
Content Manager OnDemand
Version 9 Release 5

Indexing Reference

SC19-3354-01

���

Content Manager OnDemand
Version 9 Release 5

Indexing Reference

SC19-3354-01

���

Notices

Before using this information and the product it supports, read the information in “Notices” on page 285.

Edition notice

This edition applies to Version 9 Release 5 of IBM Content Manager OnDemand for Multiplatforms (program
number 5724-J33) and IBM Content Manager OnDemand for z/OS (program number 5697-CMD), and Version 7
Release 2 of IBM Content Manager OnDemand for i (program number 5770-RD1) and to all subsequent releases and
modifications until otherwise indicated in new editions.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

© Copyright IBM Corporation 1993, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

ibm.com and related resources vii
Contacting IBM vii

About this publication ix
Who should use this publication ix
Accessibility information for Content Manager
OnDemand ix

Indexer overview 1

ACIF indexer. 3
ACIF overview 3

ACIF batch utility 5
Line data conversion to AFP 5

AFP data 6
Mixed Object Document Content Architecture
Data 6
Line data 6
Mixed-mode data 6
Unformatted ASCII data 6

AFP resources 7
How Content Manager OnDemand uses index
information 8
ACIF parameters for EBCDIC data 9

Accessing reports 9
Creating indexing parameters. 9
Specifying indexing parameters. 10

Determining how literal values are expressed . . 12
ACIF indexer parameters 13

BREAKYES 15
CC 15
CCTYPE 16
CHARS. 17
CONVERT. 18
CPGID 19
DCFPAGENAMES 19
EXTENSIONS 20
FDEFLIB 23
FIELD 24
FILEFORMAT (Multiplatform) 31
FILEFORMAT (z/OS platforms) 32
FONTLIB 33
FORMDEF. 34
GROUPMAXPAGES 36
GROUPNAME 37
IMAGEOUT 37
INDEX 38
INDEXDD 41
INDEXOBJ 42
INDEXSTARTBY. 43
INDXEXIT (Multiplatform) 44
INDXEXIT (z/OS platforms). 45
INPCCSID. 45
INPEXIT (Multiplatform) 45
INPEXIT (z/OS platforms) 46

INPUTDD (Multiplatform) 46
INPUTDD (z/OS platforms) 47
INSERTIMM 47
LINECNT 48
LINEOFFSET 49
MCF2REF 50
MSGDD (Multiplatform) 50
MSGDD (z/OS platforms) 51
NEWPAGE 51
OUTCCSID 52
OUTEXIT (Multiplatform) 52
OUTEXIT (z/OS platforms) 53
OUTPUTDD (Multiplatform) 53
OUTPUTDD (z/OS platforms) 54
OVLYLIB (Multiplatform). 54
OVLYLIB (z/OS platforms) 55
PAGEDEF 56
PARMDD (Multiplatform) 58
PARMDD (z/OS platforms) 58
PDEFLIB 59
PRMODE 60
PSEGLIB 61
RESEXIT 63
RESFILE 63
RESLIB 64
RESOBJDD (Multiplatform) 65
RESOBJDD (z/OS platforms) 66
RESTYPE 66
TRACE 69
TRACEDD (Multiplatform) 69
TRACEDD (z/OS platforms) 70
TRC 70
TRIGGER 71

Examples 74
TRIGGER1 74
Group trigger. 74
Group trigger with column range 74
Recordrange trigger 75
Float trigger 75
Trigger using structured field data. . . . 75
Triggers using a regular expression . . . 75

UNIQUEBNGS 76
USERLIB 76
USERMASK 78
USERPATH 79

Print messages 80
User exits and attributes of the input file 80

User programming exits 80
Input record exit. 81

Using the user input record exits
(Multiplatform) 84

Index record exit 86
Output record exit 88
Resource exit 91
User exit search order 94
Non-Zero return codes 94

© Copyright IBM Corp. 1993, 2014 iii

Attributes of the input file 94
ACIF exits written in COBOL (z/OS systems) . . 96

ACIF data stream information 98
Tag Logical Element (TLE) structured field . . . 98
Format of the resource file 99

Begin Resource Group (BRG) structured field 100
Begin Resource (BR) structured field. . . . 100
End Resource (ER) and End Resource Group
(ERG) structured fields 100

ACIF processing of fully composed AFP files 101
Format of the ACIF index object file 101

Group-level Index Element (IEL) structured field 102
Page-level Index Element (IEL) structured field 102
Begin Document Index (BDI) structured field 103
Index Element (IEL) structured field. 103
Tag Logical Element (TLE) structured field . . 104
End Document Index (EDI) structured field . . 104

Format of the ACIF output document file 104
Page groups 106
Begin Document (BDT) structured field. . . . 106
Begin Named Group (BNG) structured field . . 107
Tag Logical Element (TLE) structured field . . 107
Begin Page (BPG) structured field 107
End Named Group (ENG), End Document
(EDT), and End Page (EPG) structured fields . . 108
Output MO:DCA data stream 108

ACIF examples 109
Example one: Bank loan report 109

Report data processing 110
Key concepts 111
Defining the application, part 1 111

General page 111
View Information page 111
Indexer Information page 112

Opening reports 112
Defining fields 113
Defining fields 114
Defining indexes 114
Displaying triggers, fields, and indexes . . . 115
Setting values in the Indexer Properties
dialog box 116
Defining the application, part 2 116

Indexer parameters 116
Load Information page 116
Adding the application 116

Example Two: Phone bill 116
Accessing the report 119
Key concepts 119
Defining the application, part 1 119

General page 120
View Information page 120
Indexer Information page 120

Opening the report 121
Defining triggers 121

Defining TRIGGER1 121
Locating the account number 122

Defining fields 122
Defining the account number field . . . 122
Defining the customer name field . . . 123
Defining the bill date field 123

Defining indexes 123

Defining the account number index . . . 124
Defining the customer name index . . . 124
Defining the bill date index 124

Displaying triggers, fields, and indexes . . . 125
Setting indexer properties 125
Defining the application, part 2 126

View Information page 126
Indexer parameters 126
Load Information page 126
Adding the application 127

Example three: Income statement 127
Accessing the sample report 128
Key concepts 129
Defining the application, part 1 130

General page 130
View Information page 130
Indexer Information page 130

Opening the report 131
Defining triggers 131

Defining TRIGGER1 132
Locating the statement number 132
Locating the total income 133
Locating the type of income 133
Locating the subtotal 133

Defining fields 134
Defining the statement date field 134
Defining the statement number field . . 134
Defining the total income field 135
Defining the type of income field. . . . 135
Defining the subtotal field 135

Defining indexes 136
Defining the statement date index . . . 136
Defining the statement number index . . 137
Defining the total income index 137
Defining the type of income index . . . 137
Defining the subtotal index. 138

Displaying triggers, fields, and indexes . . . 138
Defining indexer properties 138
Defining the application, part 2 139

View Information page 139
Indexer parameters 139
Load Information page 139
Adding the application 140

Example four: AFP data 140
Accessing the report 142
Key concepts 142
Defining the application, part 1 143

General 143
View Information 143
Indexer Information 143

Creating indexing parameters 143
Data format parameters 143
Defining indexing information. 144
Defining resource information 144
Defining the application, part 2 144

Indexer parameters 144
Load information 144
Adding the application 145

Using ACIF in z/OS 145
Sample JCL 145

About the JCL statements 145

iv Indexing Reference

ACIF parameters 147
Syntax Rules 147

JCL and ACIF parameters 147
z/OS libraries 148
ACIF output. 149
Concatenating files 149

Hints and tips 150
Control statements that contain numbered lines 150
Placing TLEs in named groups 150
File transfer 151
ANSI and machine carriage controls. 152
Common methods of transferring files 153

Physical media 154
PC file transfer program. 154
FTP 154
Download 154

Using the Invoke Medium Map (IMM)
structured field 155
Indexing considerations 155
Concatenating resources to an AFP file 156
Specifying the IMAGEOUT parameter 156
Running ACIF with inline resources 157
Writing inline resources to the output file . . . 157
Using regular expressions 157

Regular expressions and the TRIGGER
parameter 159
Regular expressions and the FIELD
parameter 159
Default values for fields 159

OS/390 indexer. 161
OS/390 indexer parameters. 164

AFPINDEXBUF 164
ANYEXIT 164

Developing an ANYSTORE exit 168
BREAKYES 168
CPGID 169
DJDECNT 169
DJDECOL 169
DJDETRIG 169
FIELD 170

Trigger FIELD syntax. 170
Constant FIELD syntax 171
Transaction FIELD syntax - for INDEXn with
GROUPRANGE 171
Transaction FIELD syntax - for INDEXn with
GROUPRANGE2 172

FILEFORMAT 173
GROUPMAXPAGES 173
INDEX 174
INDEXSTARTBY 176
INDEXSTYLE 176

DOC 177
PAGE 177
PDOC 179
NODX. 181
AFP 182

INDXEXIT 185
Developing an index exit 186

INPEXIT 187
Old parameter format 188

New parameter format 188
Developing an input exit 189

INPEXITNEW 189
LINEOFFSET 190

Notes for index usage 191
MCC2ANSI 191
Triggers 192
XEROX DJDE Support 193

Using the OS/390 indexer 193
Content Manager OnDemand application . . . 193
Large objects and the OS/390 indexer 193
The ARSLOAD program in a z/OS environment 193

OS/400 indexer. 195
OS/400 indexer parameters. 196
Unique indexing parameter reference 198

CC 198
CCTYPE 198
CONVERT 198
CPGID 198
DOCTYPE 199
FIELD 199

Trigger FIELD syntax. 200
Constant FIELD syntax 201
Transaction FIELD syntax 202
Mask FIELD syntax 204

FILEFORMAT 205
IMAGEOUT 205
INDEX 206
INDEXOBJ 208
INDEXSTARTBY 208
INDEXSTYLE 209
STARTINDEXINGONPAGE 209
STARTTRANSACTIONFIELDSONLINE . . . 210
STARTTRIGGERSONLINE 210
TRANSLATEPRINTCONTROL 211

BREAK setting 211
Controlling maximum number of pages per group 212
Using Group triggers versus Float triggers . . . 212
Defining multi-key indexes 213

Multi-key index example 213
Using system date or job run date as the value of a
date field 216
Defining transaction fields 217

Transaction report example 218
Assigning default index values 220
Defining text search fields 221
Handling SCS spooled files that have AFP overlays 223
Using a mask when defining application fields . . 223
Using Tag Logical Elements (TLEs) 224
Understanding Translate Print Control 224

PDF indexer 227
How Content Manager OnDemand processes index
information 229
Processing PDF input files with the graphical
indexer 230
Indexing input data 232

Coordinate system. 233
Indexing parameters 233

Contents v

Indexing with metadata indexes 236
Indexing with internal indexes 237
Using Regular Expressions 238

Using a regular expression on the TRIGGER
parameter 239
Using a regular expression on the FIELD
parameter 239

How to create indexing parameters 240
PDF fonts and output file size 241
PDF Resource Collection 242
PDF indexing system requirements 242

Specifying the location of Adobe fonts 243
PDF indexing limitations 243
Input data requirements 244
National language support for indexed PDF
documents 245

PDF indexer parameters 245
BOOKMARKS 245
COORDINATES 246
FIELD 246
FONTLIB. 250
INDEX 251
INDEXDD 252
INDEXMODE 253
INDEXSTARTBY 254
INPUTDD 255
MSGDD 255
OUTPUTDD. 256
PARMDD 256
REMOVERES 257
RESOBJDD 258
RESTYPE. 258

TEMPDIR 259
TRACEDD 259
TRIGGER 259

PDF indexer messages 262
ARSPDOCI program 263
ARSPDUMP program 264
Trace facility. 266

Generic indexer 269
Loading data 270
Processing AFP data 272
Generic indexer parameters 273

CODEPAGE: 273
COMMENT: 274
GROUP_FIELD_NAME: 274
GROUP_FIELD_VALUE: 275
GROUP_FILENAME: 276
GROUP_LENGTH: 277
GROUP_OFFSET: 278

Parameter file examples 279

XML indexer reference 281
.xsd schema file 281
Resources 282
Invocation 283

Notices 285
Trademarks 287
Privacy policy considerations 287

Index 289

vi Indexing Reference

ibm.com and related resources

Product support and documentation are available from ibm.com®.

Support and assistance

From ibm.com, click Support & downloads and select the type of support that you
need. From the Support Portal, you can search for product information, download
fixes, open service requests, and access other tools and resources.

IBM® Knowledge Center

See your online product information in IBM Knowledge Center at:
v IBM Content Manager OnDemand for Multiplatforms: http://www.ibm.com/

support/knowledgecenter/SSEPCD_9.5.0/KC_ditamaps/ondemandmp_9.5.0.htm
v IBM Content Manager OnDemand for z/OS®: http://www.ibm.com/support/

knowledgecenter/SSQHWE_9.5.0/KC_ditamaps/ondemandz_9.5.0.htm
v IBM Content Manager OnDemand for i: http://www.ibm.com/support/

knowledgecenter/SSB2EG_7.2.0/KC_ditamaps/ondemandi_7.2.0.htm

PDF publications

See the following PDF publications for your product at:
v IBM Content Manager OnDemand for Multiplatforms: https://www.ibm.com/

support/entry/portal/product/enterprise_content_management/
content_manager_ondemand_for_multiplatforms?productContext=-816420431

v IBM Content Manager OnDemand for z/OS: http://www.ibm.com/support/
entry/portal/all_documentation_links/enterprise_content_management/
content_manager_ondemand_for_z/os?productContext=-1355458177

v IBM Content Manager OnDemand for i: https://www.ibm.com/support/entry/
portal/product/enterprise_content_management/
content_manager_ondemand_for_i?productContext=-1741581298

Contacting IBM
For general inquiries, call 800-IBM-4YOU (800-426-4968). To contact IBM customer
service in the United States or Canada, call 1-800-IBM-SERV (1-800-426-7378).

For more information about how to contact IBM, including TTY service, see the
Contact IBM website at http://www.ibm.com/contact/us/.

© Copyright IBM Corp. 1993, 2014 vii

http://www.ibm.com
http://www.ibm.com/support/knowledgecenter/SSEPCD_9.5.0/KC_ditamaps/ondemandmp_9.5.0.htm
http://www.ibm.com/support/knowledgecenter/SSEPCD_9.5.0/KC_ditamaps/ondemandmp_9.5.0.htm
http://www.ibm.com/support/knowledgecenter/SSQHWE_9.5.0/KC_ditamaps/ondemandz_9.5.0.htm
http://www.ibm.com/support/knowledgecenter/SSQHWE_9.5.0/KC_ditamaps/ondemandz_9.5.0.htm
http://www.ibm.com/support/knowledgecenter/SSB2EG_7.2.0/KC_ditamaps/ondemandi_7.2.0.htm
http://www.ibm.com/support/knowledgecenter/SSB2EG_7.2.0/KC_ditamaps/ondemandi_7.2.0.htm
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_multiplatforms?productContext=-816420431
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_multiplatforms?productContext=-816420431
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_multiplatforms?productContext=-816420431
http://www.ibm.com/support/entry/portal/all_documentation_links/enterprise_content_management/content_manager_ondemand_for_z/os?productContext=-1355458177
http://www.ibm.com/support/entry/portal/all_documentation_links/enterprise_content_management/content_manager_ondemand_for_z/os?productContext=-1355458177
http://www.ibm.com/support/entry/portal/all_documentation_links/enterprise_content_management/content_manager_ondemand_for_z/os?productContext=-1355458177
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_i?productContext=-1741581298
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_i?productContext=-1741581298
https://www.ibm.com/support/entry/portal/product/enterprise_content_management/content_manager_ondemand_for_i?productContext=-1741581298
http://www.ibm.com/contact/us/

viii Indexing Reference

About this publication

This guide contains information about indexing methods, preparing index data,
and using tools to index reports that you plan to store in and retrieve from IBM
Content Manager OnDemand for Multiplatforms Version 9 Release 5, IBM Content
Manager OnDemand for z/OS Version 9 Release 5, or IBM Content Manager
OnDemand for i Version 7 Release 2. Unless otherwise specified, these products are
collectively referred to in this guide as Content Manager OnDemand.

The term Windows client refers to the Content Manager OnDemand client program.
The term Windows server refers to the Content Manager OnDemand server
program.

Who should use this publication
This book is for administrators and other people in an organization who are
responsible for preparing data to be stored in Content Manager OnDemand.

Accessibility information for Content Manager OnDemand

For complete information about accessibility features that are supported by this
product, see your Administration Guide.

© Copyright IBM Corp. 1993, 2014 ix

x Indexing Reference

Indexer overview

The indexers in IBM Content Manager OnDemand provide a way to load and store
reports. Indexers determine where one document ends and the next begins, as well
as which index values are to be associated with each document.

These index values are used to identify and retrieve documents for viewing or
printing. Usually the index values are extracted from the content of the documents
but they can also be created manually or by a custom application (an exit).
Indexing may also create a resource file that contains all the resources needed to
view and print a document.

The indexer is a program that provides these functions. The choice of an indexer
depends on the platform, the format of the documents, and functionality needed.
Content Manager OnDemand provides the following indexers.

Table 1. Indexer support by platform

Indexer AIX® Linux Solaris z/OS IBM i Windows
Linux for
System z

ACIF U U U U U U

Generic U U U U U U U

OS/400®
U

PDF U U U U U

XML U U U U U U

OS/390®
U U

ACIF indexer
The ACIF indexer extracts index data, and optionally converts line data to
AFP and creates an AFP resource file. ACIF accepts input files that contain
AFP, line data, non-formatted ASCII data, and ASCII data containing
printer control characters generated on Windows or UNIX workstations.
The ACIF indexer creates the index file in AFP format. The ACIF indexer is
called by the ARSLOAD program during the loading process or can be run
from the command line on multiplatforms or as a batch job on z/OS. You
can use the Administrator Graphical Indexer to create indexing parameters
for the ACIF indexer.

OS/390 indexer
The OS/390 Indexer extracts indexes and loads documents from line data,
AFP, and DJDE reports. Other data types, such as PDF and TIFF images,
can be captured by using the ANYSTORE exit. This provides a method to
capture documents of any type and size (including those greater than 2
GB) into Content Manager OnDemand. The OS/390 Indexer loads the
index values and documents directly into the Content Manager OnDemand
database in a single pass, without needing to create intermediary files.

