Images
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Max_Leaves
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Max_Objects
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Max_Overlays
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Max_Pages
Deprecated–supported but no longer used by the transform. The transform
automatically adjusts this setting as needed.

Modify_Text_Colors=True | False
Indicates whether RGB value color settings override the display of named
color values in the AFP text (PTOCA) and AFP graphic objects. See the Color
parameter on page 11.

Old_Static_Paper=True | False
Indicates whether the older processing for the Static_Paper_Length and
Static_Paper_Width is enabled.

Output_IndexInfo=True | False
Indicates whether the group level index information for the document is
placed as a bookmark using the format "index attribute : index value". The
bookmark text can then be searched for by other applications processing the
PDF file.

Note: Do not set this parameter to True on password protected files because
the bookmark text becomes encrypted.

OverlayExt=*.extension
Specifies the file extension that is used when searching for overlay resources in
resource directories. For example, if OverlayExt=*.OLY and the AFP document
references an overlay named O1OVERLY, the transform searches for a file named
O1OVERLY.OLY in the resource directories.

Note: The extension value is case-sensitive on most operating systems.

Page_Rotation=0 | 90 | 180 | 270
Specifies the rotation value to use when transforming the file. Some AFP files
might have already been formatted with a rotated orientation; therefore, you
must use this parameter to align the text in an upright position.

PageSegExt=*.extension
Specifies the file extension that is used when searching for page segment
resources in resource directories. For example, if PageSegExt=*.PSG and the
AFP document references a page segment named S1PAGSEG, the transform
searches for a file named S1PAGSEG.PSG in the resource directories.

16 AFP2PDF Transform User's Guide

Note: The extension value is case-sensitive on most operating systems.

PDF/A=True | False
Indicates whether the transform generates output that conforms to the
PDF/A-1b specification, which is the format for the long-term preservation of
electronic documents. When this parameter is set to True, these conditions
must be met for the transform to generate output that conforms to the
specification:
v All fonts must be either embedded or processed as images for PDF/A-1b

compliance. See “Embedding Type 1 fonts” on page 34 for information about
embedding fonts; see “Using custom AFP raster font files” on page 32 for
information about processing AFP raster fonts as images.

v The PDF file must not contain any passwords or encryption; therefore, none
of the functions described in “AFP2PDF Transform security” on page 23
should be used when this parameter is set.

PfmPfb_Directory=directory
Specifies the path location of Adobe Type 1 outline font files that the transform
uses when embedding fonts inside of the PDF document. When simple font
substitution is not acceptable in the PDF output, it is possible to embed a
custom Type 1 font inside the PDF document for better results.

Note: Placing Type 1 font files in this directory does not mean they are
automatically placed inside of the PDF file. For a font to be embedded,
it must be mapped using the transform font definition files. See
“Mapping the AFP font to the embedded Type 1 font” on page 35 for
more information.

Preserve_CMYK=True | False
Indicates whether all AFP images are converted to the RGB color space in the
PDF output. Setting this parameter to True preserves AFP images defined with
the CMYK color space so they are not converted to RGB and uses a
compression in the PDF that does not cause any loss of color quality.

Printer_Resolution=n
Specifies the printer resolution to be used in GOCA. The default value is 300.

ResourceDataPath=directory[;directory...]
Specifies the directories that the transform uses to search for AFP resources.
You can specify multiple directories, but they must be separated with a
semicolon (;). See “Using AFP resources” on page 22 for more information.

Shade_RGB=red,green,blue
Specifies the intensity of the red, green, and blue colors when generating the
color of shaded areas. The color values are in the range of 0.0 to 1.0, with “0.0”
indicating black and “1.0” indicating white. For example: Shade_RGB=0.5, 0.5,
0.5.

See “Substituting AFP shaded images with colored areas” on page 43 for more
information about shaded areas.

Show_Outline=True | False
Indicates whether the outline window is displayed. If an AFP document
contains index data, the transform converts this index information into PDF
outline and bookmark functions. If the output PDF file contains any bookmark
information, the outline window is always displayed when viewed with Adobe
Acrobat. This parameter can be set to False so the outline window is not
displayed.

Chapter 3. Configuration 17

Show_Pageids=True | False
Indicates whether the Page Identifier values are displayed in the bookmark
pane.

Static_Paper_Center=True | False
Indicates whether the data in the AFP logical page is centered relative to the
static dimensions. This parameter can only be used when Static_Paper_Length
and Static_Paper_Width are specified.

Static_Paper_Length=n
Overrides the AFP logical page size used by default for the page or media
dimensions represented in the PDF. Using units of 72 units per inch, a specific
paper length can be specified for the entire document.

Static_Paper_Width=n
Overrides the AFP logical page size used by default for the page or media
dimensions represented in the PDF. Using units of 72 units per inch, a specific
paper width can be specified for the entire document.

Subject=text
Specifies 1 to 62 characters for the Subject entry in the Info Dictionary of the
output PDF file. This information is displayed to the user if the "document
properties" function is selected in Adobe Acrobat. Enclose the text in double
quotes if the value contains blanks. For example: Subject="Advanced Function
Presentation".

Title=text
Specifies 1 to 62 characters for the Title entry in the Info Dictionary of the
output PDF file. This information is displayed to the user if the "document
properties" function is selected in Adobe Acrobat. Enclose the text in double
quotes if the value contains blanks. For example: Title="InfoPrint Solutions
Company Advanced Function Presentation".

Transform_All_Subgroups=True | False
Indicates whether the transform converts all of the subgroup formatting
specified in the AFP form definition resource. By default, only the first
subgroup is processed by the transform.

TrueType_Directory=directory
Specifies the path location of TrueType outline font files that the transform
searches for when the AFP data references TrueType fonts. By default, this
directory is in the transform's \font\TrueType subdirectory.

If the TrueType font objects are inline with the AFP data, the TrueType fonts
are written to a file in the specified directory. On UNIX systems, the directory
must have the appropriate file system permissions to allow the files to be
written.

See “Mapping AFP TrueType fonts” on page 37 for more information.

UDC_File
Reserved for future use.

UDC_Range=low1,high1[,low2,high2][,low3,high3][,low4,high4]
Specifies one to four section ranges that the transform can search when
processing user defined characters for double-byte character set (DBCS) text.
The ranges restrict which DBCS sections are searched, which causes the
transform to run more efficiently.

For example, if the user defined characters are present in sections 129, 130, and
131, the parameter can specify these low and high sections: UDC_Range=129,131.

18 AFP2PDF Transform User's Guide

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|

Use_AFP_Metrics=n
Specifies a number that tells the transform to use the AFP font metrics instead
of the mapped font metrics. For example, Use_AFP_Metrics=255. See “Using
custom AFP raster font files” on page 32 to determine how the AFP font
metrics can be used instead of the mapped font metrics.

Use_ICU=True | False
Indicates whether the transform uses International Components for Unicode
(ICU) functions instead of standard iconv functions to convert text data that
requires more than one byte to represent a single character, such as these Asian
languages: Chinese, Japanese, and Korean.

Use_Unicode=True | False
Indicates whether the text in the PDF uses Universal Character Set, 2–byte
(UCS-2) encoding. This parameter only applies to Asian languages, such as
Chinese, Japanese, and Korean.

Vertical_Offset=n
Applies a vertical offset to all the data on the page relative to the paper or
media represented in the PDF. The units of this setting are in 1440 units per
inch.

split_afp2pdf command
The split_afp2pdf command takes an indexed AFP print file, splits it up into
separate statements, and invokes the AFP to PDF transform. The input AFP data
must be divided into separate page groups (statements) and contain AFP index
values for each group. This type of data is created by the AFP Conversion and
Indexing Facility (ACIF) or an equivalent function.

The split_afp2pdf command creates a separate PDF output file for each statement.
The name of the output file corresponds to at least a single associated index value.
For example, if the index field, ACCOUNT, is selected, each output file is named
with the actual account ID (such as 123456.pdf).

This command invokes the AFP2PDF Transform for each statement so the same
configuration and setup for the transform program applies. The split_afp2pdf
module must be placed in the same directory where the AFP2PDF Transform files
are installed.

Syntax
The syntax for the split_afp2pdf command is:

�� split_afp2pdf
-d dir -e pw -f def -g code_pg

�

�
-h fontpath -i index -i2 index -i3 index

�

�
-ix index -ix2 index -ix3 index -k path -l

�

�
-m mapfile -n -o optfile -p codes -r resfile

�

Chapter 3. Configuration 19

||

�
-t turn -u pw -v value

afpfile ��

Parameters
-d dir

Specifies the directory for all of the output files. If this parameter is not
specified, the output files are placed in the current directory.

-e pw
Specifies an alphanumeric password that gives permission to change document
security settings (also known as a master or owner password). For example, if
the printing function in the PDF display has been restricted (-p p), you must
supply a password to override the setting. The same password is applied for
each output file.

-f def
Specifies the fully qualified file name of the form definition resource that is
used on each statement when transforming the AFP document.

-g code_pg
Specifies the code page identifier (ID) to be used when interpreting the index
information in the AFP file. By default, code page 500 is used to interpret all
index fields. See “Code page map file” on page 30 for more information .

-h fontpath
Specifies the location of the font definition files when a code page ID is
specified with the -g parameter. The -h parameter should be used if the font
definition files are not located in the \font\maps subdirectory.

-i index
Specifies the index field used for generating the output file names. For
example, if -i RouteID is specified, the output file name ABC is generated if a
statement has a routing ID of ABC.

The user must know which index fields are available for the AFP data and
must pick a field that is unique for each statement. For example, a single index
field, such as ZIPCODE, might not be have unique values for all statements. In
that case, statements with the same zip code would have the same file name
causing an overwrite of the output file.

If this parameter is not given, the first index field found in the AFP data is
used. If an index field name not available in the AFP data is given, an error
message is issued and the program ends.

-i2 index
Specifies the second index field used for generating the output file names. This
parameter should only be used if the -i parameter is specified. The value of
this index field is concatenated to the end of the first index field and a hyphen
(-) is used as a separator. For example, if -i RouteID -i2 AccountNo is
specified, the output file name ABC-1234567 is generated if a statement has a
routing ID of ABC and an account number of 1234567.

-i3 index
Specifies the third index field used for generating the output file names. This
parameter should only be used if the -i and -i2 parameters are specified. The
value of this index field is concatenated to the end of the second index field
and a hyphen (-) is used as a separator. For example, if -i RouteID -i2

20 AFP2PDF Transform User's Guide

OfficeNo -i3 AccountNo is specified, the output file name of ABC-XYZ-1234567
is generated if a statement has a routing ID of ABC, an office number of XYZ,
and an account number of 1234567.

-ix index
Specifies the index field used for generating the output file names. This
parameter is the same as the -i parameter but is used when the index name is
specified in hexadecimal notation.

-ix2 index
Specifies the second index field used for generating the output file names. This
parameter is the same as the -i2 parameter but is used when the index name is
specified in hexadecimal notation.

-ix3 index
Specifies the third index field used for generating the output file names. This
parameter is the same as the -i3 parameter but is used when the index name is
specified in hexadecimal notation.

-k path
Specifies the location of the split_afp2pdf module files. The -k parameter
should be used if the split_afp2pdf module is invoked from a different
directory than the directory where the AFP2PDF Transform files are installed.

-l Generates a linearized PDF file which reorganizes the data for more efficient
processing in a network environment. Also known as Fast Web View PDF
documents, files generated with this option make it possible to view very large
documents without long download delays. To use this parameter, verify that
the Web server or Web application sending this PDF data over the network
provides the page-by-page downloading or "byte-serving" function.

-m mapfile
Specifies the location and name of the image map configuration file that is
used by the transform.

-n Generates a different PDF output file name if the file already exists. For
example, the PDF output file ABCD__2.pdf is generated if the output file name
ABCD.pdf already exists.

-o optfile
Specifies the location and name of the options file used by the transform.

-p codes
When used with an owner password (-e pw), specifies which PDF display
functions are restricted. The codes for the display functions, which can be used
in any order, are:

a Add or modify text annotations and interactive form fields.

c Modify the document contents.

d Copy text and graphics from the document.

p Print the document.

-r resfile
Specifies the fully qualified file name of the AFP resource group file to be used
when transforming the AFP file.

-t turn
Specifies the rotation value to use when transforming the file. Valid values are

Chapter 3. Configuration 21

|
|
|
|

0 , 90, 180, and 270. Some AFP files might have already been formatted with a
rotated orientation; therefore, you must use this parameter to align the text in
an upright position.

-u pw
Specifies an alphanumeric password that gives permission to open the PDF
document (also known as a user password).

-v value
Specifies the index field value where the statement conversion process begins.
This parameter lets the conversion start someplace other than the first
statement at the beginning of the file. The -i index setting must also be
specified if this parameter is used. For example, if split_afp2pdf -i ACCOUNT
-v 123456 is specified, all statements in the AFP data are skipped until the
account 123456 is encountered, then the transform process resumes.

afpfile
Specifies the AFP input file that is to be transformed to PDF. This parameter is
required.

Return codes
When the split_afp2pdf command runs, you see one of these return code values:

0 Successful completion of the statement split and transform.

Nonzero
An error has occurred.

split_afp2pdf generates a log file containing the list of output files generated. The
log file is placed in the same directory as the output files. If an error occurred
during the conversion process, this log could be used to determine the last
statement processed and used as the restarting value. This log also contains any
warning messages created during the conversion. For example, if an output file
was overwritten, it would be indicated as a warning message in this log file.

Using AFP resources
The AFP resources used by AFP2PDF Transform include:
v Page segments
v Overlays
v Form definitions
v Single-byte character set raster font files

Currently, AFP2PDF Transform does not process double-byte character set (DBCS)
or outline AFP font files. If the program encounters resources of this type, they are
ignored. To display text, the transform first tries to use the fonts available within
Adobe Acrobat. Font definition files that map the standard AFP fonts to Acrobat
fonts for PDF are provided. If your AFP document uses AFP fonts that you have
customized or created, you must map these fonts. For information about mapping
AFP fonts, see Chapter 4, “Mapping fonts,” on page 25.

The page segment, overlay, form definition, and font file resources can be passed
to the transform from these locations:

Inline resource group
The AFP resources needed by the AFP data file are combined into a logical
resource library for the document. This resource group is contained in the
AFP file along with the AFP document.

22 AFP2PDF Transform User's Guide

External resource group
The AFP resources needed by the AFP data file are combined into a logical
resource library for the document and are passed to the transform in as a
separate file.

When using the afp2pdf command, this resource file is specified with the
-r parameter. See “Syntax” on page 7 for more information.

Resource directories
AFP resource files can be placed in specific directories that the transform
program searches for when converting a document. The user can specify
multiple directories and the directories are searched in the order that they
are given.

By default, resources are placed in a \resource subdirectory where the
transform code modules were installed. You can specify other directories
with the ResourceDataPath parameter in the transform options file. See
“AFP2PDF Transform options file” on page 10 for more information.

You can also associate a file extension for the page segment and overlay
resources. Using the PageSegExt and OverlayExt parameters in the
transform options file, the given file extension is used when searching for
the resource. For example, if PageSegExt=*.PSG is set in the options file,
and the page segment resource called from the AFP data file is S1PAGSEG,
the transform searches for the file named S1PAGSEG.PSG in the resource
directories.

Note: The name of the resource file is case-sensitive on the UNIX servers
and it must match the name of the resource that is specified in the
AFP data file.

If an AFP resource is located in multiple places, the transform program uses this
search order:
1. Internal resource group
2. External resource group
3. Resource directories specified with the ResourceDataPath parameter in the

options file
4. The \resource subdirectory where the transform modules were installed

AFP2PDF Transform security
Protecting the contents of the PDF document is accomplished with encryption. This
PDF security feature is supported by the AFP2PDF Transform and follows the
password features supported within the Adobe Acrobat product. A PDF document
can have two levels of password protection: a “document open” password and a
“permissions” password.

When a document open password (also known as a user password) is used, any
user who tries to open the PDF document is required to supply the correct
password.

Encrypted PDF in the transform is also tied to restricting certain functions when
displayed in Adobe Acrobat. If any display functions are restricted, a permissions
password (also known as an owner or master password) is required. Any user
needing to override a restricted function must supply the correct permissions
password. See “Parameters” on page 7 for information about using the -a and -e
parameters to restrict display functions.

Chapter 3. Configuration 23

Both types of passwords can be set for a document. If the PDF document has both
types of passwords, it can be opened with either password.

Only Adobe software fully supports and respects these settings; users of
third-party PDF-enabled programs might be able to bypass some of the restrictions.

24 AFP2PDF Transform User's Guide

Chapter 4. Mapping fonts

The AFP2PDF Transform must map the AFP fonts your document was created
with to fonts that can be displayed with Adobe Acrobat. The AFP2PDF Transform
uses font definition files that are loaded into the font subdirectory during
installation.

This chapter describes font definition files, the process for mapping fonts, custom
AFP raster font files, embedded Type 1 fonts, custom font metric files, and AFP
TrueType fonts.

Note: The directory and file examples in this chapter are specified for the
Windows environment. To use these examples in a UNIX environment, use
the UNIX file naming convention for any file name. For example,
\font\maps in Windows is /font/maps in a UNIX environment, or the input
AFP file c:\documents\afpdoc.afp in Windows would be
/documents/afpdoc.afp in a UNIX environment.

Files supplied for mapping fonts
Table 1 lists the AFP2PDF Transform font support files and the subdirectories in
which they are installed. (The directory is that in which the AFP2PDF Transform
was installed.)

Table 1. Font files and subdirectories

File File name Subdirectory Description

Alias file alias.fnt \font Maps the font type families to PDF font
name and optionally specifies the font
metric file to use during the transform.

Character set definition file csdef.fnt \font Defines AFP character set attributes,
such as point size. It also maps the font
character set to the font global
identifier.

Coded font file icoded.fnt, coded.fnt \font Specifies which AFP code page and
AFP font character set make up the
coded font.

Code page definition file cpdef.fnt \font Maps each AFP code page to indicate
which code page map file to use for the
AFP2PDF Transform.

Code page map file cpgid.cp \font\maps Defines character identifier mappings. It
matches the AFP code page character
identifiers and their hexadecimal code
points with a corresponding character
identifier and ASCII code point
available in the PDF environment. The
default is Code Page 1252.

Font mapping file afpfont.fnt \font Defines the fonts where the raster
character images from the AFP font files
are extracted and placed as images in
the output PDF.

© Copyright IBM Corp. 2008, 2010 25

|
|
|

|
|
|
|
|
|

|

Table 1. Font files and subdirectories (continued)

File File name Subdirectory Description

Font metric information file font.AFM \font\AFM Contains the font metric information,
which is the dimension of each of the
characters (optional).

TrueType outline font files font.ttf \font\TrueType Contains the default location for the
TrueType font files (*.ttf) when
TrueType fonts are referenced in AFP
files.

Type 1 outline font files
and
custom font metric files

font.pfb
font.pfm
Custom-Metrics-xx.met

\font\Type1 Contains the default location for the
Type 1 font files (*.pfb, *.pfm) to be
embedded. Can also hold metric
information for custom fonts (optional).

Coded Font File
The coded font file (coded.fnt or icoded.fnt) maps AFP coded fonts to their AFP
character sets and code pages. Table 2 describes the two coded font files that can
be used with AFP2PDF Transform.

Table 2. Coded font files

Coded font
file name Description

coded.fnt Contains user-defined coded fonts. This file is optional, but must be placed
in the \font subdirectory.

icoded.fnt Contains standard definitions for approximately 2500 coded fonts supplied
by InfoPrint Solutions Company.

If a coded.fnt file exists in the \font subdirectory, AFP2PDF Transform searches it
first for the coded fonts used in an AFP file. Figure 1 shows an example of the
contents of the coded.fnt file.

Syntax rules:
v A question mark (?) can only be used as the wildcard character for the second

character in the coded font name and the character set name. This allows all the
character rotations of the coded fonts to be handled with one entry while
searching.

Note: A sequential search is performed for the coded font, and the first match is
used (including the wildcard character).

v After the coded font name, the character set name must be listed first, followed
by the code page name.

v The character set and code page must be separated by a comma.

X?A155N2=C?A155N1,T1DCDCFS
X?AE10=C?S0AE10,T1S0AE10
X?GT10=C?D0GT10,T1D0BASE
X?ST15=C?D0ST15,T1D0BASE
X?A0770C=C?A07700,T1GI0361
X0T0550C=C0T05500,T1DCDCFS

Figure 1. Example of a coded.fnt file

26 AFP2PDF Transform User's Guide

||||
|
|
|

Character set definition file
The character set definition file (csdef.fnt) specifies the character set attributes
and font global identifier of the font. It is split into two sections, one for character
sets (CHARSET) and one for font global identifiers (FGID). The CHARSET section
lists each AFP font character set and its corresponding attributes. Figure 2 shows
an example of the CHARSET section in the csdef.fnt file:

Table 3 describes the attributes and values for CHARSET.

Table 3. Attribute values for CHARSET

Attribute Values
Shipped
default Description

fgid An FGID in one of these
ranges:

v 3840 to 4096

v 65260 to 65534

2308 A unique font global identifier (FGID)
value, which identifies the type family,
typeface, and sometimes the point size
of the character set. This can be a
predefined FGID or your own FGID.

height 1 to 990 80 The vertical size of the character set
(minimal baseline-to-baseline value)
expressed in tenths of a point. For
example, a 9-point font would have a
height of 90.

width 0 to 99 (currently
ignored)

0 The average horizontal size of the
characters in 1440th of an inch.
Currently, 0 is always used because an
appropriate font width is determined
based on the height of the font.

strikeover 1 = YES
0 = NO

0 A font whose characters all have a
line, parallel to the character baseline,
placed over the middle of the
character.

underline 1 = YES
0 = NO

0 A font whose characters all have a line
underneath the character.

The FGID section lists each font global identifier and its corresponding attributes.
Figure 3 on page 28 shows an example of the FGID section in the csdef.fnt file:

[CHARSET]
;charset = fgid, height, width, strikeover, underline
C?H200A0=2304,110,73,0,0
C?H200D0=2304,140,93,0,0
C?N200B0=2308,120,80,0,0
C?4200B0=416,120,144,0,0
C?D0GT15=230,80,96,0,0
C?A155A0=33207,110,73,0,0
C?A175A0=33227,110,73,0,0
C?T055D0=4407,140,93,0,0
C?T17500=4555,100,67,0,
C?T17560=4555,60,40,0,0
DEFAULT=2308,80,0

Figure 2. CHARSET section of csdef.fnt file

Chapter 4. Mapping fonts 27

Table 4 describes the attributes and values for FGID.

Table 4. Attribute Values for FGID

Attribute Values Shipped default Description

familyname Font family name reference Times New
Roman

An outline font name or an AFP type family
name; "familyname" is the same as "type
family" in AFP fonts and "typeface name"
available in the PDF environment.

style SWISS, ROMAN, SCRIPT,
MODERN, DISPLAY

ROMAN A type of character face or specific
characteristics of the font.

Notes:

1. SWISS is a proportionally spaced, sans serif
font.

2. ROMAN is a proportionally spaced, serif
font.

3. SCRIPT is a fixed-pitch font designed to
look like handwriting.

4. MODERN is a fixed-pitch, sans serif or
serif font.

5. DISPLAY is a decorative font.

weight LIGHT, MED, BOLD MED The degree of boldness of a typeface caused by
different thickness of the strokes that form a
graphic character.

italic 1=YES
0=NO

0 A font with right-slanting characters.

Sytax rules:
v A comma must separate attributes.
v A question mark (?) can only be used as the wildcard character for the second

character in the character set name. This allows all the character rotations of the
coded fonts to be handled with one entry while searching.

Note: A sequential search is performed for the character set, and the first match
is used (including the wildcard character).

v The CHARSET section must come before the FGID section in the file.
v In the CHARSET section of the file, only the “fgid” and “height” attributes are

required.
v In the FGID section of the file, only the “familyname” and “style” attributes are

required.

[FGID]
;fgid = familyname, style, weight, italic
230=Gothic, MODERN,MED,0
416=Courier,MODERN,MED,0
2304=Helvetica,SWISS,MED,0
2308=TimesNewRoman,ROMAN,MED,0
4407=SonoranSerif,ROMAN,MED,0
4555=SonoranSerif,ROMAN,BOLD,1
33207=SonoranSansSerif,SWISS,MED,1
33227=SonoranSansSerif,SWISS,BOLD,1

Figure 3. FGID section of csdef.fnt file

28 AFP2PDF Transform User's Guide

v If you define a default character set in the file, it must be the last entry in the
CHARSET section.

v If you add your own AFP font character set to the CHARSET section, you must
assign it a font global identifier. If the new character set has the same
“familyname”, “style”, “weight”, and “italic” attributes as an existing character
set, you can use the same font global identifier; otherwise, you must add a
unique font global identifier to the FGID section.