Attention: If you are using Content Manager OnDemand for
Multiplatforms, the OS/390 indexer is only supported on AIX operating
systems.

OS/400 indexer
The OS/400 indexer extracts index data and creates an AFP resource file.

© Copyright IBM Corp. 1993, 2014 1

The OS/400 indexer accepts SCS, SCS-Extended, Advanced Function
Presentation (AFP), and Line spooled files. The OS/400 indexer creates the
index file in the Generic index format (see Generic indexer). The OS/400
indexer is called by the ADDRPTOND command for SCS, SCS-Extended,
AFP, and Line spooled files. It is the primary indexer used when you are
running on an IBM i system and will be used by default for SCS,
SCS-Extended, AFP, and Line spooled files. You can use the Administrator
Graphical Indexer to create indexing parameters for OS/400 indexer.

PDF indexer

The PDF indexer extracts index data and creates a PDF resource file from
Adobe PDF files. The PDF indexer creates the index file in the Generic
index format (see Generic indexer). Although the PDF indexer is included
with Content Manager OnDemand for Multiplatforms, you must purchase
the PDF indexer before you are authorized to use it. If you are using
Content Manager OnDemand for i, the PDF indexer must be purchased
separately. The PDF indexer is called by the ARSLOAD program during
the loading process or can be run from the command line on
multiplatforms. On IBM i operating environments, the PDF Indexer can be
called by the ADDRPTOND command or by the ARSLOAD program. You
can use the Administrator Graphical Indexer to create indexing parameters
for the PDF indexer.

Restriction: The PDF indexer is not supported on Linux for System z
platforms.

Generic indexer (generic index format)
The Generic indexer refers to a specific file format, referred to as the
generic index format. You can use this file format to load index data for
any type of input file that needs to be stored in Content Manager
OnDemand. The Generic indexer allows administrators to specify indexing
information for input data that you cannot or do not want to index with
the other indexers. For example, suppose that you want to load files into
the system that were created by using a word processor. By creating a
generic index file, the files can be stored in the system in the same format
in which they were created. The Generic indexer is called by the
ARSLOAD program during the loading process. You cannot use the
Administrator Graphical Indexer to create indexing parameters for the
Generic indexer. A generic index file is usually created manually or by an
external application.

XML indexer
The XML indexer extracts index data from XML files. It creates the index
file in the generic index format. The XML indexer is called by the
ARSLOAD program during the loading process.

2 Indexing Reference

ACIF indexer

You can use ACIF to extract index data from and generate index data about AFP
and line data reports.

You can also use ACIF to convert line data reports to AFP documents and collect
the resources required to view and reprint AFP documents.

ACIF overview
ACIF is a batch utility that provides indexing functions, print data stream
conversions, and AFP resource collection.

ACIF is a powerful tool for indexing the print data streams of ACIF application
programs, EBCDIC data on z/OS, unformatted ASCII data, and ASCII data
containing printer control characters that is generated on multiplatform
workstations.

ACIF indexes reports based on the organization of the data in the report. You can
optionally convert line data print streams into AFP data. ACIF processes three
input sources:
v Indexing parameters that specify how the data should be indexed. You can

create the indexing parameters when you define a Content Manager OnDemand
application.

v AFP resources required to view and print the data, if the data was created by an
AFP application.

v The print data stream.

The output of ACIF is either a fully composed AFP data stream or the original line
data input. ACIF can convert line data input to AFP data, can produce an index
file that Content Manager OnDemand uses to create index data for the database,
and optionally, can collect resources into a resource group file.

ACIF produces a resource group file for AFP data. To create a resource group file,
ACIF must have access to the resources required by the input data stream. During
document retrievalContent Manager OnDemand stores the resources in cache
storage or archive media and retrieves the resources associated with a specific
document when a user selects the document for viewing.

ACIF indexes input data based on the organization of the data:
v Document organization. For reports made up of logical items, such as

statements, policies, and invoices, ACIF can generate index data for each logical
item in the report.

v Report organization. For reports that contain line data with sorted values on
each page, such as a transaction log or general ledger, ACIF can divide the
report into groups of pages and generate index data for each group of pages.

Before you can index a report with ACIF, you need to create a set of indexing
parameters. The indexing parameters describe the physical characteristics of the
input data, identify where in the data stream that ACIF can locate index data, and

© Copyright IBM Corp. 1993, 2014 3

provide other directives to ACIF. Collecting the information needed to develop the
indexing parameters requires several steps. For example:
1. Examine the input data to determine how users use the report, including what

information they need to retrieve a report from the system (indexing
requirements).

2. For line data, decide whether or not to convert the input data to AFP. If you
plan to enhance the appearance of line data with fonts and bar codes or you
need to compose a line data input file into pages, then you must convert the
line data to AFP.

3. Determine whether you need to generate page-level index information. There are
two types of page-level information, and different ways to generate the
information.
Page-level information in the index file. ACIF can generate this type of
page-level information whether or not the input data is being converted to AFP.
This type of page-level information is essential for loading Content Manager
OnDemand large objects. This type of page-level information is generated by
specifying the INDEXOBJ=ALL parameter.
Page-level information in the output file. This type of page-level information is
used in the client to move to specific pages in a document. ACIF can only
generate this type of page-level information when converting the input data to
AFP. This type of page-level information is generated by specifying the
CONVERT=YES and INDEXOBJ=ALL parameters, and by creating an index
field with the TYPE=PAGE or TYPE=PAGERANGE option. For more
information, see the discussion of TYPE=PAGE in “INDEX” on page 38.
Note that page-level index information is not stored in the database, and
therefore cannot be used to search for and retrieve documents.

4. Examine the input data to determine the resource requirements. Determine the
fonts and form and page definitions needed to view and print the data.

5. Create parameters for indexing.
6. Create parameters for converting line data input files to AFP.
7. Create parameters for collecting resources for viewing and printing AFP data.

You can run ACIF on a Content Manager OnDemand library or object server or on
System z on which the ACIF programs are installed.
v When you run ACIF on a Content Manager OnDemand server, you can invoke it

from the command prompt (by using the ARSACIF program) or from the
Content Manager OnDemand data loading program (the ARSLOAD program).
The information provided in this guide assumes that you will use the ARSLOAD
program to process input data with ACIF. The ARSLOAD program retrieves the
indexing parameters that are used to process the input data from the Content
Manager OnDemand application.

v To run ACIF on System z requires:
– Print Services Facility™ (PSF) for z/OS Version 4 Release 4 or later.
– Content Manager OnDemand version of ACIF, which can be ordered without

charge by customers who are entitled to Content Manager OnDemand.

Indexing

Indexing parameters include information that allow ACIF to identify key items in
the print data stream, tag these items, and create index elements pointing to the
tagged items.

4 Indexing Reference

ACIF uses the tag and index data for efficient, structured search and retrieval. You
specify the index information that allows ACIF to segment the data stream into
individual items called groups. A group is a collection of one or more pages. You
define the bounds of the collection, for example, a bank statement, insurance
policy, phone bill, or other logical segment of a report file.

A group can also represent a specific number of pages in a report. For example,
you might decide to segment a 10,000 page report into groups of 100 pages. ACIF
creates indexes for each group. Groups are determined when the value of an index
changes (for example, account number) or when the maximum number of pages
for a group is reached.

A tag is made up of an attribute name (for example, Customer Name) and an
attribute value (for example, Earl Hawkins). Tags include pointers that tell ACIF
where to locate the attribute information in the data stream. For example, the tag
Account Number with the pointer 1,21,16 means ACIF can expect to find Account
Number values starting in column 21 of specific input records. ACIF collects 16
bytes of information starting at column 21 and adds it to a list of attribute values
found in the input.

ACIF creates an index object file when you index report files. The index object file
includes index elements that contain the offset and length of a group. ACIF
calculates an index element for every group found in the input file. ACIF writes
the attribute values extracted from the input file to the index object file and if the
input file is converted to AFP, to the (converted) output file.

ACIF batch utility
ACIF is a batch utility that provides these main functions.

Sophisticated indexing functions
ACIF can logically divide reports into individual items, such as statements,
policies, and bills. You can define up to 128 index fields for each item in a
report.

Conversion of print data streams
ACIF processes the output print data streams of application programs, for
example, line data reports and unformatted ASCII. The converted output
can be printed, viewed, and archived on any system supported by Content
Manager OnDemand.

Collection of AFP resources
ACIF can determine the resources necessary to print, view, and archive the
print data stream and collect the resources from PSF and user libraries.
Resources allow users to view the report as it appeared in the original
printed version, regardless of when or where the report was created.

Line data conversion to AFP
You can convert line data or mixed-mode data into AFP data, which is an
architected, device-independent data stream used for interchanging data between
different platforms.

ACIF can process the following input data streams to create an AFP file:
v AFP data
v MO:DCA data
v Line data

ACIF indexer 5

v Mixed-mode data
v Unformatted ASCII

AFP data
The AFP data stream is a superset of the MO:DCA data stream.

The AFP data stream supports the following objects:
v Graphics Object Content Architecture (GOCA)
v Presentation Text Object Content Architecture (PTOCA)
v Image Object Content Architecture (IOCA)
v Bar Code Object Content Architecture (BCOCA)

The AFP data stream also supports print resources, such as fonts, overlays, page
segments, form definitions, and page definitions.

Mixed Object Document Content Architecture Data
ACIF supports MO:DCA data as a valid input data stream.

The following restrictions apply:
v Every structured field must appear in one record and cannot span multiple

records.
v Each record (structured field) must contain a hexadecimal 5A (X'5A') character

before the first byte of the structured field introducer.

ACIF does not transform the MO:DCA data it processes, but may change certain
structured fields. For example, ACIF converts MCF1 structured fields in the input
to MCF2 structured fields in the output. If the MO:DCA input data stream contains
multiple Begin Document (BDT) and End Document (EDT) structured fields, the
output contains only one BDT/EDT structured field pair. The output page always
remains the same; the output MO:DCA data may not contain the same structured
fields or the structured fields may not appear in the same order.

Line data
Line data is characterized by records of data that may begin with a carriage control
(CC) character, which may be followed by a single table reference character (TRC).

After these characters, zero or more bytes of EBCDIC data may follow. ACIF
formats line data into pages by using a page definition (PAGEDEF) resource.

Mixed-mode data
Mixed-mode data is a mixture of line data, with the inclusion of some AFP
structured fields, composed-text pages, and resource objects, such as image,
graphics, bar code, and text.

Unformatted ASCII data
Unformatted ASCII data is data that is generated in the workstation environment
and has not been formatted for printing. Unformatted ASCII data is formatted by
ACIF using a page definition resource. Unformatted ASCII data is contrasted with
the type of ASCII data that contains control characters (or escape sequences) for a
line printer.

6 Indexing Reference

AFP resources
The ACIF indexing parameters that you use to process reports can contain
information about resources. ACIF uses resources to reproduce a version of the
input that appears the same as the original printed version.

During processing, ACIF determines the list of required AFP resources needed to
view or print the data and can retrieve these resources from specified directories
(or libraries in z/OS). The directories must reside on the system where ACIF is
running or you must provide access to them. ACIF collects the resources and
places them in a resource file. Content Manager OnDemand loads the resource file
at the same time it loads the indexed report files.

When you store a report in Content Manager OnDemand, you can archive the
resources (for example, page segments) in the form which they existed when the
report was created. By archiving the original resources, you can reproduce the
report with fidelity later, even if the resources have changed since that time. The
following table lists typical values for the RESTYPE parameter.

Table 2. Collecting Resources

restype Function Purpose

NONE Do not collect resources. Indexing line data without
conversion or AFP data that
does not reference external
resources.

FDEF, PSEG, OVLY, BCOCA,
GOCA, IOCA

Collect all except fonts. Viewing items.

ALL, with user-defined
resource exit

User defined. Include or exclude specific
resources.

The resources that ACIF collects is based on the value of the RESTYPE parameter.
When ACIF processes a file, it does the following tasks:
v Identifies the resources requested by the print file.

While ACIF converts the input file into an AFP document, it builds a list of all
the resources necessary to successfully print the document, including all the
resources referenced inside other resources. For example, a page can include an
overlay, and an overlay can reference other resources, such as a page segment.

v Creates a resource file.
ACIF collects resources in an AFP resource group and stores the resource group
in a resource file. Depending on the options that you specify on the RESTYPE
parameter, the resource file contains all the resources necessary to view or print
the report with fidelity.

v Calls the specified resource exit for each resource it retrieves.
You can specify the name of a resource exit on the RESEXIT parameter so that
ACIF filters out any resources that you do not want included in the resource file.

v Includes the name of the output document in the resource file and the name of
the resource file in the output document.
This provides a method of correlating resources files with the appropriate output
document.

v If a resource is inline and ACIF is collecting that type of resource, the resource
will be saved in the resource file regardless of whether it is used in the
document, unless EXTENSIONS=RESORDER is specified in the ACIF parameters.

ACIF indexer 7

Another method to remove unwanted resources from the resource file is to use a
resource exit.

How Content Manager OnDemand uses index information
When you load a report into Content Manager OnDemand, the data loading
program invokes ACIF to process the indexing parameters and extract index data
from the report. The data loading program then updates the database with the
index data, storing the group-level attribute values that ACIF extracted from the
report into database fields.

Every item stored in Content Manager OnDemand is indexed with one or more
group-level indexes. Groups are determined when the value of an index changes
(for example, account number) or when the maximum number of pages for a
group is reached. Figure 1 shows an overview of the index creation and loading
process.

You typically create a Content Manager OnDemand application for each report that
you plan to store in Content Manager OnDemand. The application contains the
indexing parameters that ACIF uses to process the report and create the index data
that is loaded into the database. The parameters contain indexing specifications,
determine whether ACIF converts line data reports to AFP data, and indicate the
types of resources that ACIF collects. For example, an INDEX parameter includes
an attribute name and identifies the FIELD parameter that ACIF uses to locate the
attribute value in the input data. When you create an application, you must assign
the application to an application group. The attribute name you specify on an
INDEX parameter should be the same as the name of one of the application group
database fields.

You define database fields when you create an application group. Content Manager
OnDemand creates a column in the application group table for each database field
that you define. When you use ACIF to index a report, ACIF creates index data
that contains the index field names and the index values extracted from the report.
Content Manager OnDemand stores the index data into the database fields.

To search for reports stored in Content Manager OnDemand, the user opens a
folder. The search fields that appear when the user opens the folder are mapped to
database fields in an application group (which in turn, represent ACIF attribute
names). The user constructs a query by entering values in one or more search
fields. Content Manager OnDemand searches the database for documents that

Report Indexer

Application
Definitions

Index
Data

Application
Group
Definitions

Index
Attribute
Names

Database
Field
Names

Indexed
Groups

Loader Database

Figure 1. Indexing reports

8 Indexing Reference

contain index values (ACIF attribute values) that match the search values entered
by the user. Content Manager OnDemand lists the documents that match the
query. When the user selects a document for viewing, the Content Manager
OnDemand client program retrieves the document from cache storage or archive
storage. If the document contains page-level indexes that were generated when the
report was processed by ACIF, the user can move to a specific page of the
document by using the page-level index information.

Note: Only group-level indexes are stored in the database. Page-level indexes are
not stored in the database. This means that users cannot use page-level indexes to
search for reports that are stored in the system. Page-level indexes are stored with
the document. After retrieving a document, the user can use the page-level indexes
to move to a specific page in the document. ACIF can only generate this type of
page-level information when converting the input data to AFP. This type of
page-level information is generated by specifying the CONVERT=YES and
INDEXOBJ=ALL parameters, and by creating an index field with the TYPE=PAGE
or TYPE=PAGERANGE option. For more information, see the discussion of
TYPE=PAGE in “INDEX” on page 38.

ACIF parameters for EBCDIC data
Reports created on a z/OS system are typically created in EBCDIC format. With
EBCDIC data, certain index values must be coded in hexadecimal to correctly
process the data. There are index parameters, options, and data values that can be
used to process a report that contains EBCDIC data.

Accessing reports
Reports generated on a z/OS system are typically transmitted to a Content
Manager OnDemand server using Download for z/OS (Download), a feature of
PSF for z/OS.

The report must be transmitted to the server as a binary file to retain the data as
EBCDIC. The input data contains variable length records. You must specify
FILEFORMAT=RECORD to correctly process the file.

Important: Do not transmit the report to the server as a text file.

If you transmit the report as a text file, the data is converted from EBCDIC to
ASCII, and carriage controls are inserted into the data. This can affect the ability of
Content Manager OnDemand to index and subsequently read the file.

Creating indexing parameters
If you index reports on a Content Manager OnDemand server, you can process a
sample input data file with the graphical indexer, create a file that contains
indexing parameters and import the file into the application, or enter the indexing
parameters on the Indexer Information page.

If you index reports on a z/OS system, you define the indexing parameters in an
indexing data set on the system that is accessible to the ACIF program.

Literal values that you specify in the FIELD, INDEX, and TRIGGER parameters
must be expressed as hexadecimal strings. For example, the string
“CustomerName” is represented as follows:
index6=X’C39AA2A396948599D5819485’,field6 /* CustomerName */

ACIF indexer 9

Specifying indexing parameters
To locate indexing attributes in the sample report, two TRIGGER parameters are
required that tell ACIF to examine the first byte of an input record and then look
for a specific hexadecimal string.

The sample report uses the following data values for indexing attributes:
v Account Number (acctnum)
v Customer Name (custnam)
v Statement Date (sdate)

Important: If you are processing EBCDIC data on z/OS, the trigger and index
values can be expressed as regular character strings (or hex), but if you are
processing EBCDIC data on multiplatform operating systems, then they must be
expressed in hexadecimal.

To locate these indexing attributes in the sample report, two TRIGGER parameters
are required. The first trigger tells ACIF to examine the first byte of every input
record until it finds the occurrence of an ANSI skip-to-channel one carriage control
character.

After locating a record containing a character ’1’ (on z/OS systems) or
hexadecimal X’F1’ (on multiplatform systems) in the first byte, ACIF uses the
second trigger to look for the following string starting in column 72 of the same
input record:
v On z/OS systems: the character string ’Page 0001’

v On multiplatform systems: the hexadecimal string X’D7C1C7C540F0F0F0F1’
(PAGE 0001)

When this condition is found, a new statement exists, and the record containing a
character ’1’ (on z/OS systems) or hexadecimal X’F1’ (on multiplatform systems)
in the first byte is considered the anchor record. ACIF uses the anchor record to
locate index values. The trigger specifications are expressed as follows:

Indexing EBCDIC data (part 1 of 4) on z/OS (using regular character strings):
trigger1=*,1,’1’ /* Skip to Channel 1 */
trigger2=0,72,’Page 0001’

Indexing EBCDIC data (part 1 of 4) on multiplatform systems (in hexadecimal
format):
trigger1=*,1,X’F1’ /* Skip to Channel 1 */
trigger2=0,72,X’D7C1C7C540F0F0F0F1’ /* PAGE 0001 */

ACIF uses both trigger values to locate the place in the report file to begin
searching for the data described in the parameters.

To create the indexing tag for the customer name attribute, define the following
string as the indexing attribute:
v On z/OS systems: the character string ’custnam’

v On multiplatform systems: the hexadecimal string X’839AA2A3958194’ (custnam)

The index field name is the same as the application group database field name.
Locate customer name index values in the second record following the anchor
record, starting at byte 40 and extending for 20 bytes. The FIELD and INDEX
specifications are expressed as follows:

10 Indexing Reference

Indexing EBCDIC data (part 2 of 4) on z/OS (using regular character strings):
field1=2,40,20 /* custnam field */
index1=’custnam’,field1 /* index/db field = custnam */

Indexing EBCDIC data (part 2 of 4) on multiplatform systems (in hexadecimal
format):
field1=2,40,20 /* custnam field */
index1=X’839AA2A3958194’,field1 /* index/db field = custnam */

To create the indexing tag for the statement date attribute, define the following
string as the indexing attribute:
v On z/OS systems: the character string ’sdate’

v On multiplatform systems: the hexadecimal string X’A28481A385’ (sdate)

The index field name is the same as the application group database field name.
Locate statement date index values in the sixth record following the anchor record,
starting at byte 56 and extending for 10 bytes. The FIELD and INDEX
specifications are expressed as follows:

Indexing EBCDIC data (part 3 of 4) on z/OS (using regular character strings):
field2=6,56,10 /* sdate field */
index2=’sdate’,field2 /* index/db field = sdate */

Indexing EBCDIC data (part 3 of 4) on multiplatform systems (in hexadecimal
format):
field2=6,56,10 /* sdate field */
index2=X’A28481A385’,field2 /* index/db field = sdate */

To create the indexing tag for the account number attribute, define the following
string as the indexing attribute:
v On z/OS systems: the character string ’acctnum’

v On multiplatform systems: the hexadecimal string X’818383A395A494’ (acctnum)

The index field name is the same as the application group database field name.
Locate account number index values in the seventh record following the anchor
record, starting at byte 56 and extending for 19 bytes. The FIELD and INDEX
specifications are expressed as follows:

Indexing EBCDIC data (part 4 of 4) on z/OS (using regular character strings):
field3=7,56,19 /* acctnum field */
index3=’acctnum’,field3 /* index/db field = acctnum */

Indexing EBCDIC data (part 4 of 4) on multiplatform systems (in hexadecimal
format):
field3=7,56,19 /* acctnum field */
index3=X’818383A395A494’,field3 /* index/db field = acctnum */

After indexing the report, Content Manager OnDemand stores the index values in
the database for each of the three indexing attributes for each statement in the
input data stream. Using a Content Manager OnDemand client program, you can
locate a specific customer statement using a date, and optionally, any combination
of customer name and customer number.

ACIF indexer 11

Determining how literal values are expressed
The way literal values in the input file are defined in ACIF parameters depends on
whether the input file contains ASCII or EBCDIC data.

If the input file is in ASCII for UNIX or Windows or in EBCDIC for z/OS, then the
literal values in the FIELD, INDEX, and TRIGGER parameters can be expressed in
character data strings. The following example, shows part of a parameter file for
ASCII input data. The CCTYPE parameter value matches the type of data in the
input file, in this case ASCII. The CPGID parameter indicates a code page for the
type of data in the input file. The FIELD, INDEX, and TRIGGER parameters are
expressed in character data strings because the input file is ASCII and the
operating system is UNIX or Windows. The following is an example of a UNIX or
Windows parameter file for ASCII input data:

/* Example phone bill */
/* DATA CHARACTERISTICS */

CC=yes /* Carriage control used */
CCTYPE=z /* ASCII ANSI carriage controls */
CHARS=42B2 /* Coded font */
CPGID=850 /* Code page identifier */

/* FIELD AND INDEX DEFINITION */
FIELD1=13,66,15 /* Account data field */
FIELD2=0,50,30 /* Name data field */
FIELD3=1,50,30 /* Address data field */
FIELD4=2,50,30 /* City data field */
FIELD5=’1’ /* Date data field */
INDEX1=’Account’,FIELD1 /* 1st index attribute */
INDEX2=’Name’,FIELD2 /* 2nd index attribute */
INDEX3=’Address’,FIELD3 /* 3rd index attribute */
INDEX4=’City’,FIELD4 /* 4th index attribute */
INDEX5=’Date’,FIELD5 /* 5th index attribute */

/* EXIT AND TRIGGER INFORMATION */
TRIGGER1=*,1,’1’ /* 1st trigger */
TRIGGER2=13,50,’ACCOUNT’ /* 2nd trigger */

If the input data file is not ASCII in UNIX or Windows or not EBCDIC in z/OS,
then the literal values in the FIELD, INDEX, and TRIGGER parameters must be
expressed in hexadecimal strings. The following example, shows part of a UNIX
parameter file for EBCDIC input data. The CCTYPE parameter value matches the
type of data in the input file, in this case EBCDIC. The CPGID parameter indicates
a code page for the type of data in the input file. The FIELD, INDEX, and
TRIGGER parameters are expressed in hexadecimal strings because the input file is
EBCDIC and the operating system is UNIX or Windows. The following is an
example of a UNIX or Windows parameter file for EBCDIC input data:

/* Example phone bill */
/* DATA CHARACTERISTICS */

CC=yes /* Carriage control used */
CCTYPE=a /* EBCDIC ANSI carriage controls */
CHARS=GT15 /* Coded font */
CPGID=037 /* Code page identifier */

/* FIELD AND INDEX DEFINITION */
FIELD1=13,66,15 /* Account data field */
FIELD2=0,50,30 /* Name data field */
FIELD3=1,50,30 /* Address data field */
FIELD4=2,50,30 /* City data field */
FIELD5=X’F1’ /* Date data field */
INDEX1=X’C1838396A495A3’,FIELD1 /* 1st index attr (Account) */
INDEX2=X’D5819485’,FIELD2 /* 2nd index attr (Name) */
INDEX3=X’C184849985A2A2’,FIELD3 /* 3rd index attr (Address) */
INDEX4=X’C389A3A8’,FIELD4 /* 4th index attr (City) */
INDEX5=X’C481A385’,FIELD5 /* 5th index attr (Date) */

12 Indexing Reference

/* EXIT AND TRIGGER INFORMATION */
TRIGGER1=*,1,X’F1’ /* 1st trigger (1) */
TRIGGER2=13,50,X’C1C3C3D6E4D5E3’ /* 2nd trigger (ACCOUNT) */

ACIF indexer parameters
Depending on whether you run ACIF on a multiplatform (Linux, UNIX, or
Windows) or z/OS system, the defaults for certain parameters change. The defaults
for the multiplatform and z/OS systems are provided in the parameter reference.

This parameter reference assumes that you will use the ARSLOAD program to
index and load your reports. When you use the ARSLOAD program to process
your reports, it automatically invokes ACIF if ACIF is specified as the indexer in
the application. The ARSLOAD program ignores the INDEXDD, INPUTDD, MSGDD,
OUTPUTDD, PARMDD, and RESOBJDD parameters, if specified. If you run ACIF from the
command prompt, you must specify the values of the INDEXDD, INPUTDD , MSGDD,
OUTPUTDD, PARMDD, and RESOBJDD parameters.

For most reports, ACIF requires three indexing parameters to extract or generate
index data:

TRIGGER
ACIF uses triggers to determine where to locate data. A trigger instructs
ACIF to look for certain information in a specific location in the report file.
When ACIF finds a record in the data stream that contains the information
specified in the trigger, it can begin to look for index information.
v ACIF compares data in the report file with the set of characters specified

in a trigger, byte for byte, unless you specify a regular expression.
v A maximum of 16 triggers can be specified.
v All fixed group triggers must match before ACIF can generate index

information. However, floating triggers can occur anywhere in the data
stream. That is, index data based on a floating trigger can be collected
from any record in the report file.

FIELD The field parameter identifies the location, offset, and length of the data
that ACIF uses to create index values.
v Field definitions are based on TRIGGER1 by default, but can be based

on any of 16 TRIGGER parameters.
v A maximum of 128 fields can be defined.
v A field can also specify all or part of the actual index value stored in the

database.

INDEX
The index parameter is where you specify the attribute name, identify the
field or fields on which the index is based, and specify the type of index
that ACIF generates. For the group-level indexes that Content Manager
OnDemand stores in the database, IBM recommends that you name the
attributes the same as the application group database field names.
v ACIF can create indexes for a page, group of pages, and the first and

last sorted values on a page or group of pages. Content Manager
OnDemand stores group-level index values in the database. Users can
search for items using group-level indexes. Page-level indexes are stored
with the document (for example, a statement). After retrieving a
document that contains page-level indexes, the user can move to a
specific page by using the page-level indexes. Note: ACIF can only
generate this type of page-level information when converting the input

ACIF indexer 13

data to AFP. This type of page-level information is generated by
specifying the CONVERT=YES and INDEXOBJ=ALL parameters, and by
creating an index field with the TYPE=PAGE or TYPE=PAGERANGE
option. For more information, see the discussion of TYPE=PAGE in
“INDEX” on page 38.

v You can concatenate field parameters to form an index.
v A maximum of 128 index parameters can be specified.
v The default behavior of ACIF is to create a new group and extract new

index values when one or more of the fixed group index values change
or the GROUPMAXPAGES value is reached. For information on
changing the default behavior, see “BREAKYES” on page 15.

The following illustration shows a portion of a page from a sample report.

The following indexing parameters could be used to generate index data for the
report shown in the illustration. The TRIGGER definitions tell ACIF how to
identify the beginning of a group in the input. ACIF requires two TRIGGER
definitions to identify the beginning of a group (statement) in the sample file. For
example:
v TRIGGER1 looks for a 1 in the first byte of each input record.
v TRIGGER2 looks for the string Page 0001 in column 72 of the same record.

Together, the triggers uniquely identify the start of a statement in the report.

The FIELD definitions determine the location of index values in a statement. Fields
are based on the location of trigger records, for example:
v FIELD1 identifies customer name index values, beginning in column 40 of the

second record following the TRIGGER1 record.
v FIELD2 identifies statement date index values, beginning in column 56 of the

sixth record following the TRIGGER1 record.
v FIELD3 identifies account number index values, beginning in column 56 of the

seventh record following the TRIGGER1 record.

An INDEX definition identifies the attribute name of the index field. Indexes are
based on one or more field definitions. For example:
v INDEX1 identifies the attribute name custnam, for values extracted using

FIELD1.
v INDEX2 identifies the attribute name sdate, for values extracted using FIELD2.
v INDEX3 identifies the attribute name acctnum, for values extracted using

FIELD3.
Related reference:
“Begin Document Index (BDI) structured field” on page 103

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9
01 Page 0001
1
2 Jon Smyth
3 123 Ubik Way
4 Meadow Bridge WV 99999-9999
5
6 Statement Date: 08/01/1995
7 Account Number: 3727-1644-0081-0099
8
9 Balance: $1,096.54

Figure 2. Indexing a report

14 Indexing Reference

“TRIGGER” on page 71
“USERMASK” on page 78
“INDEXDD” on page 41
“INPUTDD (Multiplatform)” on page 46
“MSGDD (Multiplatform)” on page 50
“OUTPUTDD (Multiplatform)” on page 53
“PARMDD (Multiplatform)” on page 58
“RESOBJDD (Multiplatform)” on page 65

BREAKYES
Determines how ACIF starts a new document.

Required
No

Default Value
OR

Data Type
AFP, Line

Restriction: The BREAKYES parameter is not available on z/OS systems.

Syntax

BREAKYES=value

Options and values

The value parameter can be:

AND
The multiple index parameters with BREAK=YES are all "AND'ed" together. In
other words, all the index values must change for the current page to be
considered the start of a new document.

OR The multiple index parameters with BREAK=YES are all "OR'ed" together. In
other words, a change to any index value causes the current page to be
considered the start of a new document.

The default value for BREAKYES=OR: If a value other than AND or OR is
specified for this parameter, ACIF issues an error message and stops processing.

CC
Determines whether the input contains carriage-control characters.

Required
No

Default Value
YES

Data Type
AFP, Line

ACIF indexer 15

Syntax

CC=value

Options and values

The value parameter can be set to YES or NO:

YES
The input contains carriage control characters. When the input data is AFP, you
should set CC=YES and CCTYPE=A.

NO The input does not contain carriage control characters.

Related parameters

“CCTYPE”

CCTYPE
If the data contains carriage control characters, determines the type of
carriage-control characters.

Required
No

Default Value
A (on a z/OS system) or Z (on all other platforms)

Data Type
AFP, Line

ACIF supports ANSI carriage-control characters in either ASCII or EBCDIC and
machine code carriage-control characters. ACIF does not allow a mixture of ANSI
and machine carriage-control characters within a file. If you specify CC=YES and
you do not specify the CCTYPE parameter, then ACIF assumes that the input
contains ANSI carriage-control characters encoded in ASCII. If you are running
ACIF on a z/OS system, then ACIF assumes that the carriage-controls are encoded
in EBCDIC.

Note: It is very important to correctly identify the type of carriage control
characters in the input file. ACIF may process an input file even though the
CCTYPE parameter incorrectly identifies the type of carriage control characters in
the input file. However, the output file may be unusable. If you have questions
about the type of carriage control characters that are in the input file, then you
should contact someone who can help you inspect the input data and determine
the correct type of carriage control characters in the input file.

Syntax

CCTYPE=value

Options and values

The value parameter can be Z, A, or M:

Z The input contains ANSI carriage-control characters that are encoded in ASCII.

16 Indexing Reference

The carriage-control characters are the ASCII values that directly relate to ANSI
carriage-controls, which cause the action of the carriage-control character to
occur before the line is printed.

A The input contains ANSI carriage-control characters that are encoded in
EBCDIC. The use of ANSI carriage-control characters cause the action of the
carriage-control character to occur before the line of data is printed. If the
input data is AFP, you should set CCTYPE=A and CC=YES.

M The input contains machine code carriage-control characters. The use of
machine code carriage-control characters cause the action of the
carriage-control character to occur after the line of data is printed.

Related parameters

“CC” on page 15

CHARS
When converting line data to AFP and the input data contains TRCs, the CHARS
parameter is required if the specified page definition does not name a font. The
CHARS parameter identifies from one to four fonts referenced in the data.

Required
No

Default Value
(None)

Data Type
AFP

If the fonts will be saved in a resource group, the CHARS parameter also provides
the names of the fonts ACIF saves in the resource group. The CHARS command
can also be used to specify the font used for the entire report when the input data
does not contain TRCs and the specified page definition does not name a font.

Use the CHARS parameter to specify coded fonts in a font library having names of
six or fewer characters (including the prefix). You can rename any fonts having
more than six characters or use a text editor to create new coded fonts for use with
the CHARS parameter. When ACIF is used to convert line data or mixed-mode
data, you must specify a page definition with the PAGEDEF parameter. You can
then specify the fonts either in the page definition or with the CHARS parameter,
but not both. You cannot mix fonts specified in a page definition with fonts
specified with CHARS for a single file. If you use the CHARS parameter to specify
fonts, but you also use the PAGEDEF parameter to specify a page definition that
names fonts, the CHARS parameter is ignored. Therefore, if your page definition
names fonts, you should not use the CHARS parameter.

Syntax

CHARS=fontlist

Options and values

The fontlist is a comma-separated string of one to four valid coded font names, for
example:
CHARS=GT10,GT12,GT24

ACIF indexer 17

The font name is limited to four alphanumeric or national characters and cannot
include the two-character prefix of the coded font name (X0 through XG). For
example, the coded font X0GT10 is specified as GT10. On UNIX servers, the font
name is case sensitive.

The fonts that you specify must reside in a library that is specified with FONTLIB,
USERLIB, or RESLIB (UNIX or Windows servers) parameters.

Related parameters
v “FONTLIB” on page 33
v “PAGEDEF” on page 56
v “USERLIB” on page 76

CONVERT
Determines whether ACIF converts the input data to AFP.

Required
No

Default Value
YES

Data Type
AFP, Line

To collect any type of resources, you must specify CONVERT=YES. Resources are
not collected when you specify CONVERT=NO.

To generate page-level information in the output file you must specify
CONVERT=YES. This type of page-level information is used in the client to move
to specific pages in a document. ACIF can only generate this type of page-level
information when converting the input data to AFP. This type of page-level
information is generated by specifying the CONVERT=YES and INDEXOBJ=ALL
parameters, and by creating an index field with the TYPE=PAGE option.

To generate page-level information in the index file, you do not have to convert the
input data. ACIF can generate this type of page-level information whether or not
the input data is being converted to AFP. This type of page-level information is
essential for loading Content Manager OnDemand large objects. This type of
page-level information is generated by specifying the INDEXOBJ=ALL parameter.
Therefore, if you do not need to convert the input line data to AFP, but you do
want ACIF to generate this type of page-level information for large objects, you
should specify CONVERT=NO.

Syntax

CONVERT=value

Options and values

The value can be:

YES
ACIF converts the input data to AFP. If the input data is AFP, the CONVERT
parameter is optional, but if it is specified, it must be set to the value YES.

NO ACIF does not convert the input data to AFP.

18 Indexing Reference

Related parameters

“RESTYPE” on page 66

CPGID
Identifies the code page of the index data. Typically, the CPGID is the same as the
code page of the input data.

Required
No

Default Value

v Multiplatform systems: 850 (ASCII)
v z/OS systems: 500 (EBCDIC)

Data Type
AFP, Line

ACIF uses the code page identifier value when it creates a Coded Graphic
Character Set Global Identifier Triplet X'01' in the Begin Document (BDT)
structured field for the output file. For more information about this triplet, refer to
Mixed Object Document Content Architecture Reference.

The code page identifier is used by the Content Manager OnDemand client
programs to display indexing information. The client programs use this identifier
with code page translation tables to represent the index attribute and value data. If
a non-decimal value is specified, ACIF reports an error condition and ends
processing.