Code page definition file
The code page definition file (cpdef.fnt) maps the AFP code page name to its code
page global identifier (CPGID) and, optionally, to an encoding classification and an
encoding type for Asian languages. The section header, CODEPG, is followed by a
list of AFP code pages and their attributes. The first attribute in each line is the
AFP code page global identifier that maps to a code page map file (see “Code page
map file” on page 30 for more information about mapping code pages). The
second attribute is the encoding classification that you decide is the best match for
your AFP code page. The third attribute is the single-byte character set (SBCS) or
double-byte character set (DBCS) encoding type that is needed for some Asian
languages. The last line gives the default attribute values to be used when a
default is required. Figure 4 shows an example of the contents of the cpdef.fnt
file.

Table 5 describes the attributes and values for the AFP code pages in the code page
definition file.

Table 5. CODEPG attributes

Attribute Value
Shipped
default Description

cpgid A CPGID in the range of 65280 to
65534

361 An AFP-defined code page
global identifier (CPGID),
your own defined CPGID,
or any other CPGID not
already being used within
the file

[CODEPG]
;codepage = cpgid,wincp,entype
T1DCDCFS=1003,ANSI
T1DEBASE=2058,ANSI
T1D0BASE=2063,ANSI
T1D0GP12=2085,ANSI
T1GI0395=2079,ANSI
T1GPI363=2066,SYMBOL
T1V10037=37,ANSI
T1V10273=273,ANSI
T1000290=290,ANSI
T1000310=310,ANSI
T1000423=423,ANSI
T1000905=905,ANSI
P1D0BASE=456,OEM,SBCS
DEFAULT=361,ANSI

Figure 4. CODEPG section of cpdef.fnt file

Chapter 4. Mapping fonts 29

Table 5. CODEPG attributes (continued)

Attribute Value
Shipped
default Description

wincp ANSI, SYMBOL, OEM, or NONSTD
KYUJIS (Japanese)
BIG5 (Traditional Chinese)
GB (Simplified Chinese)
KSC (Korean)
IDENTITY (Unicode)

ANSI PDF encoding

entype SBCS or DBCS SBCS or DBCS encoding
type for Asian language
definitions

Syntax rules:
v A comma must separate attributes.
v Only the first attribute, “cpgid”, is required.
v If you create your own code page, you must assign it a unique code page

identifier. Leading zeros are not valid. (You can use a predefined code page
global identifier, but only if the character-to-hexadecimal code mapping is the
same for your code page.)

v If you define a default code page in the file, it must be the last entry in the file.

Code page map file
AFP2PDF Transform provides one code page map file for each AFP code page
supplied with Print Services Facility™ (PSF) and the Data1 and Sonoran licensed
programs. These files are installed in the \font\maps subdirectory. The file is
named for its code page global identifier (CPGID) and has a file extension of “.cp”
(for example, if “2063.cp” is the file name for the T1D0BASE code page map; its
CPGID is “2063”). Each file contains the character identifiers (and associated
EBCDIC hexadecimal code points) for an AFP code page and maps them to
character identifiers (and associated ASCII code points) for an ANSI or SYMBOL
PDF encoding.

Figure 5 on page 31 shows an example of the contents of the code page map file
“395.cp” for the “T1000395” code page mapped to the ANSI encoding.

30 AFP2PDF Transform User's Guide

|

Syntax rules:
v Blanks must separate character identifiers.
v NOMATCH means there is not a matching character in the output character set.
v The NOMATCH hexadecimal code of "00" is mapped to the undefined code

point. When a document contains a character that does not exist in the output
character set, that character cannot be displayed. If the character has not been
remapped in the code page map file or the alias file, the undefined code point
character is displayed as a substitute.

v The string of semicolons (;;;;;;;;;) means this line is ignored as a comment. It also
indicates that the output code page contains a character that does not exist in
the AFP code page. The code point for a character not found in the AFP code
page can be used for replacing NOMATCH characters.

v If the input code point maps to "NOMATCH 00", and the corresponding AFP
code page and character set resources are available (inline or in a resource
directory), the transform extracts the raster character from the AFP font and
places it as an image in the PDF output.

Alias file
The alias file (alias.fnt) lists the font metric file name and the font family name
aliases in the FONT section. Font family name aliases let you change all of the
requested instances of a font family name (as defined in the character set definition
file) to another font family name.

Figure 6 shows an example of how the alias.fnt file is used with the AFP2PDF
Transform to change all requests for the SonoranSerif font to requests for the Times
font (which is one of the base fonts available in the Adobe Acrobat Viewer).

Syntax rules:
v If multiple mappings are listed in the file for the same family name, only the

first match is used.

;T1000395 to ANSI
SP010000 40 SP010000 20
LA150000 42 LA150000 E2
LA170000 43 LA170000 E4
LA130000 44 LA130000 E0
SP180000 8B SP180000 BB
SM560000 8C SM560000 89
SA000000 8D SP100000 2D
LI510000 8E NOMATCH 00
LF570000 8F NOMATCH 00
SM190000 90 SM190000 B0
LJ010000 91 LJ010000 6A
LF510000 A0 NOMATCH 00
;;;;;;;; ; SD150000 5E
;;;;;;;; ; SD130000 60
;;;;;;;; ; LT630000 FE
/*

Figure 5. Code page map file example

[FONT]
; ***** Requested font = font name,Font metric/AFM filename (or 'NULL' for not used) *****
SonoranSerif=Times, NULL

Figure 6. Alias file example

Chapter 4. Mapping fonts 31

v The alias file is processed sequentially. Items within the alias file are not chained.
That is, if “Century Schoolbook” is set equal to “Times,” and “Times” is set
equal to “Times New Roman”, then “Century Schoolbook” is not set equal to
“Times New Roman”.

v Blanks in family names are treated as characters. For example, “New Century
Schlbk” is not the same font as “NewCenturySchlbk”.

Process for mapping fonts
If your document uses an AFP font that is not listed in the font definition file, if
you have modified the AFP fonts, or if you have created your own AFP fonts, you
must edit the font definition files to add the fonts so documents using those fonts
display correctly with AFP2PDF Transform. For example:
v If you created a new coded font (or renamed one), you need to define the coded

font in the coded font file (icoded.fnt or coded.fnt).
v If you created a new character set, you must define it in the character set

definition file (csdef.fnt).
v If you created a new code page, you must define it in the code page definition

file (cpdef.fnt).
v If you have created a new code page or modified a code page by moving

characters, you need to create a new code page map file (cpgid.cp).

If you have only modified an existing font component, such as deleting code
points in the code page, you might not need to edit some of the definition files.

After determining which font files you need to modify, follow these steps to map
your fonts:
1. Gather the information needed to define the fonts in the font definition files.
2. Make backup copies of any of these font definition files you plan to modify so

you have the original file in case the modified copy becomes corrupted:
afpfont.fnt
alias.fnt
coded.fnt
cpdef.fnt
csdef.fnt

3. Substitute any nonmatching characters in the code page map file. See “Code
page map file” on page 30 for information about code page map files.

4. Edit the cpdef.fnt file and add your code page name, code page identifier, and
the best matching encoding classification for the fonts you are using.

5. If you have created a new character set, edit the csdef.fnt file and add your
character set name in the CHARSET section. Specify the correct attributes for
your font in the csdef.fnt file. Add the appropriate information in the FIGID
section of the file if you are naming a new font global identifier.

6. If you have created a coded font, create or edit the coded.fnt file and add your
coded font.

7. If any of the AFP raster fonts need to be used, list the corresponding AFP
coded fonts, code pages, and character sets in the afpfont.fnt file.

Using custom AFP raster font files
Custom AFP raster fonts can be mapped using AFP2PDF Transform. To do this, the
AFP resources, coded fonts, code pages, and character sets, must be either inline or
available in the resource directories. This is the order that the transform checks for
resources to map the raster fonts:

32 AFP2PDF Transform User's Guide

|

|

1. The transform looks for an entry in the afpfont.fnt file that maps the resource
set. The entry can include limited wildcards: a question mark (?) can be used to
represent any character in one position; an asterisk (*) can be used to indicate
one or more characters. For example, the entry C?T175* can represent any of
these values: C0T17500, C0T17560, and C1T17500. This is the hierarchy that is
followed:
a. If the resource is allowed and it is inline, it is used.
b. If the resource is not found, the second character in the name is replaced

with "0" and the inline resource is checked again.
c. If the resource is not inline, a file is looked for in the resource paths (the

ResourceDataPath parameter in the transform options file can be used to
indicate the location of these paths; the default is the \resource subdirectory
in the current working directory).

d. If the resource is still not found, the second character in the name is
replaced with "0" and the resource paths are searched again.

e. If the resource files have an extension, it can be specified using the FontExt
parameter in the transform options file (for example, “FontExt=*.240”
searches for fonts with the extension “.240”).

2. If there is no entry in the afpfont.fnt file or if the resource is not found, the
icoded.fnt, cpdef.fnt, and csdef.fnt files are checked to see if the resource is
to be mapped. If the resource is found, it is mapped. If
Enable_Auto_Font_Image=True in the transform options file, the resources are
checked as follows:
a. If the resource is inline, it is used.
b. If the resource is not found, the second character in the name is replaced

with "0" and the inline resource is checked again.
c. If the resource is not inline, a file is looked for in the resource paths (the

ResourceDataPath parameter in the transform options file can be used to
indicate the location of these paths; the default is the \resource subdirectory
in the current working directory).

d. If the resource is still not found, the second character in the name is
replaced with "0" and the resource paths are searched again.

e. If the resource files have an extension, it can be specified using the FontExt
parameter in the transform options file (for example, “FontExt=*.240”
searches for fonts with the extension, “.240”).

3. If the resources still have not been found, the defaults are used.

Note: If a file is using:
v A mapped code page and a custom character set, the font is converted to

image data.
v A mapped character set and a custom code page, the font is not converted

to image data. The custom code page is mapped using a map file.

Figure 7 on page 34 defines raster fonts in a font mapping file. In this example,
code pages T1K99MAP, T1K99MCP, and T1KNIC4 are mapped. Character sets
C?CONWAY, C?K99MAP, C?K99MCP, and C?WSMITH are also mapped.

Chapter 4. Mapping fonts 33

|

|

The font mapping file can also be used in these situations:
v Some special characters in a font, such as a pointing finger, are not represented

in the Type 1 font that is being used. In this case, AFP raster fonts can be used
for some characters while the fonts defined in the font definition files, such as
csdef.fnt and cpdef.fnt, can be used for others characters. For example,
C?H00040 84,98,C1 uses AFP raster fonts for code points X'84', X'98', and X'C1'
and the fonts defined in the font definition files for all other characters.

v When the Use_AFP_Metrics parameter is specified in the transform options file,
such as USE_AFP_METRICS=255, and a character set, such as C?H00040 FF, is
specified in the font mapping file, the AFP font metrics are used for character
placement when the font defined by C?H00040 in the csdef.fnt file is used.

v The first two examples can be combined to use the AFP font metrics and some
AFP raster fonts.

Figure 8 shows entries in the transform options file that define resource paths. In
this example, “c:\res1” is searched first for resources with an extension of “.240”
and then “c:\res2” is searched.

Embedding Type 1 fonts
When you use a custom AFP font within an AFP document, it might be necessary
to generate an equivalent Type 1 outline font. You can configure the transform
program to embed this Type 1 outline within the output PDF file for proper
display.

The Type 1 font must be in binary (PFB, PFM) format. If a font is in ASCII (AFM,
PFA) format, you must convert it before it can be used with the transform. Type 1
fonts typically consist of a printer font binary (PFB) and a printer font metrics
(PFM) file. The PFB file contains the mathematical descriptions (in the PostScript®

language) for each character. The PFM file contains the font metrics needed for the
display of the characters.

[CODEDFNT]
;Coded Font
;X?*
[CODEPG]
;Code Page
;T?*
T1K99MAP
T1K99MCP
T1KNIC4
[CHARSET]
;Character Set
;C?*
C?CONWAY
C?K99MAP
C?K99MCP
C?WSMITH

Figure 7. Font mapping file example

ResourceDataPath='c:\res1\;c:\res2'
FontExt=*.240

Figure 8. Transform options file example

34 AFP2PDF Transform User's Guide

For example, assume a Type 1 font is made up of the files, CustFont.pfb and
CustFont.pfm. The file extensions of “.pfb” and “.pfm” must be lowercase for the
transform to correctly identify these files. The font file name, CustFont, must be the
same for both the .pfb and .pfm files. For the transform to use these files, these
must be defined:
v File location
v Rules for when the files should be substituted for a specific AFP font

File location
You must place all Type 1 font files, including all font files that can be used for
embedding fonts in the PDF file, in a single directory. By default, the transform
looks in the \font\Type1 subdirectory in the same directory where the AFP2PDF
Transform files are installed. The PfmPfb_Directory parameter in the transform
options file can be used to define a directory that is different from the default. See
“AFP2PDF Transform options file” on page 10 for more information.

Mapping the AFP font to the embedded Type 1 font
The embedded Type 1 font name is specified in the alias.fnt font mapping
configuration file. Under the FONT section, a font name and font metric file name
are specified for the font:
[FONT]
font=font_name,font_metric_name

Where:
v font defines the name by which this font is known and is referred to by the other

font configuration files. For example, Custom1.
v font_name specifies the name of the font, such as CustFont. This name is

case-sensitive and must match the file name of the PFB and PFM files.
v font_metric_name indicates the file name for font metric information. If it is set to

NULL, it indicates that extra font metric information is not used.

In this example, if the AFP font is mapped to “Custom1”, the Type 1 font,
“CustFont”, is embedded inside the output PDF file and the appropriate text uses
this font for the display:
[FONT]
Custom1=CustFont,NULL

See Chapter 4, “Mapping fonts,” on page 25 for more information about mapping
fonts.

Using custom font metric files
AFP2PDF Transform can be configured with custom font metric files to control the
placement of individual characters and to aid in text alignment. AFP2PDF
Transform uses the default fonts available in the PDF display application (for
example, Adobe Acrobat) and applies special character widths as specified in the
font metric file.

Font metric files should be set up to use the default PDF WinANSI encoding (code
page 1252); they cannot be used for double-byte text (Asian languages). The files
are located in the \font\Type1 subdirectory and are named Custom-Metrics-x.met,
where x is 1 to 25.

Chapter 4. Mapping fonts 35

To configure the transform, the name of the font metric file is specified as the first
parameter in the alias.fnt file. The second parameter, specifying the Adobe Font
Metric (AFM) file name, is set to NULL. Figure 9 shows an example of the
alias.fnt file with entries that define custom font metric files to the transform.

The format of custom font metric files follows the AFM specification, including
two additional parameters that describe the font used for the display:

Flags Specifies various characteristics of the font. Values are bit positions from 1
to 32. Table 6 shows the defined bit position values.

Table 6. Defined values for the Flags parameter

Value Font type Description

1 FixedPitch All characters have the same width (as opposed to proportional
or variable-pitch fonts, which have different widths).

2 Serif Characters have serifs, which are short lines drawn at an angle
on the upper and lower end of character strokes (as opposed to
sans serif fonts, which have no serifs).

6 Nonsymbolic The font uses the Adobe standard Latin character set or a subset
of it.

7 Italic Characters are slanted to the right.

17 AllCap The font contains no lowercase letters; typically used for display
purposes such as titles or headlines.

18 SmallCap The font contains capital letters in the same style as the normal
capital letters in a font, but approximately the size of the
lowercase letters.

Note: All other bit positions are reserved and must be set to 0.

StemV
The width, measured in the x direction, of the dominant vertical stems of
characters in the font.

Figure 10 on page 37 shows an example of an custom font metric file called
Custom-Metrics-1.met.

;**** Requested font=font name,Font metric/AFM file name (or 'NULL' for not used) *****
Font1=Custom-Metrics-1,NULL
Font2=Custom-Metrics-2,NULL
;******* End User-defined/Custom names *******

Figure 9. Custom font metric files defined in the alias.fnt file

36 AFP2PDF Transform User's Guide

Mapping AFP TrueType fonts
When TrueType fonts are specified on the Map Data Resource (MDR) structured
field in AFP documents, they can be mapped using AFP2PDF Transform. The
TrueType font file must have a lowercase extension of “.ttf” for the transform to
correctly identify the TrueType file. For example, if the MDR specifies “Font1” for
the full font name, the transform tries to locate the file named Font1.ttf.

TrueType font collections, linked TrueType fonts, or the use of a Resource Access
Table (RAT) are not supported.

For the transform to use these files, these must be defined:
v File location
v Converter files for character encoding

File location
You must place all TypeType font files in a single directory. By default, the
transform looks in the \font\TrueType subdirectory in the same directory where
the AFP2PDF Transform files are installed. You can use the TrueType_Directory
parameter in the transform options file to define a directory that is different from
the default. See “AFP2PDF Transform options file” on page 10 for more
information.

Character encoding
The AFP2PDF Transform uses the Unicode character encoding standard to
reference characters in TrueType fonts. If the AFP text is encoded in a format other
than a standard Unicode encoding (UTF-8 or UTF-16), the text must be converted
to Unicode during the transformation process. In that case, new conversion tables
that use the International Components for Unicode (ICU) function might be
required.

The \locale subdirectory is the default location for the ICU binary converter files
(*.cnv). You can use the Locale_Path parameter in the transform options file to

FontName C0CUSTOM
; Desciption - 'Custom Font 1'
Ascender 924
CapHeight 720
Descender -216
Flags 32
FontBBox -47 -204 996 924
ItalicAngle 0
StemV 90
XHeight 720
StartCharMetrics
C 32 ; WX 240 ; N space ;
C 33 ; WX 252 ; N exclam ;
C 34 ; WX 408 ; N quotedbl ;
C 35 ; WX 480 ; N numbersign ;
C 36 ; WX 480 ; N dollar ;
C 37 ; WX 756 ; N percent ;
C 38 ; WX 552 ; N ampersand ;
C 39 ; WX 240 ; N quotesingle ;
...
EndCharMetrics

Figure 10. Example of a custom font metric file

Chapter 4. Mapping fonts 37

|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

define a directory that is different from the default. See “AFP2PDF Transform
options file” on page 10 for more information.

The binary converter files are based on ICU 3.4 and are different for the system
being used. The file name convention is icudt34p_ibm-cpid.cnv, where p denotes
the system ID and cpid is the code page ID. The values for the system ID are:

l Little endian, ASCII

b Big Endian, ASCII

e Big Endian, EBCDIC

The code page ID is the numerical CPGID that is defined in the cpdef.fnt code
page definition file (see “Code page definition file” on page 29).

38 AFP2PDF Transform User's Guide

|
|

|
|
|

||

||

||

|
|

Chapter 5. Mapping AFP images

When an AFP document is transformed, images are identified using parameters
that specify the page segment name (if available), the position, and the size of each
image. If an AFP page contains images, AFP2PDF Transform creates image
information entries in an output file. The output file entries can be copied into an
image map configuration file to define and map a particular image.

Mapping images lets you handle AFP images in different ways during the
transform process, such as:
v Identifying individual images in your transformed files.
v Removing all or some of the images from your transformed output.
v Substituting all or some of the images with previously generated images in the

PDF output with JPEG images.
v Substituting all or some of the images with a solid-colored rectangle. This is

especially useful for improving the look of the shaded areas that are defined as
images in the AFP data stream.

v Adding an image, which is not part of the AFP data, to the PDF display that
models the use of a preprinted form used during printing.

v Storing frequently used images to reduce the size of a PDF file.

The configuration file handles all the transform processing for the images. For
example, when the transform program is run against an AFP document and an
image is encountered, the program looks for a matching image entry in the
configuration file. If an entry is defined that matches the name, position, size, or a
combination of the three, the information in the configuration file is used to
transform the image. If a matching image entry in the configuration file contains
an "empty entry", the image is not generated in the PDF output file.

Note: The file examples in this chapter are specified for the Windows
environment. To use these examples in a UNIX environment, use the UNIX
file naming convention for any file name. For example, the input AFP file
c:\documents\afpdoc.afp in Windows would be /documents/afpdoc.afp in a
UNIX environment.

Creating the image map configuration file
To map images for your AFP files, you must create an image map configuration
file. The best way to do this is to transform a sample AFP document that
represents all documents with images. You then identify the image entries and
define them in the configuration file.

The image information in the configuration file is used to identify the images in
the AFP document and map them during the transform process. Figure 11 on page
40 shows an example of image information for different images. Each IMAGE tag
along with its corresponding IMAGE_END tag defines a single image information
entry in the configuration file. The first value for position and size is the horizontal
dimension and the second value is the vertical dimension. The position
measurements are for the upper, left-hand corner of the image relative to the
upper, left-hand corner of the page.

© Copyright IBM Corp. 2008, 2010 39

|
|
|
|
|

By default, the image map configuration file is named imagemap.cfg. AFP2PDF
Transform looks for the file in the same directory in which the program was
installed. However, you can specify a different location and name for the file.

To create the image map configuration file:
1. Create or modify the AFP2PDF Transform options file (see “AFP2PDF

Transform options file” on page 10) with the entry
ImageMapEntries_File=outputfile, where outputfile is the location and name of
the file for the AFP file image information. For example,
ImageMapEntries_File=c:\imagemap.out.

2. Enter afp2pdf afpfile to run the AFP2PDF Transform, where afpfile is the
directory and file name of the AFP document you are transforming. For
example, afp2pdf c:\documents\afpdoc.afp.
The system generates an output file with image information for the AFP
document and a PDF file for the AFP document. For example:
c:\imagemap.out
c:\documents\afpdoc.pdf

3. Copy the image lines in the output file (such as imagemap.out) into the image
map configuration file (imagemap.cfg by default). These image entries are
"empty entries" by default. Empty entries do not include any image information
between the starting <IMAGE> and ending <IMAGE_END> lines.

4. Add image information between the starting <IMAGE> and ending
<IMAGE_END> lines for the images you want generated in the PDF output
file.

The image information in the configuration file is used to identify the images in
the AFP document. When the transform matches an image in the AFP document
with image information in the configuration file, it generates the image in the PDF
output file.

Identifying AFP images in the image map configuration file
In some cases, images in the configuration file can be identified from the name or
the position and size information. In other cases, it might be difficult to distinguish
one image from another. In these cases it is possible to work with the afp2pdf
transform command to visually identify each of the images. By creating empty
image entries and then commenting out a single entry in the file, you can identify
the image when you rerun the transform and the image is generated in the output
PDF file.

To identify individual images:
1. Define empty image information entries for all of the images in the image map

configuration file. Empty entries do not include any image information between
the starting <IMAGE> and ending <IMAGE_END> lines. For example:

<IMAGE position:(5.250in,0.613in) size:(0.667in,0.800in)>
<IMAGE_END>
<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<IMAGE_END>
<IMAGE position:(3.596in,8.550in) size:(2.633in,0.700in)>
<IMAGE_END>
<IMAGE name:(S1PSEG01) position:(6.162in,8.483in) size:(2.067in,0.604in)>
<IMAGE_END>

Figure 11. Image information in the image map configuration file

40 AFP2PDF Transform User's Guide

<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<IMAGE_END>

2. Comment out the first image in the configuration file by adding slashes before
the entry. For example:
//<IMAGE position:(5.250in,0.613in) size:(0.667in,0.800in)>
//<IMAGE_END>
<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<IMAGE_END>
<IMAGE position:(3.596in,8.550in) size:(2.633in,0.700in)>
<IMAGE_END>
<IMAGE name:(S1PSEG01) position:(6.162in,8.483in) size:(2.067in,0.604in)>
<IMAGE_END>

3. Run afp2pdf to generate a PDF file that contains only the image that you
commented out. For example: afp2pdf c:\documents\afpdoc.afp, where
c:\documents\afpdoc.afp is the directory and file name of the AFP document
you are transforming.

4. View the PDF file. The image generated in the file is the image entry you
commented out in the configuration file.

Removing images using the image map configuration file
The image information in the configuration file is used to identify the images in
the AFP document and map them to the PDF file during the transform process. If a
matching image entry in the configuration file contains an "empty entry", the
image is not generated in the PDF output file. Empty entries do not include any
image information between the starting <IMAGE> and ending <IMAGE_END>
lines, as in Figure 12.

Therefore, to remove AFP file images so they are not generated in the PDF output
file, create empty image entries in the configuration file.

To remove images:
1. Define empty image information entries in the image map configuration file for

those images you do not want generated in the PDF file.
2. Run afp2pdf on the AFP file (for example, afp2pdf c:\documents\afpdoc.afp).

A PDF file is generated (such as c:\documents\afpdoc.pdf) that does not
contain any images with empty entries in the configuration file.

Substituting existing images with AFP2PDF Transform
During the AFP2PDF Transform process, you can use the image map configuration
file to substitute an AFP image with a previously generated image. The only type
of image which can be substituted at this point is the JPEG format.

To use an existing image, add IMAGE definition parameters between the starting
<IMAGE> and ending <IMAGE_END> lines of an image information entry in the
image map configuration file. The image definition parameters are:

XPos=n
Defines the position, in units of 1440 units per inch, of the left edge of the
image relative to the left edge of the page.

<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<!-- IMAGE_END -->

Figure 12. Empty entries in the image map configuration file

Chapter 5. Mapping AFP images 41

YPos=n
Defines the position, in units of 1440 units per inch, of the top edge of the
image relative to the top edge of the page.