On z/OS systems, for code-page numbers less than 100, add leading zeros (for
example, 037).

Syntax

CPGID=value

Options and values

The value can be:

850 (ASCII) 500 (EBCDIC)
The default IBM code page.

code page identifier
Any valid code page. A three to five character identifier of an IBM-registered
or user-defined code page.

DCFPAGENAMES
Determines whether ACIF generates page names using an eight-byte counter or
uses structured field tokens found in the input data stream.

Required
No

Default Value
NO

ACIF indexer 19

Data Type
AFP, Line

Syntax

DCFPAGENAMES=value

Options and values

The value can be:

NO ACIF generates page names using an eight-byte counter.

YES
ACIF uses structured field tokens in the input data stream to generate page
names.

EXTENSIONS
Determines the extended options that ACIF uses.

Required
No

Default Value
NONE

Data Type
AFP, Line

Extensions are MO:DCA data stream advanced features that might not be
supported for all presentation devices. You should use care when choosing these
options and make sure that they are available on your print server, viewer, or
printer.

Syntax

EXTENSIONS=value

Options and values

The value can be:

NONE
ACIF does not use any extended options.

ALL
ACIF uses all of the extended options.

Remember: Use caution when specifying ALL. More options might be added
in the future that might not be supported by your presentation device.

BOX
ACIF uses the GOCA box drawing order when using a Record Formatting
Page Definition.

CELLED
ACIF uses the IOCA Replicate and Trim function when converting IM1 celled
images. This image might reduce the number of bytes needed for a raster
image. It requires that IMAGEOUT=IOCA be specified (the default).

20 Indexing Reference

EMPTYOK
If indexing is requested by specifying the TRIGGER, FIELD, and INDEX
parameters, ACIF must find a group indexing field before the page specified
by the INDEXSTARTBY parameter. Under normal processing, if ACIF fails to find
a group indexing field, ACIF issues error message APK448S and ends with RC
16. When EMPTYOK is specified and a group indexing field is not found, ACIF
will issue message 422 with RC 64 and then issue message 440 and RC 0.

If no indexing information is found, the file will not load into Content
Manager OnDemand.

FRACLINE
ACIF uses the GOCA fractional line width drawing order when using a Record
Formatting Page Definition.

IDXCPGID
Specify this option for Unicode documents. ACIF adds extensive code page
information to the AFP document if ACIF is converting the document to AFP
and to the index file so that the document can load correctly into Content
Manager OnDemand and display properly. This parameter does not affect
printing. Only the following four Unicode code pages are supported:

1200 UTF-16 BE (previously UCS-2)

1208 UTF-8

13488 UTF-16 BE

17584 UTF-16 BE

When you specify this parameter, note the following restrictions:
v Ensure that you indicate the code page of the document and the extracted

index values by using the CPGID parameter. Ensure that all the extracted
index values are in the same code page.

v Ensure that you express the trigger and index names in the TRIGGER and
INDEX parameters in the code page that is specified by the CPGID parameter.

v Ensure that you express the trigger and index names in Big Endian.
v Ensure that you extract the field values from the document in Big Endian

format.
v The IDXCPGID parameter can be used with both CONVERT=YES and

CONVERT=NO.
v Do not use a mask on the FIELD parameter when you use the IDXCPGID

parameter.
v Do not use the IDXCPGID parameter if the input is AFP or mixed-mode.
v ACIF issues an error message if the IDXCPGID parameter is specified with the

PASSPF parameter. If EXTENSIONS=ALL is specified, PASSPF is ignored and the
IDXCPGID parameter is used.

This example contains sample ACIF parameters for a code page 1200 (UCS-2)
document:
CC=YES
CCTYPE=A
CPGID=1200
FILEFORMAT=RECORD,401
TRIGGER1=*,228,X’0050004100470045’,(TYPE=GROUP) /* P A G E */
FIELD1=0,246,10,(TRIGGER=1,BASE=0)
FIELD2=0,-76,16,(TRIGGER=1,BASE=TRIGGER)
INDEX1=X’0070006100670065’,FIELD1,(TYPE=GROUP,BREAK=YES) /* page */
INDEX2=X’006E0061006D0065’,FIELD2,(TYPE=GROUP,BREAK=YES) /* name */

ACIF indexer 21

EXTENSIONS=IDXCPGID
FORMDEF=F1IBMTU3
PAGEDEF=P1IBMTU3
RESLIB=\acif\reslib2

The example illustrates these points:
v The trigger and index names are expressed in Big Endian UCS-2. The trigger

and index names must be in the code page given by the CPGID parameter.
v The field values must be extracted from the document in Big Endian format.

In the example, on the first page, the following 10 bytes are extracted for
FIELD1:
X'00200020002000200031' /* 1 */

and the following 16 bytes are extracted for FIELD2:
X'002000500045004C0053004800320032' /* PELSH22 */

PASSPF
Specifies that ACIF should pass the Begin Print File (BPF) and End Print File
(EPF) structured fields, which define the boundaries of the print data, to the
output file when they are found in the input file. If this value is not specified,
ACIF discards the BPF/EPF pair. This parameter also verifies whether a
BPF/EPF structured field pair that the input record exit tried to insert is
actually inserted. If this value is not specified, and the input record tries to
insert a BPF/EPF pair, the attempt fails and the pair is discarded.

Note:

1. Be careful using PASSPF. If the output file contains BPF and EPF structured
fields and it is concatenated with the resource file, the resulting MO:DCA-P
data stream is not valid.

2. This value is not used when the input file is line data because line data
does not contain BPF and EPF structured fields.

3. When PASSPF is specified, ACIF passes all Begin Document (BDT) and End
Document (EDT) structured field pairs from the MO:DCA-P input file to
the output data stream without adding the normal comment and
timestamp triplets.

4. ACIF issues an error message if PASSPF is specified with the IDXCPGID
parameter. If EXTENSIONS=ALL is specified, PASSPF is ignored and
IDXCPGID is used.

5. ACIF does not verify whether the input file is MO:DCA IS/3 compliant.

PRCOLOR
ACIF uses GOCA process color drawing orders when using a Record
Formatting Page Definition.

RESORDER
When the RESORDER value is specified, inline resources do not have to appear in
any particular order in the input file, although they must all appear before the
beginning of the document. ACIF will read the inline resources into memory
and use them when they are requested.

If there are many inline resources and little internal memory available, the
system might run out of memory when using this option.

When the RESORDER value is not specified, inline resources must appear in the
input file in the order in which they are used.

22 Indexing Reference

SPCMPRS
ACIF uses the repeat string PTOCA order to remove trailing blanks from line
data and compress embedded blanks.

extension,...extension
A comma-separated list of two or more specific types of extended options. For
example, to specify that ACIF should use the PRCOLOR and BOX extended
options, use the following format of the parameter:
EXTENSIONS=prcolor,box

Related parameters
v “CPGID” on page 19
v “IMAGEOUT” on page 37

FDEFLIB
On multiplatform systems, FDEFLIB identifies directories in which form definitions
are stored. On z/OS systems, FDEFLIB specifies the data sets that compose the form
definition library.

Required
No

Default Value
(None)

Data Type
AFP

FDEFLIB in a multiplatform environment

Specify any valid search path. ACIF searches for the form definition in the
following order:
1. The paths you specified with the USERLIB parameter, if any.
2. The paths you specified with the FDEFLIB parameter, if any.
3. The paths you specified with RESLIB parameter, if any.
4. On UNIX servers, the paths specified on the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.

FDEFLIB in a z/OS environment

You can specify a maximum of 16 data sets. For example:
FDEFLIB=SYS1.FDEFLIB,USER.FDEFLIB

This parameter also specifies the concatenation sequence when ACIF searches for a
particular form definition. ACIF first looks for the resource in dsname1. If it cannot
find the resource in dsname1, it continues the search with dsname2, and so on, until
it locates the requested resource or exhausts the list of specified data sets.

If the USERLIB parameter is also specified, ACIF searches for the resource in the
data sets specified in the USERLIB parameter before searching the data sets
identified in the FDEFLIB.
v Data sets must be specified as fully-qualified names without quotation marks.

ACIF indexer 23

v Separate data set names with a comma.
v For systems before MVS/DFP Version 2.3, data sets must be concatenated with

the largest block size first.
v The FDEFLIB parameter is required if the USERLIB parameter is not specified. If

the FDEFLIB parameter is not specified, ACIF reports an error condition and
ends processing.

Syntax and options in a multiplatform environment

FDEFLIB=pathlist

The value to provide for the FDEFLIB is a valid path name.

The pathlist is a string of one or more valid path names, for example:
FDEFLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/fdeflib.

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Restriction: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Syntax and options in a z/OS environment

FDEFLIB=dsname1[,dsname2][,dsname3]...

You can specify a maximum of 16 data sets. For example:
FDEFLIB=SYS1.FDEFLIB,USER.PDEFLIB

Data sets must be specified as fully-qualified names without quotation marks.
Delimit data set names with the comma (,) character.

Related parameters
v “RESLIB” on page 64
v “USERLIB” on page 76

FIELD
Identifies the location of index data and can provide default and constant index
values. You must define at least one field.

Required
Yes

Default Value
(None)

Data Type
AFP, Line

You can define up to 128 fields. ACIF supports the following types of fields:
v Trigger field, which is based on the location of a trigger string value.
v Constant field, which allows you to provide the actual index value that is stored

in the database.

24 Indexing Reference

v Transaction field, which you can use to index input data and that contains one
or more columns of sorted data. Because it is not always practical to store every
index value in the database, ACIF extracts the first and last sorted values in each
group. Depending on the format (ASCII or EBCDIC) of the data, the data is
sorted according to the collating sequence of the code page.

v Mask field, which must be based on a floating trigger and which uses a mask to
match data located in the field columns.

Trigger field syntax

To specify a trigger field, you must assign the field a number prefixed by FIELD,
then specify the location of the field on the report.

Multiplatform syntax:
FIELDn=record,column,length,(TRIGGER=n,BASE={0 |
TRIGGER}[,MASK='@#=¬^%' | REGEX='regular
expression'][,DEFAULT=X'value]')

z/OS syntax:
FIELDn=record,column,length,(TRIGGER=n,BASE={0 |
TRIGGER}[,MASK='@#=¬^%'][,DEFAULT=X'value]')

The REGEX parameter is not available on z/OS operating systems.

Trigger field options and values

There are several different values to specify for the syntax of a trigger field.

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

record
The relative record number from the trigger on which the field is based. This is
the record number where ACIF begins to search for the field. The supported
range of values are ±0 to 255.

column
The relative column number from the BASE. This is the column number where
ACIF begins to search for the field. A value of 1 (one) refers to the first byte in
the record. For files containing carriage-control characters, column one refers to
the carriage-control. For those applications that use a specific carriage-control
character to define page boundaries (for example, skip-to-channel one),
consider defining the value of the carriage-control character as one of the
TRIGGER parameters. If you specify BASE=0, the column value can be 1 to 32756.
If you specify BASE=TRIGGER, the column value can be –32756 to 32756.

When you specify the column number of the field, if the specified value
exceeds the physical length of the record, ACIF reports an error condition and
terminates processing unless you specify a DEFAULT value.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values are 1 to 250. The field can extend outside the record
length if the column where it begins is within the record length. In this case,
ACIF adds padding blanks to complete the record. If the field begins outside
the maximum length of the record, ACIF reports an error condition and
terminates processing unless you specify a DEFAULT value.

ACIF indexer 25

TRIGGER=n
Identifies the trigger parameter ACIF uses to locate the field. This is an
optional parameter, but the default is TRIGGER1. Replace n with the number of
a defined TRIGGER parameter.

BASE={0|TRIGGER}
Determines whether ACIF uses the starting column number of the trigger
string value to locate the field data. Choose from 0 (zero) or TRIGGER. If BASE=0,
ACIF adds zero to the field column offset. If BASE=TRIGGER, ACIF adds the
starting column number of the trigger string value to the field column offset.

Use BASE=0 if the field data always starts in a specific column. Use
BASE=TRIGGER if the field data does not always start in a specific column, but is
always offset from the trigger string value a specific number of columns.

For example, a trigger occurs in the second record on a page. The trigger string
value can begin in any column in the record. A field based on this trigger
occurs in the trigger record. The starting column number of the field is always
ten bytes from the starting column number of the trigger. Specify BASE=TRIGGER
and a column offset of ten so that ACIF correctly locates the field, regardless of
the starting column of the trigger string value.

MASK='@#=¬^%'
Specifies a pattern of symbols that ACIF uses to match data located in the field
columns. If the data matches the MASK, then ACIF selects the field. Important:
If you specify a MASK, then the field must be based on a floating trigger. An
INDEX parameter that is based on the field cannot include any other fields
and must not create grouprange or pagerange indexes.

You can specify the following symbols in the MASK:

@ Matches alphabetic characters.

Matches numeric characters.

= Matches any character.

¬ Matches any non-blank character.

^ Matches any non-blank character.

% Matches the blank character and numeric characters.

For example, given the following definitions:
TRIGGER2=*,25,’SOURCE’,(TYPE=FLOAT)
FIELD2=0,38,4,(TRIGGER=2,BASE=0,MASK=’####’)

ACIF selects the field only if the data in the field columns contains numeric
characters.

REGEX='regular expression'
ACIF extracts the text specified by the column and length values. After the
field is extracted, ACIF applies the regular expression to the text. Any text that
matches the regular expression is extracted for the field. If the matching text is
shorter than the length specified in the FIELD, it is padded with blanks until it
equals the length. If the regular expression does not match any text in the field,
the following occurs:

For a field based on a Group trigger the default value specified on the FIELD is
used. If no default value is specified, ACIF ends with error message APK488.

26 Indexing Reference

For a field based on a Float trigger, there is no error and the default value
specified on the FIELD is not used. In this case the load process will use the
default value specified in the Application.

If the record is only long enough to contain part of the field, the regular
expression is applied only to the portion of the record that is present.

The regular expression must be specified in the code page given by the CPGID
parameter. It can be specified in hexadecimal.

The maximum length of the regular expression is 250 bytes. A mask and a
regular expression cannot both be specified on the same FIELD parameter.

Restriction: The REGEX parameter is not available on z/OS operating systems.

DEFAULT='value'
Determines the default value for the index when a record is not long enough
to contain the field data, or (on multiplatform systems only) if a regular
expression does not match any field data. The default value can be specified
either as a character string or a hexadecimal string. If the data to be indexed is
anything other than ASCII, then the default value must be specified as a
hexadecimal string, for example, X'value'. Given the following definition:
FIELD2=1,77,4,(DEFAULT=X’D5D6D5C5’)

ACIF assigns the index associated with FIELD2 the value D5D6D5C5 (NONE), if a
record is not 77 bytes in length.

Remember: If a record is not long enough to contain the field data and you do
not specify a default value, ACIF will fail.

Trigger field examples

One example shows how to specify the location of the field that begins at a specific
column, a second example shows how to specify the location of the field as an
offset.

The following field parameter causes ACIF to locate field values that begin in
column 83 of the same record that contains the TRIGGER1 string value. The field
length is eight bytes. Specify BASE=0 because the field data always starts in the
same column, for example:
TRIGGER1=*,1,X’F1’,(TYPE=GROUP)
FIELD1=0,83,8,(TRIGGER=1,BASE=0)

The following field parameter causes ACIF to locate field values that begin ten
columns offset from the trigger string value. The trigger string value can start in
any column in any record. Basing the field on TRIGGER2 and specifying
BASE=TRIGGER allows ACIF to locate the field by adding ten to the starting column
offset of the trigger string value.
TRIGGER2=*,*,X’E2A482A396A38193’,(TYPE=FLOAT)
FIELD2=0,10,12,(TRIGGER=2,BASE=TRIGGER)

On multiplatform systems, the following field parameter causes ACIF to apply the
regular expression to columns 13 through 30 of the record that contains the trigger
string value. Any text that matches will be extracted for the field value. This
regular expression is designed to extract dates of the form “January 20, 1970”.
TRIGGER1=*,1,’1’
FIELD1=0,13,18,(REGEX=’[A-Z][a-z]+ [0-9]+, [0-9]{4}’)

ACIF indexer 27

Constant field syntax

A constant field cannot be concatenated in an index with a field that is based on a
floating trigger. A constant field is a field for which you specify the actual index
value that will be stored in the database.

FIELDn=constant

It is possible to generate an index value by concatenating or combining the value
that you specify for a constant field with the value that ACIF extracts from a
document by using a trigger field. The trigger field cannot be based on a floating
trigger.

Constant field options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

constant
The literal (constant) string value of the field. This is the index value stored in
the database. If the input data contains unformatted ASCII data, the constant
can be specified either as character data or hexadecimal data. Specify a
hexadecimal value by using the format X'constant' where constant is
hexadecimal data. If the input data contains EBCDIC data, the constant must
be specified as hexadecimal data. The constant value can be 1 to 250 bytes in
length. The constant value can be 250 bytes of character data, or 125
hexadecimal characters, since each hexadecimal character contains 2 bytes.
ACIF does not validate the actual content of the supplied data.

Constant field examples

One example shows how to store the same string of hexadecimal characters in each
INDEX3 value it creates, the second example shows how to concatenate a constant
value with the index value extracted from the data.

The following field parameter causes ACIF to store the same string of hexadecimal
characters in each INDEX3 value it creates.
FIELD3=X’F0F0F0F0F0F0F0F0F0’
INDEX3=X’D5D6D6D7’,FIELD3,(TYPE=GROUP,BREAK=NO)

The following field parameters cause ACIF to concatenate a constant value with
the index value extracted from the data. ACIF concatenates the constant value
specified in the FIELD3 parameter to each index value located by using the FIELD4
parameter. The concatenated string value is stored in the database.

In this example, the account number field in the data is 14 bytes in length.
However, the account number in the database is 19 bytes in length. Use a constant
field to concatenate a constant five byte prefix (0000–) to all account numbers
extracted from the data. The input data is encoded in EBCDIC.
FIELD3=X’F0F0F0F060’
FIELD4=0,66,14
INDEX3=X’818383A36D95A494’,FIELD3,FIELD4,(TYPE=GROUP,BREAK=YES)

Transaction field syntax

To specify a transaction field, the syntax must include a field name and the
location on the report to obtain the field value.

28 Indexing Reference

Multiplatform syntax:
FIELDn=*,*,length, (OFFSET=(start1:end1[,...start8:end8]),MASK='@#=?^%'
|REGEX='regular expression'[,ORDER={BYROW | BYCOL}])

z/OS syntax:
FIELDn=*,*,length, (OFFSET=(start1:end1[,...start8:end8]),MASK='@#=¬^
%'[,ORDER={BYROW | BYCOL}])

The REGEX parameter is not available on z/OS operating systems.

Transaction field options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

* The record number where ACIF begins searching for the field. A transaction
field must specify an asterisk, meaning ACIF searches every record in the
group.

* The column number where ACIF begins searching for the field. A transaction
field must specify an asterisk. The OFFSET specification determines the column
or columns where ACIF locates the field.

Note: If you enter a value other than an asterisk, ACIF ignores the value.
When you specify the OFFSET keyword of the FIELD parameter, ACIF always
uses the starting column number(s) from the OFFSET keyword to determine
the location of the field value(s).

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values are 1 to 250. The field can extend outside the record
length, if the column where it begins lies within the record length. In this case,
ACIF adds padding blanks to fill out the record. If the field begins outside the
maximum length of the record, ACIF reports an error condition and terminates
processing.

OFFSET=(start:end)
Determines the location of the field value from the beginning of the record.
The start is the column where the field begins. The end is the last column of
field data. A maximum of eight pairs of beginning and ending offset values are
allowed. Separate the pairs with a comma. When you specify the OFFSET
keyword, you must also specify the MASK or REGEX keyword. The implied
length of an OFFSET value must be the same as the number of characters in
the MASK, or ACIF will not detect a match.

MASK='*@#=¬^%'
Determines the pattern of symbols that ACIF matches with data located in the
field columns. You can specify either a mask or a regular expression, but not
both. When you specify the MASK keyword, you must also specify the
OFFSET keyword. When you define a transaction field that includes a mask,
an INDEX parameter based on the field cannot reference any other fields. An
INDEX parameter based on a transaction field that includes a mask must create
grouprange or pagegrange indexes. Valid mask symbols include:

* Not literal; matches a user-defined mask.

@ Matches alphabetic characters.

Matches numeric characters.

¬ Matches any nonblank character.

ACIF indexer 29

^ Matches any nonblank character.

% Matches the blank character and numeric characters.

= Matches any character.

Code page 850 is the default code page for the symbols in the MASK. If you
specify a different code page (on the CPGID parameter), ACIF translates all
characters in the MASK value, except the MASK symbols. ACIF then matches
the input characters against the MASK value. For example, the following
definitions cause ACIF to search for a hexadecimal C1 followed by four
numeric characters (hexadecimal F0-F9), a hexadecimal 60, and two numeric
characters (hexadecimal F0-F9):
CPGID=500

FIELD3=*,*,8,(OFFSET=(10:17),MASK=’A####-##’,ORDER=BYROW)

REGEX='regular expression'
The regular expression that ACIF matches with data located in the field
columns. The regular expression must be specified in the code page given by
the CPGID parameter, and can be from 1 to 250 bytes in length. The regular
expression can be specified in hexadecimal. You can specify either a mask or a
regular expression, but not both.

When you specify the REGEX keyword, you must also specify the OFFSET
keyword. When you define a transaction field that includes a regular
expression, an INDEX parameter based on the field cannot reference any other
fields. An INDEX parameter based on a transaction field that includes a regular
expression must create grouprange or pagegrange indexes. Here are some
examples of common regular expressions:

Table 3. Common regular expressions

Regular expression Results

Account Finds the characters "Account." By default searches are case
sensitive.

[A-Z] Finds one uppercase letter.

[A-Z]{3} Finds three consecutive uppercase letters.

[0-9]{5} Finds five consecutive digits.

[0-9]+ Finds one or more digits.

[^a-z] Finds everything except lower case a to z.

\s Finds one whitespace character (space, tab, etc).

\S Finds any character except for whitespace.

For example, the following definitions:
CPGID=850
FIELD3=*,*,8,(OFFSET=(10:17),REGEX='A[0-9]{4}-[0-9]{2}',ORDER=BYROW)

Cause ACIF to search columns ten through seventeen for a hexadecimal 41
followed by four numeric characters (hexadecimal 30-39), a hexadecimal 2D,
and two numeric characters (hexadecimal 30-39). The match must begin in the
first column specified by the OFFSET parameter.

Restriction: The REGEX parameter is not available on z/OS operating systems.

30 Indexing Reference

ORDER={BYROW|BYCOL}
Identifies where ACIF can locate the smallest value and the largest value of a
group of sorted values arranged in either rows or columns on the page. The
default ORDER is BYROW.

For ORDER=BYROW, ACIF extracts the first value in the first row and the last
value in the last row that match the MASK. Data with a row orientation can
appear as follows:
1 2 3
4 5 6
7 8

For ORDER=BYCOL, ACIF extracts the first value in the first column and the last
value in the last column that match the MASK. Data with a column orientation
may appear as follows:
1 4 7
2 5 8
3 6

Transaction field examples

The following field parameter causes ACIF to locate a 10-character numeric string
that begins in column three of any record in the group. This format of the FIELD
parameter is used to create indexes for the beginning and ending sorted values of
each group.
FIELD4=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)

The following field parameter causes ACIF to locate three digits followed by a
dash, followed by four digits, that begin in column 59 of any record in the group.
This format of the FIELD parameter is used to create indexes for the beginning and
ending sorted values of each group.
FIELD3=*,*,12,(OFFSET=(59:70),ORDER=BYROW, REGEX=’[0-9]{3}-[0-9]{4}’)

Related parameters
v “CPGID” on page 19
v “INDEX” on page 38
v “TRIGGER” on page 71

FILEFORMAT (Multiplatform)
Identifies the format of the input file, and optionally, the character or characters
that separate records in the input file.

Required
No

Default Value
STREAM

Data Type
AFP, Line

Syntax

FILEFORMAT={STREAM[,(NEWLINE=X'value')]|RECORD[,n]}

ACIF indexer 31

Options and values

The values are:

STREAM[,NEWLINE=X'VALUE')]
The input file has no length information; it is a stream of data separated by a
newline character. Files with STREAM format typically come from a workstation
operating system such as AIX, Solaris, and Windows.

The NEWLINE keyword identifies the hexadecimal character or characters that
delimit records in the data stream. The NEWLINE keyword supports a
two-character line delimiter, which is common in data from DOS and
Windows. The following example shows how to specify the FILEFORMAT
parameter to process input data that contains two-character line delimiters:
FILEFORMAT=STREAM,(NEWLINE=X’0D0A’)

If the NEWLINE keyword is not specified, the default line delimiter for ASCII
data is X'0A' and the default line delimiter for EBCDIC data is X'25'.

RECORD[,n]
The input file is formatted in z/OS record format, where the first two bytes of
each line specify the length of the line. The length does not include the length
of the two-byte prefix. RECORD format files typically are z/OS files that have
a variable record format.

For RECORD,n files, the input file is formatted in such a way that each record
is fixed length, n bytes long. The value of n is a number from 1 to 32767.

FILEFORMAT (z/OS platforms)
Specifies the format of the output data set. If the FILEFORMAT parameter is not
specified, ACIF will write the output data set according to the DCB characteristics
that are specified for the data set that is identified by the OUTPUTDD parameter.

Required
No

Default Value
NONE

Data Type
Line

Syntax

FILEFORMAT=value

Options and values

The value can be HFSOUT. For example:
FILEFORMAT=HFSOUT

ACIF will write records to the output data set (specified by the DCB) with a
two-byte length prefix.

The FILEFORMAT parameter applies to the output data set, not the index or resource
data sets.

The FILEFORMAT parameter is used only with CONVERT=NO, so that the data can be
loaded into Content Manager OnDemand.

32 Indexing Reference

Content Manager OnDemand requires that line data either be fixed length or
contain two-byte length prefixes.

FONTLIB
On multiplatform systems, FONTLIB identifies the directories in which fonts are
stored. On z/OS, FONTLIB specifies the data sets that compose the font library.

Required
No

Default Value
(None)

Data Type
AFP

FONTLIB in a multiplatform environment

Specify any valid search path. ACIF searches for the fonts in the following order:
1. The paths you specified with the USERLIB parameter, if any.
2. The paths you specified with the FONTLIB parameter, if any.
3. The paths you specified with the RESLIB parameter, if any.
4. On UNIX servers, the paths specified in the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.
6. On UNIX servers, the directory /usr/lpp/ipfonts, if it exists.
7. On UNIX servers, the directory /usr/lpp/afpfonts, if it exists.
8. On UNIX servers, the directory /usr/lpp/psf/fontlib, if it exists.

FONTLIB in a z/OS environment

You can specify a maximum of 16 data sets. For example:
FONTLIB=SYS1.FONTLIB,USER.FONTLIB

This parameter also specifies the concatenation sequence when ACIF searches for a
particular font resource. ACIF first looks for the resource in dsname1. If it cannot
find the resource in dsname1, it continues the search with dsname2, and so on, until
it either locates the requested resource or exhausts the list of specified data sets.

If the USERLIB parameter is also specified, ACIF searches for the resource in the
data sets specified in the USERLIB parameter before searching the data sets
identified in the FONTLIB parameter.
v Data sets must be specified as fully-qualified names without quotation marks.
v Separator data set names with a comma.
v For systems before MVS/DFP Version 2.3, data sets must be concatenated with

the largest block size first.
v This is a required parameter if font retrieval is requested and the USERLIB

parameter is not specified, or if you specify MCF2REF=CPCS and any coded
fonts are referenced in the input file or in an overlay. The RESTYPE parameter
determines whether fonts are to be retrieved for inclusion in the resource data
set. If this parameter is not specified, and font retrieval is requested or a coded
font is referenced, ACIF reports an error condition and ends processing.

ACIF indexer 33

Syntax and options in a multiplatform environment

FONTLIB=pathlist

The value to provide for the FONTLIB parameter is a string of one or more valid
path names.

The pathlist is a string of one or more valid path names. For example:
FONTLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/fontlib

ACIF searches the paths in the order in which they are specified. Delimit path
names in UNIX with the colon (:) character. Delimit path names in Windows with
the semicolon (;) character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Syntax and options in a z/OS environment

FONTLIB=dsname1[,dsname2][,dsname3]...

You can specify a maximum of 16 data sets. For example:
FONTLIB=SYS1.FDEFLIB,USER.PDEFLIB

Data sets must be specified as fully-qualified names without quotation marks.
Delimit data set names with the comma (,) character.

Related parameters
v “RESLIB” on page 64
v “USERLIB” on page 76

FORMDEF
Specifies the file name or member name of the form definition. A form definition
defines how a page of data is placed on a form, the number of copies of a page,
any modifications to that group of copies, the paper source, and duplexing. ACIF
requires a form definition to process an AFP file or to convert a line data file to
AFP.

Required
Yes

Default Value
(None)

Data Type
AFP

The form definition can be located:
v inline within the input file or data set.
v in a user library referenced in the USERLIB parameter
v in a library referenced in the FDEFLIB parameter.
v in a library referenced in the RESLIB parameter (Multiplatform only).

To use an inline form definition:
1. Include an inline form definition in the input file or data set.

34 Indexing Reference

2. Specify CC=YES to indicate that the input file or data set contains carriage
control characters. If the length of the records in the form definition is less than
or equal to the logical record length defined for the input file or data set, you
can specify fixed length records for the record format:
v On UNIX and Windows systems:

FILEFORMAT=RECORD,n

(where n is the logical record length defined for the input file).
v On z/OS systems, specify record format FBA (fixed block with ANSI carriage

control characters) or FBM (fixed block with machine carriage control
characters) for the input data set.

If the length of the records in the form definition is greater than the logical
record length defined for the input file or data set, you must specify variable
length records:
v On UNIX and Windows systems:

FILEFORMAT=RECORD

The first two bytes of each record determine the record length.
v On z/OS systems, specify record format VBA (variable blocked with ANSI

carriage control characters) or VBM (variable blocked with machine carriage
control characters) for the input data set.

3. Specify the FORMDEF parameter with one of these values:
v fdefname, which is the name of the inline form definition.

If the name specified in the FORMDEF parameter does not match the name of
an inline form definition, ACIF looks for the form definition in the FORMDEF
resource library search path.

Note: On UNIX servers, the fdefname is case sensitive.
v DUMMY

If you specify FORMDEF=DUMMY but the file does not include an inline form
definition, ACIF looks for the form definition named DUMMY. If ACIF
cannot find a form definition named DUMMY, it reports an error and ends
processing.

Note: On z/OS servers, DUMMY must be specified in all uppercase letters.

If the form definition file is in a library or directory, use the USERLIB or FDEFLIB
parameter to specify the data sets or path to the file. For example:

On multiplatform systems:
FORMDEF=MEMO
FDEFLIB=/resources

On z/OS systems:
FORMDEF=MEMO
USERLIB=USER.RESOURCES

Syntax

FORMDEF=fdefname

ACIF indexer 35

Options and values

The fdefname is the file or member name of the form definition, one to eight
alphanumeric or national characters, including the two-character prefix, if there is
one.

Notes

If the file name of the form definition includes a file extension, do not use the file
extension when specifying the form definition. However, the file type must be
FDEF3820, FDEF38PP, or FDE (or no file type).

For example, to use a form definition named MEMO.FDEF38PP, specify FORMDEF=MEMO.

If CONVERT=YES is specified, ACIF requires a form definition to process the input
file (even though the form definition actually gets used at print time). If you do
not specify the FORMDEF parameter or you specify FORMDEF without a form definition
file name, ACIF reports an error condition and ends processing.

Related parameters

“FDEFLIB” on page 23

GROUPMAXPAGES
Required

No

Default Value
(None)

Data Type
AFP, Line

Determines the maximum number of pages that ACIF puts into a group. Allows
ACIF to logically segment a large report into groups of pages and create indexes
for each group. You can specify a number from 1 to 9999.

If the maximum number of pages is reached before a group index value has
changed, ACIF forces a new group. If you do not specify the GROUPMAXPAGES
parameter, ACIF does not terminate the current group and begin a new group until
the value of one of the fields named by an INDEX with BREAK=YES changes.

When indexing transaction data with a GROUPRANGE index, you typically set the
GROUPMAXPAGES parameter to control the maximum number of pages in a
group.

Syntax

GROUPMAXPAGES=value

Options and values

The value is the number of pages ACIF puts in a group. Enter a number from 1 to
9999.

36 Indexing Reference

Related parameters

“INDEX” on page 38

GROUPNAME
Determines which of the 128 possible index values should be used as the group
name for each index group.

Required
No

Default Value
INDEX1

Data Type
AFP

If you do not specify the GROUPNAME parameter, ACIF uses the value of the
INDEX1 parameter. Using the most unique index value for the group name is
recommended. The intent is to have a unique group name for every group ACIF
produces. The value includes the FIELD definitions from the INDEX parameter but
does not include the attribute name. Content Manager OnDemand displays the
value along with the attribute name and index value. After retrieving a document
from the server, users can use the group name to select and display a specific
group of pages.

Note: When defining the group name, a FIELD cannot be based on a floating
trigger.

Syntax

GROUPNAME=indexParameter

Options and values

The indexParameter can be:
v INDEX1

ACIF uses the INDEX1 parameter to determine the group name. INDEX1 is the
default.

v INDEXn

ACIF uses the specified INDEX parameter to determine the group name.

Related parameters

“INDEX” on page 38

IMAGEOUT
Determines the format of the image data produced by ACIF.

Required
No

Default Value
IOCA

Data Type
AFP, Line

ACIF indexer 37

Syntax

IMAGEOUT=value

Options and values

The value can be:
v IOCA

ACIF converts image data to uncompressed Image Object Content Architecture
(IOCA) format.

v ASIS

ACIF passes all image data through unconverted. IBM recommends that you
select ASIS to reduce the size of the output file and to improve ACIF
performance.

Related parameters

“EXTENSIONS” on page 20

INDEX
Identifies the index name, the field or fields on which the index is based, and the
type of index ACIF generates.

Required
Yes

Default Value
(None)

Data Type
AFP, Line

You can define group indexes for AFP and line data. You can define page indexes
for AFP data and line data that you convert to AFP. You must define at least one
index parameter. You can define up to 128 index parameters. When you define a
group index, IBM recommends that you name the index the same as the
application group database field name.

Important: Group indexes are stored in the database and used to search for
documents. Page indexes are stored with the document, not in the database. This
means that you cannot use page indexes to search for documents. After retrieving
a document, you can use the page indexes to move to a specific page in the
document by using the Go To command in the client.

To generate page-level information in the output file you must specify
CONVERT=YES. This type of page-level information is used in the client to move
to specific pages in a document. ACIF can only generate this type of page-level
information when converting the input data to AFP. This type of page-level
information is generated by specifying the CONVERT=YES and INDEXOBJ=ALL
parameters, and by creating an index field with the TYPE=PAGE option.

Syntax

INDEXn=name,FIELDnn[,...FIELDnn][,(TYPE=type)]

38 Indexing Reference

Options and values
v n

The index parameter identifier. When adding an index parameter, use the next
available number beginning with 1 (one).

v name

Determines the index name associated with the actual index value. For example,
assume INDEX1 is to contain account numbers. The string acct_num would be a
meaningful index name. The index value of INDEX1 would be an actual account
number, for example, 000123456789. The index name can be a maximum of 250
bytes in length.
The index name can be specified either as character data or hexadecimal data. If
the input file is anything other than ASCII, then the index name must be
specified as hexadecimal data. Specify a hexadecimal value using the format
X'name', where name is hexadecimal data, for example, X'95819485'.

v FIELDnn
The name of the field parameter or parameters ACIF uses to locate the index.
You can specify a maximum of 128 field parameters. Separate field parameter
names with a comma. The total length of all the specified field parameters
cannot exceed 250 bytes.
GROUPRANGE and PAGERANGE indexes must name one and only one
transaction field. PAGE indexes must name fields based on floating triggers.
GROUPRANGE, PAGE, and PAGERANGE indexes cannot break a group – you
must specify BREAK=NO.
An index that names a field based on a floating trigger must be TYPE=GROUP
or TYPE=PAGE and must specify BREAK=NO.

v TYPE=type

The type of index ACIF generates. You can define group indexes for AFP and
line data. You can define page indexes for AFP and line data. The default index
type is GROUP. Valid index types are:
– TYPE=GROUP[,BREAK={YES|NO}]

Create a group index value. ACIF creates one index value for each group.
You can specify whether ACIF includes or ignores the index when calculating
a group break. When BREAK=YES (the default), ACIF begins a new group
when the index value changes. For most reports, break should always be set
to yes. BREAK=NO is useful when you define two or more indexes and you
want ACIF to begin a new group only when a specific index value changes.
Specify BREAK=YES for the index that you want ACIF to use to control the
group break. Specify BREAK=NO for the other indexes.
A GROUP index that names a field parameter based on a floating trigger
must specify BREAK=NO.