XSize=n
Defines the target area width (horizontal size in units of 1440 units per inch)
which the image is scaled to.

YSize=n
Defines the target area height (vertical size in units of 1440 units per inch)
which the image is scaled to.

Filename=path
Specifies the fully qualified location and file name for the image. This text
should be enclosed in double quotes if a blank is used within the value.

ColorFlag=0 | 1
Specifies the type of image to be substituted. This is an optional parameter and
if specified, should be set to “1”.

As shown in Figure 13, when the first image is encountered it is substituted with
“logo1.jpg”; when the second image is encountered, it is substituted with
“logo2.jpg”.

You can define abbreviated versions of the image entries to expand the matching
capabilities of incoming AFP images. This can simplify and reduce the number of
image entries defined in the configuration file. To define abbreviated versions, edit
the image entry and specify any combination of name, position, or size. If the
incoming AFP image matches all the characteristics listed for the image entry, the
image is substituted.

For example, in Figure 14, the page segment reference name, S1PSEG01, is used.
When an incoming AFP image matches the name, the substituted image is added
to the output. The XPos, YPos, XSize, and YSize parameters for the substituted
image are extracted from the AFP image.

<IMAGE position:(5.250in,0.613in) size:(0.667in,0.800in)>
IMAGE XPos=0 YPos=0 XSize=900 YSize=200 Filename="c:\images\logo1.jpg"
<IMAGE_END>
<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
IMAGE XPos=0 YPos=0 XSize=500 YSize=300 Filename="c:\images\logo2.jpg"
<IMAGE_END>
<IMAGE position:(3.596in,8.550in) size:(2.633in,0.700in)>
<IMAGE_END>
<IMAGE name:(S1PSEG01) position:(6.162in,8.483in) size:(2.067in,0.604in)>
<IMAGE_END>

Figure 13. Example of existing images in the image map configuration file

<!-- IMAGE name:(S1PSEG01) -->
IMAGE Filename="c:\images\logo1.jpg"
<!-- IMAGE_END -->

Figure 14. Example of abbreviated image entries in the image map configuration file

42 AFP2PDF Transform User's Guide

Substituting AFP shaded images with colored areas
Many AFP documents contain areas on the page that are shaded with a gray box.
This is accomplished in the AFP data stream by defining an image that has pels
laid out in a regular checkerboard-like pattern to create a gray shading effect.
When trying to display this type of image, however, it often becomes distorted due
to the scale factor and resolution of the display hardware. To avoid this problem,
you can define a colored area to be used instead of the shaded image.

To substitute a shaded image with a color area, add SHADED_AREA definition
parameters between the starting <IMAGE> and ending <IMAGE_END> lines of an
image information entry in the image map configuration file. The shaded area
definition parameters are:

XPos=n
Defines the position, in inches, of the left edge of the colored area relative to
the left edge of the page. This parameter is optional because the horizontal
position of the incoming AFP image is used if XPos is not specified.

YPos=n
Defines the position, in inches, of the top edge of the colored area relative to
the top edge of the page. This parameter is optional because the vertical
position of the incoming AFP image is used if YPos is not specified.

XSize=n
Defines the width (horizontal size in inches) of the colored area on the page.
This parameter is optional because the horizontal size of the incoming AFP
image is used if XSize is not specified.

YSize=n
Defines the height (vertical size in inches) of the colored area on the page. This
parameter is optional because the vertical size of the incoming AFP image is
used if YSize is not specified.

Shade_R=n
Shade_G=n
Shade_B=n

Specifies the intensity of the red, green, and blue colors (respectively) used
when generating the color of the area. The values given must be in the range
0.0 to 1.0. When all three values are set to “1.0”, white is generated. When all
three values are set to “0.0”, black is generated.

If these parameters are not specified, the transform tries to use the color
described by the Shade_RGB parameter in the AFP2PDF Transform options file
(see “AFP2PDF Transform options file” on page 10). By default, Shade_R=0.8,
Shade_G=0.8, and Shade_B=0.8 creates a light gray color that is used if no
other color specification is found.

For example, in Figure 15 on page 44 when the first image is encountered, it is
substituted with a red, 0.667 x 0.8 inch area positioned at 5.25 x 0.613 inches.

Chapter 5. Mapping AFP images 43

You can define abbreviated versions of the image entries to expand the matching
capabilities of incoming AFP images. This can simplify and reduce the number of
image entries defined in the configuration file. To define abbreviated versions, edit
the image entry and specify any combination of name, position, and size. If the
incoming AFP image matches all the characteristics listed for the image entry, the
shaded area is substituted. For example, in Figure 16, the size values are used.
When an incoming AFP image matches the image size information, a colored area
with the default color is created. The XPos, YPos, XSize, and YSize parameters for
the rectangle are extracted from the AFP image.

Adding an image to the transform output
Occasionally, preprinted forms are used during the printing process. These
preprinted forms might have a company logo, a table, or grid that is filled in with
the print data. AFP2PDF Transform can include an image, which emulates the
preprinted form, in the transformed output. The transform opens the specified
image file, which currently can only be JPEG format, processes the image data, and
converts it into an image for the PDF output. The image can be in color and you
can specify which pages it is included on.

To include an image that emulates a preprinted form, add one or more of these
static image definitions between the starting <IMAGE> and ending
<IMAGE_END> lines of the image information entry in the image map
configuration file:

STATICIMG_PAGE
Specifies that the same image is included on the pages specified with the Type
parameter.

STATICIMG_FRONT
Specifies that the image on the front duplex page of AFP data is placed in the
PDF on pages specified with the Type parameter.

STATICIMG_BACK
Specifies that the image on the back duplex page of AFP data is placed in the
PDF on pages specified with the Type parameter.

STATIC_IMG
Specifies that the same image is included on the pages specified with the Type
parameter and all position and size dimensions are in 72 units per inch.

These parameters are used with the static image definitions:

<IMAGE position:(5.250in,0.613in) size:(0.667in,0.800in)>
SHADED_AREA XPos=5.250 YPos=0.613 XSize=0.667 YSize=0.800 Shade_R=1.0 Shade_G=0.0 Shade_B=0.0
<IMAGE_END>
<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<IMAGE_END>
<IMAGE position:(3.596in,8.550in) size:(2.633in,0.700in)>
<IMAGE_END>
<IMAGE position:(6.162in,8.483in) size:(2.067in,0.604in)>
<IMAGE_END>

Figure 15. Example of colored areas in the image map configuration file

<IMAGE size:(0.667in,0.800in)>
SHADED_AREA
<IMAGE_END>

Figure 16. Example of abbreviated colored areas in the image map configuration file

44 AFP2PDF Transform User's Guide

XPos=n
Defines the position, in 1440 units per inch, of the left edge of the image
relative to the left edge of the page.

YPos=n
Defines the position, in 1440 units per inch, of the top edge of the image
relative to the top edge of the page.

XSize=n
Defines the width (horizontal size in 1440 units per inch) for the target area on
the page for the image.

YSize=n
Defines the height (vertical size in 1440 units per inch) for the target area on
the page for the image.

Filename=path
Specifies the fully qualified path and name for the image. Enclose the value in
double quotes if a blank is used as part of the value.

Type=All | First | Second | All=First
Specifies the pages for which the image should be included. The values
include:

All
The image is included on all pages.

First
The image is included on the first page only.

Second
The image is included on the second page only.

All-First
The image is included on all the pages except for the first page.

If the page orientation switches between portrait (length is greater than its width)
and landscape (width is greater than its length), these parameters can also be
specified to control the position and sizing for the landscape orientation:

XPos_Wide=n
Defines the position, in 1440 units per inch, of the left edge of the image
relative to the left edge of the page.

YPos_Wide=n
Defines the position, in 1440 units per inch, of the top edge of the image
relative to the top edge of the page.

XSize_Wide=n
Defines the width (horizontal size in 1440 units per inch) for the target area on
the page for the image.

YSize_Wide=n
Defines the height (vertical size in 1440 units per inch) for the target area on
the page for the image.

In the example in Figure 17 on page 46, the JPEG image, “form1.jpg”, is included
on all simplex pages in the PDF output.

Chapter 5. Mapping AFP images 45

Notes:

1. The image definitions do not include position or size information. You must
manually add the starting and ending lines to the image map configuration file,
in addition to the static image definitions.

2. You can define multiple images on a page; however, make sure the size and
position do not cause the images to overlap.

Storing frequently used images with AFP2PDF Transform
In many AFP documents, the same image is used many times throughout the
document, such as a company logo that appears on each page of a document. It is
possible to store this image once and then reference it each time it is used. Storing
frequently used images reduces the size of the resulting PDF file.

To store an image, add a CACHE_IMG definition between the starting <IMAGE>
and ending <IMAGE_END> lines of an image information entry in the image map
configuration file. The cache image definition has this parameter:

NAME
Defines the name of the image to be stored. The name cannot contain these
words: SHADED_AREA, IMAGE, PROCESS_IMG, or CACHE_IMG. For
example, NAME=IMAGE0 is not allowed. The name must be different for each
image stored.

Figure 18 shows how to store frequently used images. When the first image is
encountered, it is stored with the name “IMG0”.

<IMAGE>
STATICIMG_PAGE XPOS=0 YPOS=0 XSIZE=12240 YSIZE=15840 FILENAME="C:\afp2pdf\form1.jpg" TYPE=ALL
<IMAGE_END>

Figure 17. Example of an image added to PDF output

<IMAGE position:(5.250in,0.613in) size:(0.667in,0.800in)>
CACHE_IMG NAME=IMG0
<IMAGE_END>
<IMAGE position:(0.863in,8.483in) size:(2.400in,0.667in)>
<IMAGE_END>
<IMAGE position:(3.596in,8.550in) size:(2.633in,0.700in)>
<IMAGE_END>
<IMAGE position:(6.162in,8.483in) size:(2.067in,0.604in)>
<IMAGE_END>

Figure 18. Example of stored images in image map configuration file

46 AFP2PDF Transform User's Guide

Chapter 6. Application programming interfaces

The AFP2PDF Transform application programming interfaces (APIs) convert AFP
documents and resources into files that can be viewed with Adobe Acrobat. These
APIs are written to interface with a C/C++ application.

The AFP2PDF Transform APIs are available as a dynamic link library (DLL) on the
Windows (32-bit) server, as a shared library on the UNIX servers, and as an
integrated file system object on an IBM i OnDemand server. Therefore, the
transform function can be contained within the calling application’s process and a
separate process does not need to be created (as compared to using the AFP2PDF
Transform command line interface).

The AFP2PDF Transform APIs use data buffers for input and output to the
transform. Many times the AFP data is retrieved from a database in a buffer in
memory. The pointer to this memory block is then passed directly to the
conversion code for processing. The output from the API program also uses a
pointer to a data buffer that contains the transformed output. Therefore, the
overhead of opening, reading, and closing files is eliminated. Because system
performance degrades if very large memory buffers are allocated, this approach
assumes that the input and output buffers are not extremely large. The command
line interface, which uses files for input and output to the transform, might need to
be used for large memory buffers.

This chapter describes the packaging information for the APIs, shows examples for
loading API code and obtaining function pointers, and describes the APIs for the
AFP2PDF Transform.

Packaging information
This section describes the API packaging for the AFP2PDF Transform on the
Windows, UNIX, and IBM i OnDemand servers.

Windows server
The API package consists of one or more dynamic link library (DLL) files and a
\font subdirectory in the directory where the DLLs are located. The \font
subdirectory contains the font definition files needed by AFP2PDF Transform as
well as several subdirectories. Figure 19 on page 48 shows the file structure for
APIs used by AFP2PDF Transform.

© Copyright IBM Corp. 2008, 2010 47

|
|

|
|

UNIX server
The package consists of a shared library file (afp2pdf_shr) and a /font
subdirectory in the directory where the shared library is located. The /font
subdirectory contains the font definition files needed by AFP2PDF Transform as
well as several subdirectories. The package also includes the afp2pdfpe and
afp2pdfpl files, which the transform uses. Figure 20 shows the file structure for
APIs used by AFP2PDF Transform.