– TYPE=GROUPRANGE,BREAK=NO

Create group indexes. ACIF creates index values for the first and last sorted
values in each group. ACIF creates indexes for the group by extracting the
first and last values that match the MASK or the regular expression of the
transaction field on which the index is based. ACIF assumes that the input
values are sorted. You can define one GROUPRANGE index per report.
A GROUPRANGE index must name one and only one transaction field. A
GROUPRANGE index cannot name a field parameter that is based on a
floating trigger. A GROUPRANGE index cannot break a group.
For a GROUPRANGE index, ACIF can use the value of the
GROUPMAXPAGES parameter to determine the number of pages in a group.

ACIF indexer 39

For example, you need to index a line data report that consists of thousands
of pages of sorted transaction data. You define a GROUP index to hold the
report date index values and a GROUPRANGE index to hold the transaction
numbers for each group. Because every page in the report contains the same
date, the GROUP index cannot be used to break the report into groups. (And
a GROUPRANGE index cannot be used to break a group.) To break the report
into groups, set the GROUPMAXPAGES parameter to the maximum number
of pages you want in a group (for example, 100). When calculating group
breaks, ACIF will use the value of the GROUPMAXPAGES parameter to
determine when to close the current group and begin a new group.

– TYPE=PAGE,BREAK=NO

Create zero or more page indexes per page. Page indexes must name fields
based on floating triggers. Page indexes cannot be used to break a group; you
must specify BREAK=NO.
Page indexes are stored with the document, not in the database, and cannot
be used to search for documents. After retrieving a document, you can use
the page indexes to move to a specific page in the document by using the Go
To command in the client.
This type of page-level information is generated by specifying the
INDEXOBJ=ALL parameter, and by creating an index field with the
TYPE=PAGE option. When you define a PAGE index, you must specify
INDEXOBJ=ALL; otherwise, ACIF will not write the page index data to the
index object file.

– TYPE=PAGERANGE,BREAK=NO

Create page indexes. ACIF creates index values for the first and last sorted
values on each page. ACIF creates indexes for the page by extracting the first
and last values that match the MASK or the regular expression of the
transaction field on which the index is based. ACIF assumes that the input
values are sorted. You can define one PAGERANGE index per report.
PAGERANGE indexes cannot be used to break a group – you must specify
BREAK=NO.
PAGERANGE indexes must name one and only one transaction field.
PAGERANGE indexes cannot name a field parameter that is based on a
floating trigger.
Page indexes are stored with the document, not in the database, and cannot
be used to search for documents. After retrieving a document, you can use
the page indexes to move to a specific page in the document with the Go To
command in the client.
This type of page-level information is generated by specifying the
INDEXOBJ=ALL parameter, and by creating an index field with the
TYPE=PAGERANGE option. When you define a PAGERANGE index, you
must specify INDEXOBJ=ALL; otherwise, ACIF will not write the pagerange
index data to the index object file.

Group index example

The following index parameter causes ACIF to generate group indexes for date
index values. The input data is encoded in EBCDIC. The index type is optional,
but defaults to group. When the index value changes, ACIF closes the current
group and begins a new group.

INDEX1=x’998481A385’,FIELD1,(TYPE=GROUP,BREAK=YES)

40 Indexing Reference

The following index parameters cause ACIF to generate group indexes for
customer name and account number index values. The input data is encoded in
EBCDIC. The index type is optional, but defaults to group. ACIF closes the current
group and begins a new group only when the customer name index value changes
(the data is sorted by customer name). In this example, a customer may have one
or more statements with different account numbers. The page numbers in each
statement begin with the number one, giving the appearance of unique statements.
The goal is to collect all of a customer's statements in a single group.

INDEX1=x’95819485’,FIELD1,(TYPE=GROUP,BREAK=YES)
INDEX2=x’818383A46D95A494’,FIELD2,(TYPE=GROUP,BREAK=NO)

Grouprange index example

The Grouprange index parameter causes ACIF to generate grouprange indexes for
loan number index values.

ACIF extracts the beginning and ending loan numbers in each group of pages. The
input data is encoded in EBCDIC. A grouprange index must be based on a
transaction field. Because a grouprange index cannot be used to break a report into
groups of page, the GROUPMAXPAGES parameter can be used to determine the
number of pages in a group. ACIF closes the current group and begins a new
group when the number of pages in the group is equal to the value of the
GROUPMAXPAGES parameter.
INDEX2=x’939681956D95A494’,FIELD2,(TYPE=GROUPRANGE,BREAK=NO)
GROUPMAXPAGES=100

Page index example

The Page index parameter causes ACIF to generate page indexes for subtotal
values (the attribute name that appears in the Go To dialog box is Subtotal).

The input data is encoded in EBCDIC. ACIF extracts the index values from each
page. A page index must name a field that is based on a floating trigger. A page
index cannot be used to break a group.
INDEX3=x’E2A482A396A38193’,FIELD3,(TYPE=PAGE,BREAK=NO)

Related parameters
v “FIELD” on page 24
v “INDEXOBJ” on page 42
Related concepts:
“Key concepts” on page 129

INDEXDD
Determines the name or the full path name of the index object file, where ACIF
writes indexing information.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
INDEX

Data Type
AFP, Line

ACIF indexer 41

When ACIF is indexing the input file, it writes indexing information to the
specified DD name. If you specify the file name without a path, ACIF puts the
index object file in the current directory. If you do not specify the INDEXDD
parameter, ACIF writes indexing information to the file INDEX.

On z/OS systems, the suggested DCB characteristics for the file are:
v A block size of 32760
v A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record of
length greater than that which is allowed by the INDEX DD statement. If that
happens, ACIF ends processing abnormally. If the INDEXDD parameter is not
specified, ACIF uses INDEX as the default DD name.

v Variable blocked format
v Physical sequential format

Syntax and options on multiplatform systems

INDEXDD=filename

The filename is a valid filename or full path name.

Syntax and options on z/OS systems

INDEXDD=DD name

The DD name is a one- to eight-byte character string.
Related concepts:
“ACIF indexer parameters” on page 13

INDEXOBJ
Determines the level of indexes ACIF includes in the index object file.

Required
No

Default Value
GROUP

Data Type
AFP, Line

Syntax

INDEXOBJ=value

Options and values

The value can be:
v GROUP

ACIF includes group-level index entries in the index object file.

Note: If you define page-level indexes and specify INDEXOBJ=GROUP, ACIF
will not be able to write the page-level index data.

v ALL

42 Indexing Reference

ACIF includes group-level and page-level indexes in the index object file.
You must specify INDEXOBJ=ALL for reports that require page-level index
support. There are two types of page-level index information, and different ways
to generate the information.
– Page-level information in the index file. ACIF can generate this type of

page-level information whether or not the input data is being converted to
AFP. This type of page-level information is essential for loading Content
Manager OnDemand large objects. This type of page-level information is
generated by specifying the INDEXOBJ=ALL parameter.

– Page-level information in the output file. This type of page-level information
is used in the client to move to specific pages in a document. ACIF can only
generate this type of page-level information when converting the input data
to AFP. This type of page-level information is generated by specifying the
CONVERT=YES and INDEXOBJ=ALL parameters, and by creating an index
field with the TYPE=PAGE option. For more information, see the discussion
of TYPE=PAGE in “INDEX” on page 38.

v NONE

ACIF does not create an index object file. Specify none only when you do not
want to index the input file.

v BDTLY

The INDEXOBJ parameter now includes support for stapling on document
boundaries when processing for Infoprint Manager. Note: This function should
not be used with Content Manager OnDemand.
ACIF normally removes any Begin/End Document structured fields from the
input file and generates a single BDT/EDT for the entire output because
MO:DCA indexes are relative to the Begin Document structured field. However,
the stapling function uses BDT/EDT to indicate document boundaries for
stapling. A new indexing option has been added to allow ACIF to pass through
any BDT/EDT and not create its own. This file is suitable for printing, but
should not be used with indexing because the resultant index will not be
MO:DCA compliant and may not be processed correctly by programs which use
the index, such as Content Manager OnDemand.
To enable BDT/EDT pass through, specify the BDTLY option on the INDEXOBJ
parameter. For example:
INDEXOBJ=BDTLY

Related parameters

“INDEX” on page 38

INDEXSTARTBY
Determines the page number by which ACIF must find a group indexing field.

Required
No

Default Value
1

Data Type
AFP, Line

A group indexing field is a field which is based on a group or recordrange trigger.
ACIF fails if it does not find a group indexing field before the specified page

ACIF indexer 43

number. This parameter is optional, but the default is that ACIF must find an
index on the first page. The maximum value for INDEXSTARTBY is 99.

This parameter is helpful if the input file contains header pages. For example, if
the input file contains two header pages, you can specify a page number one
greater than the number of header pages (INDEXSTARTBY=3) so that ACIF will
not start indexing until the page after the header pages.

When you use INDEXSTARTBY to skip header pages, ACIF does not copy the
non-indexed pages to the output file. For example, if you specify
INDEXSTARTBY=3, ACIF finds the first index on page three, and ACIF skips pages
one and two. Page three will be the first page in the output file.

Syntax

INDEXSTARTBY=value

Options and values

The value is the page number of the report by which ACIF must find an indexing
field.

1 Specifies that ACIF must find a group index on the first page.

nn Specifies the output page number (0–99) by which ACIF must find the
group index criteria specified. 0 indicates that there is no limit to the page
where ACIF must find a group indexing field.

If ACIF does not find a group indexing field before the page number that is
specified in the INDEXSTARTBY parameter, it issues a message and stops
processing.

INDXEXIT (Multiplatform)
Identifies the name or the full path name of the index record exit program.

Required
No

Default Value
(None)

Data Type
AFP, Line

This is the program ACIF calls for every record (line or structured field) it writes
in the index object file. For more information about optional program exits you can
use to customize how ACIF handles input and output data, see the discussion in
“User exits and attributes of the input file” on page 80.

Syntax

INDXEXIT=name

Options and values

The name is the file name or full path name of the index record exit program. On
UNIX servers, the program name is case sensitive. If you specify the file name

44 Indexing Reference

without a path, ACIF searches for the exit program in the paths specified by the
PATH environment variable.
Related concepts:
“User exits and attributes of the input file” on page 80

INDXEXIT (z/OS platforms)
Specifies the name of the module ACIF loads during initialization and
subsequently calls for every record (structured field) it writes to the index object
file (specified with the INDEXDD parameter).

Required
No

Default Value
(None)

Data Type
AFP, Line

If this parameter is not specified, no index record exit is used.

Syntax

INDXEXIT=modulename

Options and values

The modulename is a one- to eight-byte character name of the index record exit
program.

INPCCSID
Specifies a valid coded character set identifier (CCSID) for the input code page you
want to convert to another CCSID. This parameter can be used by an input record
exit program, such as apka2e or asciinpe to translate input data streams.

Syntax

INPCCSID=ccsid

Options and values

Any valid CCSID, which is a three to five-character decimal value in the range
00000 - 65535 that is registered by the Character Data Representation Architecture
(CDRA). You can replace leading zeros with spaces.

For information about CCSIDs, see CDRA Reference and Registry, SC09-2190.

INPEXIT (Multiplatform)
Identifies the name or the full path name of the input record exit program.

Required
No

Default Value
(None)

ACIF indexer 45

Data Type
AFP, Line

This is the program ACIF calls for every record (line) it reads from the input file.
For more information about optional program exits you can use to customize how
ACIF handles input and output data, see the discussion in “User exits and
attributes of the input file” on page 80.

Syntax

INPEXIT=name

Options and values

The name is the file name or full path name of the input record exit program. On
UNIX servers, the program name is case sensitive. If you specify the file name
without a path, ACIF searches for the exit program in the paths specified by the
PATH environment variable.

INPEXIT (z/OS platforms)
Specifies the name of the module ACIF loads during initialization and
subsequently calls for every input record it reads from the input file (specified with
the INPUTDD parameter).

Required
No

Default Value
(None)

Data Type
AFP, Line

If this parameter is not specified, no input record exit is used.

Syntax

INPEXIT=modulename

Options and values

The modulename is the one- to eight-byte character name of the input record exit
program.

INPUTDD (Multiplatform)
Identifies the file name or full path name of the input file that ACIF will process.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
stdin

Data Type
AFP, Line

46 Indexing Reference

If you do not specify the INPUTDD parameter, ACIF uses standard input.

Syntax

INPUTDD=filename

Options and values

The filename is the file name or full path name of the input file to process. On
UNIX servers, the program name is case sensitive. If you specify the file name
without a path, ACIF searches in the current directory.
Related concepts:
“ACIF indexer parameters” on page 13

INPUTDD (z/OS platforms)
Specifies the DD name for the input file ACIF processes.

When ACIF processes an input file, it reads from this DD name. If INPUTDD is
not specified, ACIF uses INPUT as the default DD name.

Required
No

Default Value
INPUT

Data Type
AFP, Line

Syntax

INPUTDD=DD name

Options and values

The DD name is the one- to eight-byte character DD name for the input file that
ACIF will process.

INSERTIMM
Determines whether ACIF inserts an IMM structured field before the first BPG
structured field of every named page group.

Required
No

Default Value
NO

Data Type
AFP

Syntax

INSERTIMM=value

ACIF indexer 47

Options and values

The value can be:

NO ACIF does not insert IMMs into the output data.

YES
ACIF inserts IMMs into the output data. Specify yes if the form definition
names different overlays and multiple copy groups and switches copy groups
any place other than on a group boundary. ACIF ensures that an IMM will be
present within the named page group. However, ACIF does not guarantee that
the correct overlay will be used, especially if the form definition uses enhanced
n-up processing.

Important: The INSERTIMM parameter should be used carefully. It is helpful in
viewing individual groups that require knowledge of the most recently used IMM.
However, INSERTIMM=YES results in extra page advances when printing the
output produced by ACIF.

Related parameters

“FORMDEF” on page 34

LINECNT
For unconverted line data, determines the maximum number of lines per page.
This parameter tells ACIF when to create page breaks.

Required
No

Default Value
0

Data Type
Line

The LINECNT parameter is required when you specify CC=NO and
CONVERT=NO. This parameter is ignored if CONVERT=YES. Note that page
breaks also occur if Skip-to-Channel 1 carriage controls are present in the data.

The default value is 0 (zero) and means that ACIF will not create any page breaks.
The document will be stored as a single page if there are no carriage control
characters present in the input data.

Syntax

LINECNT=number

Options and values

The number is the maximum number of lines per page. ACIF creates a page break
in the output file when this number is reached. The maximum value for LINECNT
is 999.

Related parameters
v “CC” on page 15
v “CONVERT” on page 18

48 Indexing Reference

LINEOFFSET
Determines whether ANSI carriage-control characters are used to calculate the
record offsets when determining the location of the fields.

Required
No

Default Value
ASREAD

Data Type
AFP, Line

Restriction: The LINEOFFSET parameter is not available in IBM Content Manager
OnDemand for z/OS.

Only the 0 (space two lines) and the dash (space three lines) are supported. The +
(overstrike) character is not supported. Any carriage control values other than
those supported are treated, for the purpose of determining record offset values,
the same as the "Space one line" action.

For example, the first 3 records of an input file contain the following. The first
character is an ANSI carriage control.
1REPORT
-ACCOUNT 777777
0JOHN SMITH

Using ASREAD (the default), the indexing parameters to collect the account
number and name would be as follows:
TRIGGER1=*,2,’REPORT’
FIELD1=1,10,6
FIELD2=2,2,10

Using ASPRINTED, the indexing parameters to collect the account number and
name would be as follows:
TRIGGER1=*,2,’REPORT’
FIELD1=3,10,6
FIELD2=5,2,10

Syntax

LINEOFFSET=value

Options and values

The value can be:
ASREAD

ANSI carriage controls are not used to calculate the record offsets for the fields.
The offsets are relative to the lines as they are read from the load file.
ASPRINTED

ANSI carriage controls are used to calculate the record offsets for the fields. The
offsets are relative to the line spacing that occurs when the lines are printed.

ACIF indexer 49

Related parameters
v “CC” on page 15
v “CCTYPE” on page 16

MCF2REF
Determines the way that ACIF builds Map Coded Font 2 (MCF2) structured fields
in the output file and the resource group file. ACIF can build MCF2 structured
fields using coded font names or code page and character set names (the default).

Required
No

Default Value
CPCS

Data Type
AFP

Syntax

MCF2REF=value

Options and values

The value can be:
v CPCS

ACIF builds MCF2 structured fields using the names of the code page and
character set by opening and reading the contents of all coded fonts specified in
MCF1 and MCF2 structured fields in the input file or input resources. This is the
default value.

v CF

ACIF builds MCF2 structured fields using the name of the coded font. This
option improves performance, because ACIF does not have to read the coded
fonts from the font library.

Related parameters

“RESTYPE” on page 66

MSGDD (Multiplatform)
Determines the name or the full path name of the file where ACIF writes error
messages.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
stderr

Data Type
AFP, Line

If you do not specify the MSGDD parameter, ACIF writes messages to standard
error (UNIX) or the console (Windows).

50 Indexing Reference

Syntax

MSGDD=filename

Options and values

The filename is the file name or full path name where ACIF writes error messages.
On UNIX servers, the file name is case sensitive. If you specify the file name
without a path, ACIF places the message file in the current directory.
Related concepts:
“ACIF indexer parameters” on page 13

MSGDD (z/OS platforms)
Specifies the DD name for the data set to which ACIF writes messages.

When ACIF processes an input data set, it writes message to the specified DD
name. If MSGDD is not specified, ACIF uses SYSPRINT as the default DD name.

Required
No

Default Value
SYSPRINT

Data Type
AFP, Line

Syntax

MSGDD=DD name

Options and values

The DD name is the one- to eight-byte character DD name for the ACIF message
file.

NEWPAGE
Identifies the skip-to-channel number that indicates a new page in the data stream.