IBM i OnDemand server
The package consists of a shared library file (afp2pdf_shr) and a /font
subdirectory in the directory where the shared library is located. The /font
subdirectory contains the font definition files needed by AFP2PDF Transform and
several subdirectories. The package also includes the afp2pdfpe and afp2pdfpl
files, which the transform uses. Figure 21 on page 49 shows the directory structure
for the AFP2PDF Transform.

afp2pdfd.dll
afp2pdfpe.dll
apf2pdfpl.dll
\java_api

afp2pdf.jar
a2pjni.dll

\font
afpfont.fnt
alias.fnt
coded.fnt
cpdef.fnt
csdef.fnt
icoded.fnt
\AFM (optional)
\maps
\Type1 (optional)

Figure 19. File structure for AFP2PDF Transform APIs on Windows servers

afp2pdfpe
afp2pdfpe_64 (on supported 64 bit systems)
afp2pdfpl
afp2pdfpl_64 (on supported 64 bit systems)
afp2pdf_shr
afp2pdf_shr_64 (on supported 64 bit systems)
/java_api

afp2pdf.jar
liba2pjni.so (or .sl)
liba2pjni_64.so (or .sl) (on supported 64 bit systems)

/font
afpfont.fnt
alias.fnt
coded.fnt
cpdef.fnt
csdef.fnt
icoded.fnt
/AFM (optional)
/maps
/Type1 (optional)

Figure 20. File structure for AFP2PDF Transform APIs on UNIX servers

48 AFP2PDF Transform User's Guide

|

|

|
|
|
|
|
|
|

Figure 22 shows the file structure for APIs used by AFP2PDF Transform.

Loading code and obtaining function pointers
This section provides Windows, UNIX, and IBM i OnDemand server examples for
dynamically loading the API code and obtaining the function pointers to the API
methods.

Windows server
Figure 23 on page 50 shows an API DLL dynamically loaded with the Windows
LoadLibrary function.

/QIBM/ProdData/OnDemand/www/binpdf
/QIBM/ProdData/OnDemand/www/binpdf/font
/QIBM/ProdData/OnDemand/www/binpdf/font/maps
/QIBM/ProdData/OnDemand/www/binpdf/java_api
/QIBM/ProdData/OnDemand/www/binpdf/locale/uconvtab

Figure 21. Directory structure for AFP2PDF Transform on IBM i OnDemand servers

afp2pdf
afp2pdf_shr
afp2pdfd.h
afp2pdfpe
afp2pdfpl
insure.afp
split_afp2pdf
/font

afpfont.fnt
alias.fnt
coded.fnt
cpdef.fnt
csdef.fnt
icoded.fnt
/maps

/java_api
a2peip.jar
afp2pdf.jar
afp2pdf.pdf
AFP2PdfDemo.java
AFP2PdfServlet.java
eClient_howto.pdf
liba2pjni.so
testa2pd.java

/locale/uconvtab
Ibm-1363
Ibm-1386
Ibm-300
Ibm-834
Ibm-835
Ibm-837
Ibm-943
Ibm-950

Figure 22. File structure for AFP2PDF Transform APIs on IBM i Ondemand servers

Chapter 6. Application programming interfaces 49

|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

|
|

|
|
|

Figure 24 shows how to dynamically obtain the function pointer for the
A2PDocStart function with the Windows GetProcAddress call and then call the
A2PDocStart function with the function pointer.

UNIX server
The following sections show how to dynamically load an API shared library and
obtain the function pointer on UNIX servers. On AIX, the load function returns the
function pointer to the main entry point. In all other UNIX environments, the
open/load function returns a handle to the shared library.

Dynamically loading an API shared library
Examples of how to dynamically load an API shared library are shown in
Figure 25 for AIX, Figure 26 on page 51 for Sun and Linux, and Figure 27 on page
51 for z/OS UNIX System Services.

AIX:

// Load the Afp2pdf transform DLL.
//
HINSTANCE hXForm = LoadLibrary("c:\\afp2pdf\\afp2pdfd.dll");
if (hXForm == NULL) {

fprintf(stderr, "Could not load the AFP2pdf transform DLL");
}

Figure 23. Example of loading a Windows API DLL

// Define a fpA2PDocStart function pointer variable for the A2PDocStart function.
//
void* (__cdecl * fpA2PDocStart)(unsigned char*, unsigned long, char*);

// Obtain the A2PDocStart function pointer / entry point in the DLL.
//
fpA2PDocStart = (void* (__cdecl *)(unsigned char*, unsigned long, char *))

GetProcAddress(hXForm, "A2PDocStart");
if (fpA2PDocStart == NULL) {

fprintf(stderr, "Could not load the function pointer for A2PDocStart");
}

// Call the transform function to start processing an AFP document.
//
void* hDocument = (*fpA2PDocStart)(pInBuffer, iDataLen, “c:\\afp2pdf\\”);

Figure 24. Example of obtaining the function pointer to the API options in Windows

// Declare the function pointer for the main entry point of the shared library.
//
void* (*fpA2PGetFuncPtr)(const char*);

// Load the Afp2pdf transform shared library which returns the main entry point.
//
fpA2xGetFuncPtr=(void* (*)(const char*)) load (“/a2pXForm/afp2pdf_shr”, 1, NULL);
if (fpA2PGetFuncPtr == NULL) {

fprintf(stderr, "Could not load the AFP2pdf transform library");
}

Figure 25. Example of loading an API shared library on AIX

50 AFP2PDF Transform User's Guide

Sun and Linux:

z/OS UNIX System Services:

Dynamically obtaining the function pointer
Examples of how to dynamically obtain the function pointer are shown in
Figure 28 for AIX, Figure 29 on page 52 for Sun and Linux, and Figure 30 on page
52 for z/OS UNIX System Services. The function pointer is obtained for the
A2PDocStart function with the main entry point from the load call and then the
A2PDocStart function is called with the function pointer.

AIX:

// Load the Afp2pdf transform shared library which returns handle to the library.
//
void* hSLib= dlopen (“/a2pXForm/afp2pdf_shr”, RTLD_LAZY);
if (hSLib == NULL) {
fprintf(stderr, "Could not load the AFP2pdf transform library");
}

Figure 26. Example of loading an API shared library on Sun and Linux

// Load the Afp2pdf transform shared library which returns handle to the library.
//
dllhandle* hSLib= dllload (“/a2pXForm/afp2pdf_shr”);
if (hSLib == NULL) {
fprintf(stderr, "Could not load the AFP2pdf transform library");
}

Figure 27. Example of loading an API shared library on z/OS UNIX System Services

// Define a fpA2PDocStart function pointer variable for the A2PDocStart function.
//
void* (* fpA2PDocStart)(unsigned char*, unsigned long, char*);

// Obtain the A2PDocStart function pointer / entry point in the library.
//
fpA2PDocStart = (void* (*)(unsigned char*, unsigned long, char *))

(*fpA2PGetFuncPtr)(hXForm, "A2PDocStart");
if (fpA2PDocStart == NULL) {

fprintf(stderr, "Could not load the function pointer for A2PDocStart");
}

// Call the transform function to start processing an AFP document.
//
void* hDocument = (*fpA2PDocStart) (pInBuffer, iBytesRead, "/a2pXForm/");

Figure 28. Example of obtaining the function pointer to API options on AIX

Chapter 6. Application programming interfaces 51

Sun or Linux:

z/OS UNIX System Services:

IBM i OnDemand server
Figure 31 shows how to dynamically load an API shared library on an IBM i
OnDemand server.

Note: Obtaining the function pointer does not apply on IBM i.

// Define a fpA2PDocStart function pointer variable for the A2PDocStart function.
//
void* (* fpA2PDocStart)(unsigned char*, unsigned long, char*);

// Obtain the A2PDocStart function pointer / entry point in the library.
//
fpA2PDocStart = (void* (*)(unsigned char*, unsigned long, char *))

dlsym(hSLib, "A2PDocStart");
if (fpA2PDocStart == NULL) {

fprintf(stderr, "Could not load the function pointer for A2PDocStart");
}

// Call the transform function to start processing an AFP document.
//
void* hDocument = (*fpA2PDocStart) (pInBuffer, iBytesRead, "/a2pXForm/");

Figure 29. Example of obtaining the function pointer to API options on Sun or Linux

// Define a fpA2PDocStart function pointer variable for the A2PDocStart function.
//
void* (* fpA2PDocStart)(unsigned char*, unsigned long, char*);

// Obtain the A2PDocStart function pointer / entry point in the library.
//
fpA2PDocStart = (void* (*)(unsigned char*, unsigned long, char *))

dllqueryfn (hSLib, "A2PDocStart");
if (fpA2PDocStart == NULL) {

fprintf(stderr, "Could not load the function pointer for A2PDocStart");
}

// Call the transform function to start processing an AFP document.
//
void* hDocument = (*fpA2PDocStart) (pInBuffer, iBytesRead, "/a2pXForm/");

Figure 30. Example of obtaining the function pointer to API options on z/OS UNIX System
Services

// Declare the function pointer for the main entry point of the shared library.
//
void* (*fpA2WGetFuncPtr)(const char*);

// Load the Afp2pdf transform shared library which returns the main entry point.
//
fpA2WGetFuncPtr=(void* (*)(const char*))

load (“/QIBM/UserData/OnDemand/www/binpdf/afp2pdf_shr”, 1, NULL);
if (fpA2WGetFuncPtr == NULL) {

fprintf(stderr, "Could not load the AFP2pdf transform library");
}

Figure 31. Example of loading an API shared library on an IBM i OnDemand server

52 AFP2PDF Transform User's Guide

|
|
|
|
|
|
|
|
|
|
|
||
|

|

|
|
|

|

AFP2PDF Transform API
The AFP2PDF Transform API converts AFP documents and resources into Adobe
PDF files.

Input options structure
Due to the number of options that need to be specified for the transform process, a
C/C++ header file containing a structure of the input options is created. The
calling application should allocate the storage for this structure, update the
parameter values in this structure as needed, and then pass the pointer to this
structure to the appropriate API functions.

This structure is defined in the header file afp2pdfd.h and needs to be included by
the calling application. The calling application should use the default “structure
member alignment” when compiling. The input options structure is referenced
with the name, A2PCvtOpts. The definition of this structure is shown in Figure 32

The options in the A2PCvtOpts structure are:

iPageNumber
Specifies the page number that is to be transformed in the document. The first
page in the document is represented by "1". If a page number that is not valid
(for example, out of range) is specified, the first page in the document is
converted.

iLastPageFlag
Specifies the last page when building a PDF file one page at a time from the
AFP document. This option is only required when calling the A2PXFormPage
function for the last page in the PDF file.

typedef struct
{
int iPageNumber; // Page number to convert
int iLastPageFlag; // Indicates last page being transformed
int iRotation; // Rotation setting (0 | 90 | 180 | 270)
int* piPdfOutLen; // Returned PDF output buffer length
char** ppPdfOutBuf; // Returned PDF output buffer pointer
char szOptionsFile[SMAX_PATH+1]; // Fully qualified 'a2pxopts.cfg' file spec
char szImageMapFile[SMAX_PATH+1]; // Fully qualified 'imagemap.cfg' file spec
int iVersion; // Structure version number
char szFormDef[SMAX_PATH+1]; // Fully qualified form definition file
char szReserved[SMAX_PATH+1]; //
short fUserPW; // 1 = there is a User Password

// 0 = there is no User Password
char szUserPW[SMAX_PATH+1]; // User Password
short fOwnerPW; // 1 = there is an Owner Password

// 0 = there is no Owner Password
char szOwnerPW[SMAX_PATH+1]; // Owner Password
short fPerms; // 1 = there are flags in szPerms;

// 0 = there are no flags in szPerms;
char szPerms[SMAX_PATH+1]; // Encryption Permissions
short sLinearize; // Linearize PDF (1=TRUE or 0=FALSE)
char szCreateTime[64]; // PDF Creation Time
char szSignTime[64]; // PDF Signature Time

} A2PCvtOpts;

Figure 32. Input options structure

Chapter 6. Application programming interfaces 53

iRotation
Specifies the rotation value to use when transforming the file. Valid values are
0, 90, 180, and 270. Some AFP documents might have been formatted with a
rotated orientation; therefore, you must use this option to align the text in an
upright position.

piPdfOutLen
Specifies the pointer reference to a variable allocated by the calling application.
The variable is filled in by the transform API and contains the length in bytes
of the output PDF data. The output PDF data buffer is returned in the
ppPdfOutBuf option. The calling application should check the value of the
variable after the conversion process. A value of “0” indicates an error has
occurred and any data in the output PDF data buffer is not valid.

ppPdfOutBuf
Specifies the address of a pointer reference variable allocated by the calling
application. The variable is filled in by the transform API and contains a
pointer to the output PDF data. The length of the output PDF data buffer is
returned in the piPdfOutLen option. The calling application should check the
value of the variable after the conversion process. A null value indicates an
error has occurred.

szOptionsFile
Specifies a fully qualified path and file name string for the AFP2PDF
Transform options file. This options file contains various settings to use when
transforming the data. The options file is named a2pxopts.cfg by default. It is
located in the same directory where the transform API code was installed. You
can use this option to change the name and location of this file.

szImageMapFile
Specifies a fully qualified path and file name string for the image map
configuration file. The image map configuration file lists images that require
special processing. The image map configuration file is named imagemap.cfg by
default. It is located in the same directory where the transform API code was
installed. You can use this option to change the name and location of this file.

iVersion
Version number of the A2PCvtOpts structure. This number must be 3.

szFormDef
Specifies a fully qualified path and file name string for a form definition file.

szReserved
Reserved.

fUserPW
Specifies whether the generated PDF is to have a user password. Values are:

0 No password

1 Password

szUserPW
Specifies the user password for the generated PDF file.

fOwnerPW
Specifies if the generated PDF is to have an owner password. Values are:

0 No password

1 Password

54 AFP2PDF Transform User's Guide

szOwnerPW
Specifies the owner password for the generated PDF file.

fPerms
Specifies if the generated PDF is to have restricted permissions set. Values are:

0 No restricted permissions

1 Restricted permissions

szPerms
Specifies the encryption permissions. Encrypted PDF in the transform is also
tied to restricting certain functions when displayed in Adobe Acrobat. These
codes are used to restrict one or more functions:

a Add or modify text annotations and interactive form fields.

c Modify the document contents.

p Print the document.

s Copy text and graphics from the document.