Required
No

Default Value
1

Data Type
AFP, Line

The NEWPAGE parameter is optional when you specify CC=YES and
CONVERT=NO, but the default is 1 (one). You must specify the NEWPAGE
parameter when the input is line data and you do not convert it to AFP and the
skip-to-channel number is not 1 (one).

Syntax

NEWPAGE=number

ACIF indexer 51

Options and values

The number is the skip-to-channel number that indicates a new page in the data
stream. Valid numbers are 1 (one) to 12 (twelve). For example, the numbers 1 to 12
would correspond to the values x'31' - x'39' and x'41' - x'43 in the data, if the data
were encoded in ASCII, and x'F1' - x'F9' and x'C1' - x'C3' in the data if the data
were encoded in EBCDIC.

Related parameters
v “CC” on page 15
v “CONVERT” on page 18

OUTCCSID
Specifies a valid coded character set identifier (CCSID) for the output code page
you want to have converted.

This parameter can be used by an input record exit program, such as apka2e or
asciinpe, to specify the encoding of the output data.

Syntax

OUTCCSID=ccsid

Options and values

For ccsid, you can specify any valid CCSID, which is a three to five-character
decimal value in the range 00000 - 65535 that is registered by the Character Data
Representation Architecture (CDRA).

You can replace leading zeros with spaces.

For information about CCSIDs, see CDRA Reference and Registry, SC09-2190.

OUTEXIT (Multiplatform)
Identifies the name or the full path name of the output record exit program.

Required
No

Default Value
(None)

Data Type
AFP, Line

ACIF calls this program for every output record (every line or structured field) it
writes to the output file. For more information about optional program exits you
can use to customize how ACIF handles input and output data, see the discussion
in “User exits and attributes of the input file” on page 80.

Syntax

OUTEXIT=name

52 Indexing Reference

Options and values

The name is the file name or full path name of the output record exit program. On
UNIX servers, the file name is case sensitive. If you specify the file name without a
path, ACIF searches for the file name in the paths specified by the PATH
environment variable.

OUTEXIT (z/OS platforms)
Specifies the name of the output record exit program. This is the module ACIF
loads during initialization and subsequently calls for every output record it writes
to the output document file (OUTPUTDD).

Required
No

Default Value
(None)

Data Type
AFP, Line

If this parameter is not specified, no output record exit is used.

Syntax

OUTEXIT=modulename

Options and values

The modulename is the one- to eight-byte character name of the output record exit
program.

OUTPUTDD (Multiplatform)
Identifies the name or the full path name of the output file.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
stdout

Data Type
AFP, Line

Syntax

OUTPUTDD=name

Options and values

The name is the file name or full path name of the output file. On UNIX servers,
the file name is case sensitive. If you specify the file name without a path, ACIF
puts the output file in the current directory.
Related concepts:
“ACIF indexer parameters” on page 13

ACIF indexer 53

OUTPUTDD (z/OS platforms)
Specifies the DD name for the output document file ACIF produces when it
processes a file.

When ACIF processes a print file, it writes the resultant converted print data to
this DD name. Suggested DCB characteristics of the file are:
v Variable blocked format
v A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record of
length greater than that which is allowed by the OUTPUT DD statement. If this
happens, ACIF ends processing abnormally.

v A block size of 32760
v Physical sequential format

This parameter is ignored when you process reports with the ARSLOAD program.
If the OUTPUTDD parameter is not specified, ACIF uses OUTPUT as the default
DD name.

Required
No

Default Value
OUTPUT

Data Type
AFP, Line

Syntax

OUTPUTDD=DD name

Options and values

The DD name is a one- to eight-byte character DD name for the output file.

OVLYLIB (Multiplatform)
Identifies the directories in which overlays are stored.

Required
No

Default Value
(None)

Data Type
AFP

ACIF searches for an overlay in the following order:
1. The paths you specified with USERLIB, if any.
2. The paths you specified with OVLYLIB, if any.
3. The paths you specified with the RESLIB parameter, if any.
4. On UNIX servers, the paths specified in the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

54 Indexing Reference

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.

Syntax

OVLYLIB=pathlist

Options and values

The pathlist is a string of one or more valid path names. For example:
OVLYLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/ovlylib

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Related parameters
v RESLIB parameter on page “RESLIB” on page 64.
v USERLIB parameter on page “USERLIB” on page 76.

OVLYLIB (z/OS platforms)
Specifies the data sets that compose the overlay library.

Required
No

Default Value
(None)

Data Type
AFP

You can specify a maximum of eight data sets. For example:
OVLYLIB=SYS1.OVLYLIB,USER.OVLYLIB

The parameter also specifies the concatenation sequence when ACIF searches for a
particular overlay resource. ACIF first looks for the resource in dsname1. If ACIF
cannot find the resource in dsname1, it continues the search with dsname2, and so
on, until it either locates the requested resource or exhausts the list of specified
data sets.

If the USERLIB parameter is also specified, ACIF searches for the resource in the
data sets specified in USERLIB before searching the data sets identified in
OVLYLIB.
v Data sets must be specified as fully-qualified names without quotation marks.
v For systems earlier than MVS/DFP Version 2.3, data sets must be concatenated

with the largest block size first.
v This is a required parameter if overlay retrieval is requested and USERLIB is not

specified. The RESTYPE parameter determines whether overlays are to be
retrieved for inclusion in the resource data set. If this parameter is not specified,
and overlay retrieval is requested, ACIF reports an error condition and ends
processing.

ACIF indexer 55

Syntax

OVLYLIB=dsname1[,dsname2][,dsname3...]

Options and values

The names of one to eight data sets that compose the overlay library. Delimit data
set names with the comma (,) character.

Related parameters
v “USERLIB” on page 76

PAGEDEF
Specifies the file name or member name of the page definition.

Required
No

Default Value
(None)

Data Type
AFP

A page definition defines the page format that ACIF uses to compose the input file
into pages. ACIF requires a page definition to convert an input file that contains
line data, mixed-mode data, or unformatted ASCII data into AFP.

The page definition can be located:
v inline within the input file or data set.
v in a user library referenced in the USERLIB parameter
v in a library referenced in the PDEFLIB parameter.
v in a library referenced in the RESLIB parameter (Multiplatform only).

To use an inline page definition:
1. Include an inline page definition in the input file or data set.
2. Specify CC=YES to indicate that the input file or data set contains carriage

control characters. If the length of the records in the page definition is less than
or equal to the logical record length defined for the input file or data set, you
can specify fixed length records for the record format:
v On UNIX and Windows systems:

FILEFORMAT=RECORD,n

(where n is the logical record length defined for the input file).
v On z/OS systems, specify record format FBA (fixed block with ANSI carriage

control characters) or FBM (fixed block with machine carriage control
characters) for the input data set.

If the length of the records in the page definition is greater than the logical
record length defined for the input file or data set, you must specify variable
length records:
v On UNIX and Windows systems:

FILEFORMAT=RECORD

The first two bytes of each record determine the record length.

56 Indexing Reference

v On z/OS systems, specify record format VBA (variable blocked with ANSI
carriage control characters) or VBM (variable blocked with machine carriage
control characters) for the input data set.

3. Specify the PAGEDEF parameter with one of these values:
v pdefname, which is the name of the inline page definition.

If the name specified in the PAGEDEF parameter does not match the name of
an inline page definition, ACIF looks for the page definition in the PAGEDEF
resource library search path.

Note: On UNIX servers, the pdefname is case sensitive.
v DUMMY

If you specify PAGEDEF=DUMMY but the file does not include an inline page
definition, ACIF looks for the page definition named DUMMY. If ACIF
cannot find a page definition named DUMMY, it reports an error and ends
processing.

Note: On z/OS servers, DUMMY must be specified in all uppercase letters.

Important: Inline page definitions are removed from the output data, even if you
specify RESTYPE=INLINE or RESTYPE=INLONLY. Page definitions are not saved in the
output resource file.

If the page definition file is in a library or directory, use the USERLIB or PDEFLIB
parameter to specify the data sets. For example:

On multiplatform systems:
PAGEDEF=MEMO
PDEFLIB=/resources

On z/OS systems:
PAGEDEF=MEMO
USERLIB=USER.RESOURCES

Syntax

PAGEDEF=pdefname

Options and values

The pdefname is the file or member name of the page definition, which is one to
eight alphanumeric or national characters, including the two-character prefix if it
exists.

Notes

If the file name of the page definition includes a file extension, do not use the file
extension when specifying the page definition. However, the file type must be
PDEF3820, PDEF38PP, or PDE (or no file type).

For example, to use a page definition named MEMO.PDEF38PP, specify PAGEDEF=MEMO.

ACIF does not require a page definition when indexing an AFP data stream file.
However, ACIF does require a page definition to transform an input file that
contains line data, mixed-mode data, or unformatted ASCII data into MO:DCA-P.
If you are transforming such an input file and you do not specify the PAGEDEF

ACIF indexer 57

parameter or you specify PAGEDEF without a page definition file name, ACIF
reports an error condition and ends processing.

If you use the PAGEDEF parameter to specify a page definition that names fonts, but
you also use the CHARS parameter to specify fonts, the CHARS parameter is
ignored. Therefore, if your page definition names fonts, you should not use the
CHARS parameter.

Restriction: z/OS only: ACIF does not support a parameter equivalent to the
LINECT parameter on the /*JOBPARM, /*OUTPUT, and OUTPUT JCL statements.
The maximum number of lines processed on a page is defined in the page
definition.

Related parameters

“PDEFLIB” on page 59

PARMDD (Multiplatform)
Identifies the name or the full path name of the file that contains the ACIF
parameters, options, and data values.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
(None)

Data Type
AFP, Line

Specify the PARMDD parameter only when running ACIF from the command
prompt. When you index files using the Content Manager OnDemand data
indexing and loading programs, Content Manager OnDemand automatically
retrieves the ACIF parameters from the database.

Syntax

PARMDD=filename

Options and values

The filename is the name or full path name of the file that contains the ACIF
parameters. On UNIX servers, the file name is case sensitive. If you specify the file
name without a path, ACIF searches for the file name in the current directory.
Related concepts:
“ACIF indexer parameters” on page 13

PARMDD (z/OS platforms)
Specifies the DD name for the file that contains the ACIF parameters, options, and
data values.

This parameter is ignored when you process reports with the ARSLOAD program.

58 Indexing Reference

Required
No

Default Value
SYSIN

Data Type
AFP, Line

Specify the PARMDD parameter only when running ACIF from outside of the IBM
Content Manager OnDemand load process. When you process files using the IBM
Content Manager OnDemand load process, IBM Content Manager OnDemand
automatically retrieves the ACIF parameters from the database. If the PARMDD
parameter is not specified, then ACIF uses SYSIN as the default DD name.

Syntax

PARMDD=DD name

Options and values

The DD name is a one- to eight-byte character DD name for the parameter file.

PDEFLIB
On multiplatform systems, PDEFLIB identifies the directories in which page
definitions are stored. On z/OS systems, PDEFLIB specifies the data sets that
compose the page definition library.

Required
No

Default Value
(None)

Data Type
AFP

PDEFLIB in a multiplatform environment

ACIF searches for a page definition in the following order:
1. The paths you specified with the USERLIB parameter, if any.
2. The paths you specified with the PDEFLIB parameter, if any.
3. The paths you specified in the RESLIB parameter, if any.
4. On UNIX servers, the paths specified in the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.

PDEFLIB in a z/OS environment

You can specify a maximum of 16 data sets. This parameter also specifies the
concatenation sequence when ACIF searches for a particular page definition. ACIF
first looks for the resource in dsname1. If ACIF cannot find the resource in dsname1,
it continues the search with dsname2, and so on, until it either locates the requested
resource or exhausts the list of specified data sets.

ACIF indexer 59

If the USERLIB parameter is also specified, ACIF searches for the resource in the
data sets specified in USERLIB before searching the data sets identified in
PDEFLIB.
v For systems before MVS/DFP Version 2.3, files must be concatenated with the

largest block size first.
v This is a required parameter if the input file contains any line-mode data and

USERLIB is not specified. If this parameter is not specified and the input file
contains line-mode data, ACIF reports an error condition and ends processing.

Syntax and options in a multiplatform environment

PDEFLIB=pathlist

The pathlist is a string of one or more valid path names. For example:
PDEFLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/pdeflib

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Syntax and options in a z/OS environment

PDEFLIB=dsname1[,dsname2][,dsname3]...

You can specify a maximum of 16 data sets. For example:
PDEFLIB=SYS1.PDEFLIB,USER.PDEFLIB

Data sets must be specified as fully-qualified names without quotation marks.
Delimit data set names with the comma (,) character.

Related parameters
v “PAGEDEF” on page 56
v “RESLIB” on page 64
v “USERLIB” on page 76

PRMODE
If the input data contains shift-in and shift-out codes, determines how ACIF
processes them.

Required
No

Default Value
(None)

Data Type
Line, SCS, and Global DJDE

Shift-in and shift-out codes (X'0E' and X'0F') indicate where the code points in a
record change from single byte to double byte or double byte to single byte.

60 Indexing Reference

Syntax

PRMODE=value

The PRMODE parameter also supports specifying an eight-byte alphanumeric
string. The value is supplied to all of the ACIF user exits. Usage: PRMODE=aaaaaaaa,
where aaaaaaaa is the alphanumeric string.

Options and values

The value can be:
v SOSI1

ACIF converts each shift-out and shift-in code to a blank character and a Set
Coded Font Local text control. For the SOSI1 process to work correctly, the first
font specified in the CHARS parameter (or in a font list in a page definition)
must be a single byte font and the second font must be a double byte font.

v SOSI2

ACIF converts each shift-out and shift-in code to a Set Coded Font Local text
control.

v SOSI3

ACIF converts each shift-out code to a Set Coded Font Local text control. ACIF
converts each shift-in code to a Set Coded Font Local Text control and two blank
characters. The SOSI3 data conversion is the same as the SOSI3 data conversion
performed by PSF.

v SOSI4

SOSI4 is intended for use on workstation platforms where the user has DBCS
text being converted from ASCII to EBCDIC, and is also using a PAGEDEF to
convert the data to AFP. SOSI4 processing is similar to SOSI2, with the following
difference. Specifying SOSI4 will cause ACIF to scan the input (EBCDIC) for
SOSI characters and if any are found, they will be skipped but not counted as
part of the input columns. This means that the PAGEDEF FIELD offsets should
be correct after conversion from ASCII to EBCDIC and the user does not need to
account for SOSI characters when computing the PAGEDEF FIELD offsets. Note:
The SOSI characters do have to be counted in determining the ACIF trigger and
field offsets.

v aaaaaaaa

Any eight-byte alphanumeric string. This value is supplied to all of the ACIF
user exits. Using the AFPDS value indicates that the data contains MO:DCA-P
structured fields.

Related parameters

“CHARS” on page 17

PSEGLIB
On multiplatform systems, PSEGLIB identifies the directories in which page
segments and BCOCA, GOCA, and IOCA objects are stored. On z/OS systems,
PSEGLIB specifies the data sets that compose the form definition library.

Required
No

Default Value
(None)

ACIF indexer 61

Data Type
AFP

PSEGLIB in a multiplatform environment

ACIF searches for page segments in the following order:
1. The paths you specified with the USERLIB parameter, if any.
2. The paths you specified with the PSEGLIB parameter, if any.
3. The paths you specified with the RESLIB parameter, if any.
4. On UNIX servers, the paths specified in the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.

PSEGLIB= in a z/OS environment

Specifies the data sets that compose the page segment library. You can specify a
maximum of 16 data sets. This parameter also specifies the concatenation sequence
when ACIF searches for a particular page segment or BCOCA, GOCA, or IOCA
object. ACIF first looks for the resource in dsname1. If it cannot find the resource in
dsname1, it continues the search with dsname2, and so on, until it either locates the
requested resource or exhausts the list of specified data sets.

If the USERLIB parameter is also specified, ACIF searches for the resource in the
files specified in USERLIB before searching the files identified in PSEGLIB.
v For systems before MVS/DFP Version 2.3, data sets must be concatenated with

the largest block size first.
v This is a required parameter if page segment retrieval is requested and USERLIB

is not specified. The RESTYPE value determines whether page segments are to
be retrieved for inclusion in the resource data set. If this parameter is not
specified, and page segment retrieval is requested, ACIF reports an error
condition and ends processing.

Syntax and options in a multiplatform environment

PSEGLIB=pathlist

The pathlist is a string of one or more valid path names. For example:
PSEGLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/pseglib

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Syntax and options in a z/OS environment

PSEGLIB=dsname1[,dsname2][,dsname3]...

You can specify a maximum of 16 data sets. For example:
PSEGLIB=SYS1.PSEGLIB,USER.PSEGLIB

62 Indexing Reference

Data sets must be specified as fully-qualified names without quotation marks.
Delimit data set names with the comma (,) character.

Related parameters
v “RESLIB” on page 64
v “USERLIB” on page 76

RESEXIT
Identifies the name or the full path name of the resource exit program.

Required
No

Default Value
(None)

Data Type
AFP

This is the program or module ACIF calls each time it attempts to retrieve a
requested resource from a directory. If this parameter is not specified, no resource
exit is used. For more information about optional program exits you can use to
customize how ACIF handles input and output data, see “User exits and attributes
of the input file” on page 80.

Syntax

RESEXIT=name

Options and values

On multiplatform systems, the name is the file name or full path name of the
resource exit program. On UNIX servers, the file name is case sensitive. If you
specify the file name without a path, ACIF searches for the file name in the paths
specified by the PATH environment variable.

On z/OS, name is the one- to eight-byte character name of the resource exit
program.

RESFILE
Specifies the format of the resource file that ACIF creates.

Restriction: This parameter is valid only on z/OS systems.

Required
No

Default Value
SEQ

Data Type
AFP

ACIF can create either a sequential data set (SEQ) or a partitioned data set (PDS)
from resources it retrieves from the PSF resource libraries. If this parameter is not
specified, ACIF writes a sequential data set to the DDname specified in the
RESOBJDD parameter, assuming a sequential format.

ACIF indexer 63

It is important that the parameters you use to allocate the RESOBJDD data set be
compatible with the value of the RESFILE parameter. For example, if you specify
RESFILE=PDS, then DSORG=PO must be specified in the DD statement of the data set
named by the RESOBJDD parameter. In addition, the SPACE parameter must
include a value for directory blocks, such as SPACE=(12288,(150,15,15)), in the DD
statement of the data set named by the RESOBJDD parameter.