If any functions are disabled, a permissions password (also known as a owner
or master password) must also be specified. Any user needing to override a
restricted function must supply the correct permissions password.

SLinearize
Specifies that the generated PDF is to be linearized. Values are:

0 Not linearized

1 Linearized

szCreateTime
Specifies the time the generated PDF was created. The format of the time
stamp is:
(YYYYMMDDHHmmSSOHH'mm')

where:
v YYYY is the year
v MM is the month
v DD is the day (01-31)
v HH is the hour (00-23)
v mm is the minute (00-59)
v SS is the second (00-59)
v O is the relationship of local time to Universal Time (UT), denoted by one of

the characters +, -, or Z
v HH is the absolute value of the offset from UT in hours (00-23)
v mm is the absolute value of the offset from UT in minutes (00-59)

szSignTime
Specifies the time the generated PDF was signed. The format of the time stamp
is:
(YYYYMMDDHHmmSSOHH'mm')

where:
v YYYY is the year
v MM is the month

Chapter 6. Application programming interfaces 55

v DD is the day (01-31)
v HH is the hour (00-23)
v mm is the minute (00-59)
v SS is the second (00-59)
v O is the relationship of local time to Universal Time (UT), denoted by one of

the characters +, -, or Z
v HH is the absolute value of the offset from UT in hours (00-23)
v mm is the absolute value of the offset from UT in minutes (00-59)

Available programming functions
This section contains information about the programming functions available for
the AFP2PDF Transform API.

A2PDocStart2
A2PDocStart2 initializes transform processing for an AFP document and returns a
handle to the document as a void* type. This handle is required as input to all of
the other functions and serves to identify the document initialized with this call. A
document handle of NULL indicates that an error has occurred.

The format of A2PDocStart2 is:
void* A2PDocStart2 (unsigned char* pDataIn, unsigned long ulSizeIn, char* pszDir, A2PCvtOpts* pCvtOpts)

The options in the A2PDocStart2 function are:

pDataIn
Specifies a pointer to a memory block that contains the input AFP document. If
there is an associated AFP resource group object, this must be included before
the actual document.

ulSizeIn
Specifies the size in bytes of the amount of input data in the buffer.

pszDir
Specifies the directory where the AFP2PDF Transform API code is installed.

pCvtOpts
Specifies a pointer to a structure allocated by the calling program that contains
the input options to be used during the transform process.

A2PGetPageCount
A2PGetPageCount returns the number of pages in a specific AFP document. The
format of A2PGetPageCount is:
int A2PGetPageCount (void* hAfpDoc)

The option in the A2PGetPageCount function is:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

A value greater than "0" indicates a successful completion. A “0” value or negative
number indicates an error has occurred. For example:

-10 Null value is specified for the hAfpDoc option.

-20 hAfpDoc optionr specified is not valid.

56 AFP2PDF Transform User's Guide

A2PXFormDoc
A2PXFormDoc transforms the entire AFP document using the given values in the
input options structure. The format of A2PXFormDoc is:
void* A2PXFormDoc (void* hAfpDoc, A2PCvtOpts* pCvtOpts)

The options in the A2PXFormDoc function are:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

pCvtOpts
Specifies a pointer to a structure allocated by the calling program that contains
the input options to be used during the transform process.

A value of "0" indicates a successful completion. A negative value indicates an
error has occurred. For example:

-10 Null value is specified for the hAfpDoc option.

-20 hAfpDoc option specified is not valid.

-30 PDF output buffer values specified in the pCvtOpts structure are not valid.

A2PXFormPage
A2PXFormPage transforms a page in an AFP document using the given values in
the input options structure. Using this function, a subset of pages from the AFP
document can be used to build the PDF file.

Note: The iLastPageFlag in the input options structure must be set to "1" when
calling this function for the last page in the PDF file.

The format of A2PXFormPage is:
void* A2PXFormPage (void* hAfpDoc, A2PCvtOpts* pCvtOpts)

The options in the A2PXFormPage function are:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

pCvtOpts
Specifies a pointer to a structure allocated by the calling program that contains
the input options to be used during the transform process.

A value of "0" indicates a successful completion. A negative value indicates an
error has occurred. For example:

-10 Null value is specified for the hAfpDoc option.

-20 hAfpDoc option specified is not valid.

-30 PDF output buffer values specified in the pCvtOpts structure are not valid.

A2PDocEnd
A2PDocEnd ends the processing for a given AFP document. The format of
A2PDocEnd is:
void* A2PDocEnd (void* hAfpDoc, A2PCvtOpts* pCvtOpts)

The options in the A2PDocEnd function are:

Chapter 6. Application programming interfaces 57

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

pCvtOpts
Specifies a pointer to a structure allocated by the calling program that contains
the input options to be used during the transform process.

A value of "0" indicates a successful completion. A negative value indicates an
error has occurred. For example:

-10 Null value is specified for the hAfpDoc option.

-20 hAfpDoc option specified is not valid.

A2PGenerateMessages
A2PGenerateMessages allows the suppression of warning and error messages
generated by the transform while converting a document. If this function is not
called, the transform generates messages by default.

The format of A2PGenerateMessages is:
int A2PGenerateMessages (void* hAfpDoc, int iSwitch)

The parameters in the A2PGenerateMessages function are:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

iSwitch
Specifies the whether messages should be generated. A value or “0” suppresses
all messages for the document. All nonzero values generate messages.

A value of “0” indicates a successful completion. A negative value indicates an
error has occurred and the function did not complete. For example:

-10 Null value is specified for the hAfpDoc option.

A2PBufferMessages
A2PBufferMessages allows the buffering of messages for a document so the
message text can then be retrieved with the A2PGetMessageBuffer function.

The format of A2PBufferMessages is:
int A2PBufferMessages(void* hAfpDoc, int iSwitch);

The options in the A2PBufferMessages function are:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

iSwitch
Specifies whether the messages should be buffered. A value of “0” suppresses
the buffering of messages for the document. All nonzero values turn on
message buffering.

A2PGetMessageBuffer
A2PGetMessageBuffer returns the message buffer. The format of
A2PGetMessageBuffer is:
char* A2PGetMessageBuffer(void* hAfpDoc)

58 AFP2PDF Transform User's Guide

The option in the A2PGetMessageBuffer function is:

hAfpDoc
Identifies the AFP document object handle that is returned from the
A2PDocStart function.

Chapter 6. Application programming interfaces 59

60 AFP2PDF Transform User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2008, 2010 61

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

62 AFP2PDF Transform User's Guide

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at www.ibm.com/legal/
copytrade.shtml

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United
States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Portions of the OnDemand Windows client program contain licensed software
from Pixel Translations Incorporated, © Pixel Translations Incorporated 1990, 2003.
All rights reserved.

Other company, product or service names may be trademarks or service marks of
others.

Notices 63

64 AFP2PDF Transform User's Guide

Glossary

This glossary defines technical terms and
abbreviations used in this publication.

These cross-references are used in this glossary:
v See. Refers to preferred synonyms or to

defined terms for acronyms and abbreviations.
v See also. Refers to related terms that have

similar, but not synonymous, meanings, or to
contrasted terms that have opposite or
substantively different meanings.

A
ACIF. See AFP Conversion and Indexing Facility.

Adobe Acrobat. An Adobe Systems, Incorporated
software product that lets you create and share PDF
documents and forms.

Adobe Font Metrics (AFM). An Adobe Systems,
Incorporated file containing PostScript font information
that is used to format documents for PostScript devices.

Adobe Reader. An Adobe Systems, Incorporated
software product that views and interacts with PDF
files.

Advanced Function Presentation (AFP). A set of
licensed programs, together with user applications, that
use the all-points-addressable concept to print data on
a wide variety of printers or to display data on a
variety of display devices. AFP includes creating,
formatting, archiving, retrieving, viewing, distributing,
and printing information.

Advanced Interactive Executive (AIX). A UNIX
operating system developed by IBM that is designed
and optimized to run on POWER microprocessor-based
hardware, such as servers, workstations, and blades.

AFM. See Adobe Font Metrics.

AFP. See Advanced Function Presentation.

AFP Conversion and Indexing Facility (ACIF). A
software product that converts a print file into a
MO:DCA-P document, creates an index file for later
retrieval and viewing, and retrieves resources used by
an AFP document into a separate file.

AIX. See Advanced Interactive Executive.

American Standard Code for Information Interchange
(ASCII). A standard code used for information
exchange among data processing systems, data
communication systems, and associated equipment.

ASCII uses a coded character set consisting of 7-bit
coded characters. See also Extended Binary Coded
Decimal Interchange Code.

API. See application programming interface.

application programming interface (API). An
interface that allows an application program that is
written in a high-level language to use specific data or
functions of the operating system or another program.

ASCII. See American Standard Code for Information
Interchange.

B
band. An arbitrary layer of an image. An image can
consist of one or more bands of data.

bi-level image. An image in which each picture
element is represented by only one bit; therefore, a
bi-level image contains only two colors: a background
color and a foreground color.

C
case-sensitive. Pertaining to the ability to distinguish
between uppercase and lowercase letters.

character identifier. The standard identifier for a
character, regardless of its style. For example, all
uppercase A’s have the same character identifier.

character set. A defined set of characters that can be
recognized by a configured hardware or software
system. See also font character set.

CMYK. A color model used by the printing industry
based on mixing cyan, magenta, yellow, and black.

coded font. In AFP support, a font file that associates
a code page and a font character set. For double-byte
fonts, a coded font associates multiple pairs of code
pages and font character sets.

code page. A particular assignment of code points to
graphic characters. Within a given code page, a code
point can only represent one character. A code page
also identifies how undefined code points are handled.
See also coded font.

code page global identifier (CPGID). A 5-digit
decimal or 2-byte binary identifier that is assigned to a
code page. The range of values is 00001 to 65534
(X'0001' to X'FFFE').

© Copyright IBM Corp. 2008, 2010 65

Content Manager OnDemand. An IBM program that
lets you automatically capture, index, archive, search,
retrieve, present, and reproduce stored
computer-generated documents and other
business-related data.

CPGID. See code page global identifier.

D
DBCS. See double-byte character set.

default. Pertaining to an attribute, value, or option
that is assumed when none is explicitly specified.

deprecated. Pertaining to an entity, such as a
programming element or feature, that is supported but
no longer recommended and that might become
obsolete.

double-byte character set (DBSC). A set of characters
in which each character is represented by two bytes.
These character sets are commonly used by national
languages, such as Japanese and Chinese, that have
more symbols than can be represented by a single byte.

duplex. Pertaining to printing on both sides of a sheet
of paper. See also simplex.

E
EBCDIC. See Extended Binary Coded Decimal
Interchange Code.

Extended Binary Coded Decimal Interchange Code
(EBCDIC). A coded character set of 256 eight-bit
characters developed for the representation of textual
data. EBCDIC is not compatible with ASCII character
coding. See also American Standard Code for
Information Interchange.

F
FGID. See font typeface global identifier.

file. A collection of related data that is stored and
retrieved by an assigned name. A file can include
information that starts a program (program-file object),
contains text or graphics (data-file object), or processes
a series of commands (batch file).

Flate compression. A zlib/deflate compression
method that uses a lossless algorithm to compress PDF
files.

font. (1) A family or assortment of characters of a
given size and style, for example, 9-point Bodoni
modern. A font has a unique name and might have a
registry number. (2) A particular type style (for

example, Bodoni or Times Roman) that contains
definitions of character sets, marker sets, and pattern
sets. See also coded font.

font character set. Part of an AFP font that contains
the raster patterns, identifiers, and descriptions of
characters. See also character set.

font mapping. A file or table that compares and
matches one type of font to another; for example, core
raster fonts to core outline fonts.

font metrics. Measurement information that defines
individual character values, such as height, width, and
space, as well as overall font values, such as averages
and maximums. Font metrics can be expressed in
specified fixed units, such as pels, or in relative units
that are independent of both the resolution and size of
the font.

font typeface global identifier (FGID). A unique font
identifier that can be expressed as either a 2-byte
binary value or a 5-digit decimal value. The FGID is
used to identify a type style and these characteristics:
posture, weight, and width.

form definition. An AFP resource object that defines
the characteristics of the form or printed media,
including: overlays to be used, duplex printing, text
suppression, the position of composed-text data on the
form, and the number and modifications of a page.

G
GOCA. See Graphics Object Content Architecture.

Graphics Object Content Architecture (GOCA). An
architecture that provides a collection of graphics
values and control structures used to interchange and
present graphics data.

H
hexadecimal. Pertaining to a numbering system with
base of 16.

I
image. (1) A pattern of toned and untoned pels that
form a picture. (2) An electronic representation of an
original document or picture produced by a scanning
device or created from software.

image data. (1) A pattern of bits with 0 and 1 values
that define the pels in an image. A 1-bit is a toned pel.
(2) Digital data derived from electrical signals that
represent a visual image. (3) Rectangular arrays of
raster information that define an image.

66 AFP2PDF Transform User's Guide

indexing. A process of matching reference points
within a file and creating structured field tags within
the AFP document and the separate index object file.

integrated file system. A function of the IBM i
operating system that supports stream input/output
and storage management in a manner that is similar to
personal computer and UNIX operating systems, while
providing an integrating structure over all information
stored on a system.

inline resource. A resource contained in a file with the
AFP document data.

L
library. (1) A system object that serves as a directory
to other objects. A library groups related objects, and
allows the user to find objects by name. (2) A data file
that contains copies of a number of individual files and
control information that allows them to be accessed
individually.

Linux. An open source operating system that runs on
a wide range of hardware platforms and has many
features that are similar to the UNIX system.

M
mapping. (1) The process of transforming data,
including images, from one format to another. See also
font mapping. (2)

N
null value. A parameter position for which no value is
specified.

N_up. The partitioning of a side of a sheet into a fixed
number of equal size partitions. For example, N_up 4
divides each side of the sheet into four equal partitions.

O
object. In AFP architecture, a collection of structured
fields, bounded by a begin-object function and an
end-object function. The object can contain other
structured fields containing data elements of a
particular type. Examples of objects are text, fonts,
graphics and images.

OpenType font. An extension of the TrueType font
format that adds support for PostScript outlines and
more support for international character sets and
advanced typographic control.

outline font. A font whose graphic character shapes
are defined by mathematical equations rather than by
raster patterns. See also raster font.

overlay. A resource object that contains presentation
data, such as text, image, graphics, and bar code data.
Overlays define their own environment and are often
used as electronic forms.

P
page segment. An AFP resource object containing text,
image, graphics, or bar code data that can be
positioned on any addressable point on a page or an
electronic overlay.

parameter. A value or reference passed to a function,
command, or program that serves as input or to control
actions. The value is supplied by a user or by another
program or process.

PDF. See Portable Document Format.

pel. See picture element.

PFB. See Printer Font Binary.

PFM. See Printer Font Metrics.

picture element (pel). (1) An element of a raster
pattern about which a toned area on the
photoconductor might appear. (2) The smallest
printable or displayable unit that can be displayed. A
common measurement of device resolution is picture
elements per inch.

Portable Document Format (PDF). A standard
specified by Adobe Systems, Incorporated, for the
electronic distribution of documents. PDF files are
compact; can be distributed globally through e-mail,
the Web, intranets, or CD-ROM; and can be viewed
with the Acrobat Reader.

PostScript. A page description language developed by
Adobe Systems, Incorporated that describes how text
and graphics are presented on printers and display
devices.

Printer Font Binary (PFB). A file used for installing
fonts in a Windows system. The font file must be
unpacked into an ASCII form for downloading to
PostScript-language printers.

Printer Font Metrics (PFM). A binary font metrics file
containing information approximately equivalent to
that in an AFM file. The PFM file includes character
widths, the Windows font menu name, kerning
information, and a flag indicating whether printer
drivers should re-encode the font for printing.

R
raster font. A font in which the characters are defined
directly by the raster bit map. See also outline font.

Glossary 67

|
|
|
|
|
|

resource. A collection of instructions used, in addition
to the document data, to produce the presentation
output. Resources include coded fonts, font character
sets, code pages, page segments, overlays, form
definitions, and page definitions.

RGB. Pertaining to a color display that accepts signals
representing red, green, and blue.

S
simplex. Pertaining to printing on only one side of the
paper. See also duplex.

structured field. (1) A self-identifying string of bytes
and its data or parameters. (2) A mechanism that
permits variable length data to be encoded for
transmission in the data stream.

T
TrueType font. A font format based on scalable
outline technology in which the graphic character
shapes are based on quadratic curves. The font is
described with a set of tables contained in a TrueType
font file.

U
Unicode. A character encoding standard that supports
the interchange, processing, and display of text that is
written in the common languages around the world,
plus some classical and historical texts. For example,
the text name for $ is "dollar sign" and its numeric
value is X'0024'. The Unicode standard has a 16-bit
character set defined by ISO 10646.

UNIX. A highly portable operating system that
features multiprogramming in a multiuser
environment. The UNIX operating system was
originally developed for use on minicomputers, but has
been adapted for mainframes and microcomputers.

W
Windows. Pertaining to a Microsoft Corporation
operating system program that provides a graphical
user interface for DOS.

Z
z/OS UNIX System Services. An element of z/OS that
creates a UNIX environment which conforms to the
XPG4 UNIX 1995 specifications and provides two open
systems interfaces on the z/OS operating system: an
application program interface (API) and an interactive
shell interface.

68 AFP2PDF Transform User's Guide

Index

A
A2PBufferMessages 58
A2PDocEnd 57
A2PDocStart2 56
A2PGenerateMessages 58
A2PGetMessageBuffer 58
A2PGetPageCount 56
A2PXFormDoc 57
A2PXFormPage 57
a2pxopts.cfg 10
AFP resources, using 22
AFP2PDF

API input options structure 53
application programming interfaces

for 47
benefits of 1
command 7
configuring 7
font files supplied 25
images, mapping AFP 39
installing 3
limitations 1
mapping fonts 25
options file 10
overview of 1
requirements 3
security 23

afpfont.fnt 32
alias file 31
alias.fnt 31
APIs

See application programming
interfaces

application programming interfaces
A2PBufferMessages 58
A2PDocEnd 57
A2PDocStart2 56
A2PGenerateMessages 58
A2PGetMessageBuffer 58
A2PGetPageCount 56
A2PXFormDoc 57
A2PXFormPage 57
input options structure 53
loading code and obtaining function

pointers 49
packaging information 47
programming functions 56

B
benefits 1

C
character set definition file 27
code loading for APIs 49
code page map file 30
coded font file 26
coded page definition file 29
coded.fnt 26

colored areas, substituting shaded images
with 43

command
afp2pdf 7
split_afp2pdf 19

configuration file, image map
creating 39
defining colored area images with 43
empty entries 40
identifying AFP images in 40
including preprinted form images

with 44
removing images with 41
storing images with 46
substituting existing images with 41

configuring AFP2PDF 7
cpdef.fnt 29
csdef.fnt 27
custom

font metric files 35
raster fonts 32

Custom-Metrics-x.met 35

E
eClient, intstalling AFP2PDF with 4
embedding Type 1 fonts 34
empty entries 40

F
files for mapping fonts 25
font files

afpfont.fnt 32
alias.fnt 31
code page map file 30
coded.fnt 26
cpdef.fnt 29
csdef.fnt 27
custom metric 35
icoded.fnt 26
supplied with AFP2PDF 25

fonts
files for mapping 25
mapping AFP 25
metric files, custom 35
raster, custom 32
TrueType, mapping 37
Type 1, embedding 34

function pointers for APIs 49

I
IBM i server

installing AFP2PDF on 3
loading code for APIs 52
packaging for APIs 48

icoded.fnt 26
image map configuration file

creating 39

image map configuration file (continued)
defining colored area images with 43
empty entries 40
identifying AFP images in 40
including preprinted form images

with 44
removing images with 41
storing images with 46
substituting existing images with 41

imagemap.cfg 39
images

configuration file for 39
defining colored areas with

configuration file 43
empty entries 40
identifying in configuration file 40
including preprinted forms with

configuration file 44
mapping AFP 39
removing with configuration file 41
storing with configuration file 46
substituting existing with

configuration file 41
images, mapping AFP 39
input options structure for API 53
installing AFP2PDF 3

L
limitations 1
loading code for APIs 49

M
mapping

AFP fonts 25
AFP images 39
custom raster fonts 32
embedded Type 1 fonts 35
files for fonts 25
images with configuration file 39
TrueType fonts 37

metric files, font 35

O
OnDemand, installing AFP2PDF with 4
options file 10
options, API input 53
overview 1

P
packaging information for APIs 47
parameters

afp2pdf command 7
options file 10
split_afp2pdf command 20

© Copyright IBM Corp. 2008, 2010 69

preprinted forms, including images
from 44

programming functions available for
API 56

R
raster fonts, mapping custom 32
requirements 3
resources, using AFP 22
return codes

afp2pdf command 9
split_afp2pdf command 22

S
security 23
shaded images, substituting colored areas

for 43
split_afp2pdf command 19
structure for API input options 53
syntax

afp2pdf command 7
split_afp2pdf command 19

T
transform options file 10
TrueType fonts, mapping 37
Type 1 fonts, embedding 34

U
UNIX server

loading shared libraries for APIs 50
obtaining function pointers for

APIs 51
packaging for APIs 48

W
Windows server

loading code and obtaining function
pointers for APIs 49

packaging for APIs 47

70 AFP2PDF Transform User's Guide

����

Program Number: 5697-N93
5724–J33
5770-RD1

SC19-2944-00

	Contents
	Figures
	Tables
	About this publication
	Understanding syntax notation
	Related information

	Summary of Changes
	Chapter 1. Overview
	Benefits
	AFP2PDF Transform limitations

	Chapter 2. Installing AFP2PDF Transform
	Installing AFP2PDF Transform on Windows
	Installing AFP2PDF Transform on AIX, HP-UX, Solaris, and Linux
	Installing AFP2PDF Transform on an IBM i OnDemand server
	Installing AFP2PDF Transform with OnDemand
	Installing AFP2PDF Transform with eClient
	Removing AFP2PDF Transform

	Chapter 3. Configuration
	AFP2PDF Transform command
	Syntax
	Parameters
	Return codes

	AFP2PDF Transform options file
	split_afp2pdf command
	Syntax
	Parameters
	Return codes

	Using AFP resources

	AFP2PDF Transform security

	Chapter 4. Mapping fonts
	Files supplied for mapping fonts
	Coded Font File
	Character set definition file
	Code page definition file
	Code page map file
	Alias file

	Process for mapping fonts
	Using custom AFP raster font files
	Embedding Type 1 fonts
	File location
	Mapping the AFP font to the embedded Type 1 font

	Using custom font metric files
	Mapping AFP TrueType fonts
	File location
	Character encoding

	Chapter 5. Mapping AFP images
	Creating the image map configuration file
	Identifying AFP images in the image map configuration file
	Removing images using the image map configuration file
	Substituting existing images with AFP2PDF Transform
	Substituting AFP shaded images with colored areas
	Adding an image to the transform output
	Storing frequently used images with AFP2PDF Transform

	Chapter 6. Application programming interfaces
	Packaging information
	Windows server
	UNIX server
	IBM i OnDemand server

	Loading code and obtaining function pointers
	Windows server
	UNIX server
	Dynamically loading an API shared library
	Dynamically obtaining the function pointer

	IBM i OnDemand server

	AFP2PDF Transform API
	Input options structure
	Available programming functions
	A2PDocStart2
	A2PGetPageCount
	A2PXFormDoc
	A2PXFormPage
	A2PDocEnd
	A2PGenerateMessages
	A2PBufferMessages
	A2PGetMessageBuffer

	Notices
	Trademarks

	Glossary
	Index
	A
	B
	C
	E
	F
	I
	L
	M
	O
	P
	R
	S
	T
	U
	W