If you specify RESFILE=SEQ, then DSORG=PS must be specified in the DD statement
of the data set named by the RESOBJDD parameter. In addition, the SPACE
parameter must not include a directory value, as in SPACE=(12288,(150,15)), in the
DD statement of the data set named by the RESOBJDD parameter. Failure to
allocate the data set named by the RESOBJDD parameter in a manner compatible
with the specification of the RESFILE parameter may result in a RESOBJDD data
set that is unusable.

Syntax

RESFILE=type

Options and values

The type can be:

SEQ
Creates a sequential data set that can be concatenated to the document file as
inline resources.

PDS
Creates a member that can be placed in a user library or in a system library.
The file created by selecting PDS cannot be concatenated to the document file
or used as inline resources.

Related parameters
v “RESOBJDD (Multiplatform)” on page 65
v “RESOBJDD (z/OS platforms)” on page 66

RESLIB
Determines the paths for the system resource directories.

Required
No

Default Value
(None)

Data Type
AFP

System resource directories typically contain resources that are shared by many
users. The directories can contain any AFP resources (fonts, page segments,
overlays, page definitions, form definitions, bar code objects, image objects, or
graphics objects). ACIF searches for resources in the following order:
1. Paths you specified with the USERLIB parameter, if any.
2. Paths you specified with the FDEFLIB, FONTLIB, PDEFLIB, PSEGLIB, and

OVLYLIB parameters, if any, for specific types of resources.
3. Paths you specified with the RESLIB parameter, if any.

64 Indexing Reference

4. On UNIX servers, the paths specified in the PSFPATH environment variable (if
it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.
6. On UNIX servers, the directory /usr/lpp/ipfonts, if it exists.
7. On UNIX servers, the directory /usr/lpp/afpfonts, if it exists.
8. On UNIX servers, the directory /usr/lpp/psf/fontlib, if it exists.

Syntax

RESLIB=pathlist

Options and values

The pathlist is a string of one or more valid path names. For example:
RESLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/reslib

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

Related parameters
v “FONTLIB” on page 33
v “FDEFLIB” on page 23
v “OVLYLIB (Multiplatform)” on page 54
v “PDEFLIB” on page 59
v “PSEGLIB” on page 61
v “USERLIB” on page 76

RESOBJDD (Multiplatform)
Identifies the name or the full path name of the resource file produced by ACIF.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
RESOBJ

Data Type
AFP

The resource file contains all of the resources required to view or reprint pages of
the report.

Syntax

RESOBJDD=filename

ACIF indexer 65

Options and values

The filename is the file name or full path name of the resource group file. On UNIX
servers, the file name is case sensitive. If you specify the file name without a path,
ACIF puts the resource group file in the current directory.
Related concepts:
“ACIF indexer parameters” on page 13

RESOBJDD (z/OS platforms)
Specifies the DD name for the resource file produced by ACIF. The resource file
contains all of the resources required to view or reprint pages of the report.

This parameter is ignored when you process reports with the ARSLOAD program.

Required
No

Default Value
RESOBJ

Data Type
AFP

Syntax

RESOBJDD=DD name

Options and values

The DD name is the one- to eight-byte character DD name for the resource group
file. Suggested DCB characteristics for the file are:
v Variable blocked format
v A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record of
length greater than that which is allowed by the RESOBJDD statement. If this
happens, ACIF ends processing abnormally.

v A block size of 32760
v Physical, sequential format

If you do not specify the RESOBJDD parameter, ACIF uses RESOBJ as the default DD
name.

RESTYPE
Determines the types of AFP print resources that ACIF should collect and include
in the resource group file.

Required
No

Default Value
NONE

Data Type
AFP

Note: To collect any resources, you must specify CONVERT=YES (the default
value). Resources are not collected when you specify CONVERT=NO.

66 Indexing Reference

Syntax

RESTYPE={NONE | ALL | [,BCOCA] [FDEF] [,PSEG] [,OVLY] [,FONT] [,GOCA]
[,IOCA] [,OBJCON] [,INLINE] [,INLONLY] [,PTOCA] [,CMRALL] [,CMRGEN]}

Options and values

The values are:
v NONE

No resource file is created.
v ALL

All resources required to print or view the output file will be included in the
resource file.

v FDEF

The form definition used in processing the file will be included in the resource
file.

v PSEG

Page segments required to print or view the output file will be included in the
resource file.

v OVLY

Overlays required to print or view the output file will be included in the
resource file.

v FONT

Font character sets and code pages required to print or view the output file will
be included in the resource file. If you specify MCF2REF=CF, ACIF also includes
coded fonts in the resource file.

v BCOCA

BCOCA objects required to print or view the output file will be included in the
resource file.

v GOCA

GOCA objects required to print or view the output file will be included in the
resource file.

v IOCA

IOCA objects required to print or view the output file will be included in the
resource file.

v OBJCON

Specifies that all object container files requested by the input data stream be
included in the resource file.

v INLINE

Specifies that inline resources are written to the output file in addition to being
written to the resource file. The resources precede the document in the output
file. For example, RESTYPE=FONT,PSEG,INLINE causes any inline fonts and page
segments to be written to the output file. Also, both inline and library fonts and
page segments are written to the resource file.

Important: Do not use the INLINE option for documents loaded into Content
Manager OnDemand. Content Manager OnDemand requires a separate resource
file.

v INLONLY

ACIF indexer 67

Specifies that inline resources are written to the output file. ACIF will look only
inline for the resources. External libraries will not be searched. A resource file
will not be created.

Important: Do not use the INLONLY option for documents that are loaded into
Content Manager OnDemand. Content Manager OnDemand requires a separate
resource file.

v PTOCA

Specifies that all PTOCA objects included by an IOB structured field required to
print or view the output document file be included in the resource file.

v CMRALL

Specifies that all CMRs required to print or view the output document file
(except link CMRs) are included in the resource file. These CMRs include all
CMRs referenced in the data stream, all CMRs referenced through a data object
or color management resource access table (RAT), and all generic halftone and
tone transfer curve CMRs.

v CMRGEN

Specifies that all CMRs referenced in the data stream plus any non-device
specific CMRs referenced through a data object or color management RAT
(except link CMRs) are included in the resource file. With CMRGEN, the output
generated by ACIF is not device specific, unless the data stream explicitly
references a device specific CMR.

Because Content Manager OnDemand does not use AFP raster fonts when
presenting the data on the screen, you may want to specify
RESTYPE=FDEF,OVLY,PSEG to prevent fonts from being included in the resource file.
This reduces the number of bytes transmitted over the network when documents
are retrieved by the client.

If you have a resource type that you want saved in a resource file and it is
included in another resource type, you must specify both resource types. For
example, if you request that just page segments be saved in a resource file, and the
page segments are included in overlays, the page segments will not be saved in the
resource file, because the overlays will not be searched. In this case, you would
have to request that both page segments and overlays be saved.

If a resource is inline and ACIF is collecting that type of resource, the resource will
be saved in the resource file regardless of whether it is used in the document,
unless EXTENSIONS=RESORDER is specified in the ACIF parameters. Another
method to remove unwanted resources from the resource file is to use a resource
exit.

Because multiple resource types are contained in the page segment and object
container libraries, and ACIF does not enforce a prefix for the eight-character
resource name, you should define a naming convention that identifies each type of
resource in the page segment library. IBM recommends a two-character prefix, for
example:
v B1 for BCOCA objects
v E1 for encapsulated PostScript objects
v G1 for GOCA objects
v H1 for microfilm setup objects
v I1 for IOCA objects
v IT for IOCA tile objects

68 Indexing Reference

v PP for PDF single-page objects
v PR for PDF resource objects
v S1 for page segments

Related parameters
v “CONVERT” on page 18
v “MCF2REF” on page 50
v “RESLIB” on page 64
v “RESOBJDD (Multiplatform)” on page 65
v “RESOBJDD (z/OS platforms)” on page 66

TRACE
Specifies that ACIF should provide diagnostic trace information while processing
the file.

Required
No

Default Value
NO

Data Type
AFP, Line

Syntax

TRACE=value

Options and values

The value can be:

NO ACIF does not produce diagnostic trace records.

YES

On multiplatform systems, ACIF writes trace information to the file specified
by the TRACEDD parameter.

On z/OS platforms, ACIF uses the facilities of the z/OS and MVS™

Generalized Trace Facility (GTF) to produce diagnostic trace records. ACIF
writes GTF trace records with a user event ID of X'314'. To capture ACIF GTF
records, GTF needs to be started with the option TRACE=USRP, and subsequently
modified with USR=(314).

Tracing increases processor overhead and should be turned off unless you need to
do problem determination. If YES is specified and GTF is active, ACIF ends with a
Return Code 4 (RC=4).

TRACEDD (Multiplatform)
Specifies the name or the full path name of the file where ACIF writes trace
information when TRACE=YES is specified.

Required
No

Default Value
None

ACIF indexer 69

Data Type
AFP, Line

Syntax

TRACEDD={TRACE | filename}

Options and values

The filename is the name or the full path name of the file where ACIF writes trace
information when TRACE=YES is specified. If you specify the file name without a
path, ACIF puts the trace file into your current directory. If TRACEDD is not
specified, ACIF uses TRACE as the default file name.

TRACEDD (z/OS platforms)
Specifies the DD name of the file where ACIF trace information is written when
TRACE=PDS is specified.

Required
No

Default Value
None

Data Type
AFP, Line

Syntax

TRACEDD={TRACE | DD name}

Options and values

The DD name is a 1- to 8-byte character string containing only those alphanumeric
characters supported on z/OS systems. The file that is specified must have these
characteristics:
DCB=(LRECL=121,RECFM=FB,DSORG=PS)

If TRACEDD is not specified, ACIF uses TRACE as the default DD name.

TRC
Identifies whether the input file contains table reference characters (TRCs).

Required
No

Default Value
NO

Data Type
AFP, Line

Some applications may produce output that uses different fonts on different lines
of a file by specifying TRCs at the beginning of each line after the carriage-control
character if one is present.

Consider the following when you use TRCs:

70 Indexing Reference

v The order in which the fonts are specified in the CHARS parameter establishes
which number is assigned to each associated TRC. For example, the first font
specified is assigned 0, the second font 1, and so on.

v If you specify TRC=YES and the input data does not contain TRCs, ACIF
interprets the first character (or second, if carriage-control characters are used) of
each line as the font identifier. Consequently, the font used to process each line
of the file may not be the one you expect, and one byte of data will be lost from
each line.

v If you specify TRC=NO or you do not specify the TRC parameter and the input
contains a TRC as the first character (or second if carriage-control characters are
used) of each line, ACIF interprets the TRC as a text character in the processed
output, rather than using it as a font identifier.

For more information about TRCs, see Advanced Function Presentation: Programming
Guide and Line Data Reference.

Syntax

TRC=value

Options and values

The value can be:

NO The input does not contain TRCs.

YES
The input does contain TRCs.

Related parameters

“CHARS” on page 17

TRIGGER
Identifies locations and string values required to uniquely identify the beginning of
a group and the locations and string values of fields used to define indexes. You
must define at least one trigger and can define up to 16 triggers.

This parameter should not be used if the document contains Tagged Logical
Element (TLE) structured fields. ACIF will issue an error message if the TRIGGER
parameter is used when the document contains TLE structured fields.

Required
Yes

Default Value
(None)

Data Type
AFP, Line

Syntax

Multiplatform syntax:
TRIGGERn=record,column,value|REGEX='regular expression'[,(TYPE=type)]

z/OS syntax:
TRIGGERn=record,column,value[,(TYPE=type)]

ACIF indexer 71

The REGEX parameter is not available on z/OS operating systems.

Options and values

n The trigger parameter identifier. When adding a trigger parameter, use the next
available number, beginning with 1 (one).

record
The input record where ACIF locates the trigger string value. For TRIGGER1
and float triggers, the input record must be * (asterisk), so that ACIF searches
every input record for the trigger string value. For other group triggers, the
input record is relative to the record that contains the TRIGGER1 string value.
The supported range of record numbers is 0 (the same record that contains the
TRIGGER1 string value) to 255.

column
If ACIF is using a value, then this is the beginning column where ACIF locates
the trigger string value.

The supported range of column numbers is 0 to 32756. To force ACIF to scan
every record from left to right for the trigger string value, specify an *(asterisk)
or 0 (zero) for the column. A 1 (one) refers to byte one of the record.
Alternatively, you can specify a beginning and ending column range and
separate them by a colon. If you specify a column range, the beginning column
cannot be zero, and the ending column must be greater than the beginning
column. See the examples below.

Multiplatform systems: If ACIF is using a regular expression, then this is the
beginning column where ACIF looks for text that matches the regular
expression. The regular expression must match text which begins in the
specified column. If a column range is specified, then ACIF will only search
the columns in the column range for the text that matches the regular
expression. The regular expression must match text which begins in one of the
columns specified by the column range.
The maximum number of columns to which the regular expression can be
applied is 2K (2048 bytes). If there are records in the file which are longer, use
a trigger column range to specify a subset of the record.

Important: Scanning every record can incur a substantial performance penalty.
The overhead required to scan every record can cause the indexing step of the
load process to take considerably longer than normal. Whenever possible,
specify a beginning column number.

value
The actual string value ACIF uses to match the input data. The string value is
case sensitive. If the input data is encoded in EBCDIC, enter the value in
hexadecimal. The value can be from 1 to 250 bytes in length. You can specify
either a value or a regular expression, but not both.

REGEX='regular expression'
The regular expression that ACIF uses to match the input data. The regular
expression must be specified in the code page given by the CPGID parameter,
and can be from 1 to 250 bytes in length. The regular expression can be
specified in hexadecimal. You can specify either a value or a regular
expression, but not both. The REGEX parameter is not available on z/OS
operating systems.

TYPE=type
The trigger type. The default trigger type is group. TRIGGER1 must be a
group trigger. Valid trigger types are:

72 Indexing Reference

GROUP
Triggers that identify the beginning of a group. Define only as many group
triggers as needed to identify the beginning of a group. In many cases, you
may need only one group trigger.

GROUP,RECORDRANGE=(start,end)
Triggers that identify field data that is not always located in the same
record relative to TRIGGER1. ACIF determines the location of the field by
searching the specified range of records. The range can be from 0 to 255.
ACIF stops searching after the first match in the specified range of records.
For example, if the range is 5,7 and records six and seven contain the
trigger string value, ACIF stops after matching the value in record six.

FLOAT
Triggers that identify field data that does not necessarily occur in the same
location on each page, the same page in each group, or in each group.
ACIF determines the location of the field by searching every input record
for the trigger string value starting in the specified column (or every
column, if an asterisk is specified). For example, you need to index
statements by type of account. Possible types of accounts include savings,
checking, loan, IRA, and so forth. Not all statements contain all types of
accounts. This causes the number of pages in a statement to vary and the
page number where a specific type of account occurs to vary. However,
each type of account is preceded by the string Account Type. Define a float
trigger with a trigger string value of Account Type. The same float trigger
can be used to locate all of the accounts that occur in a statement.

About group triggers

In ACIF, a group is a named collection of sequential pages that form a logical
subset of an input file. A group must contain at least one page; a group can
contain all of the pages in an input file. However, most customers define their
group triggers so that ACIF can logically divide an input file into smaller parts,
such as by statement, policy, bill, or, for transaction data, number of pages. A
group is determined when the value of an index changes (for example, account
number) or when the maximum number of pages for a group is reached. ACIF
generates indexes for each group in the input file. Because a group cannot be
smaller than one page, a group trigger should not appear more than once on a
page. Please see the BREAK option of the INDEX parameter for more information
about breaking groups.

In Content Manager OnDemand, each indexed group of pages is known as a
document. When you index an input file and load the data into the system, Content
Manager OnDemand stores the group indexes that are generated by ACIF into the
database and stores the documents on storage volumes. Content Manager
OnDemand uses the group indexes to determine the documents that match the
search criteria that is entered by the user.

Notes
1. ACIF requires that at least one group TRIGGERn value appear within the page

range that is specified by the INDEXSTARTBY parameter. If no group
TRIGGERn parameter is satisfied within the INDEXSTARTBY page range, then
ACIF stops processing and issues an error message.

2. At least one TRIGGERn or FIELDn value must exist on the first page of every
unique page group. ACIF cannot detect an error condition if TRIGGERn or
FIELDn is missing, but the output might be incorrectly indexed.

ACIF indexer 73

3. TRIGGER1 must be specified when ACIF is requested to index the file.
4. An error condition occurs if you specify any TRIGGERn parameters when the

input file contains indexing tags.

Related parameters

“FIELD” on page 24
Related concepts:
“ACIF indexer parameters” on page 13

Examples
Trigger containing an apostrophe

These examples show a trigger which contains an apostrophe. The apostrophe
must be doubled.
TRIGGER1=UL(0.63,3.64),LR(2.90,4.38),*,’Administrator’’s’,(TYPE=GROUP)

TRIGGER1=UL(0.63,3.64),LR(2.90,4.38),*,REGEX=’Administrator’’s’,(TYPE=GROUP)

TRIGGER1:
The following TRIGGER1 parameter causes ACIF to search column one of every
input record for the occurrence of a skip-to-channel one carriage control character.
The record value for TRIGGER1 must be an asterisk. The input data is encoded in
EBCDIC. The trigger type is optional, but defaults to group. TRIGGER1 must be a
group trigger.
TRIGGER1=*,1,X’F1’,(TYPE=GROUP)

The following TRIGGER1 parameter causes ACIF to attempt to match the string
value PAGE 1 beginning in column two of every input record. The record value
for TRIGGER1 must be an asterisk. The input data is encoded in EBCDIC. The
trigger type is optional, but defaults to group. TRIGGER1 must be a group trigger.
TRIGGER1=*,2,X’D7C1C7C5404040F1’,(TYPE=GROUP)

Group trigger:

The following trigger parameter causes ACIF to attempt to match the string value
Account Number beginning in column fifty of the sixth input record following the
TRIGGER1 record.

A record number must be specified for a group trigger (other than TRIGGER1 or a
recordrange trigger). The input data is encoded in EBCDIC. The trigger type is
optional, but defaults to group.
TRIGGER2=6,50:52,X’C1838396A495A340D5A494828599’,(TYPE=GROUP)

Group trigger with column range:

The following trigger parameter causes ACIF to attempt to match the string value
Account Number beginning in columns fifty, fifty-one, or fifty-two of the sixth input
record following the TRIGGER1 record.

A record number must be specified for a group trigger (other than TRIGGER1 or a
recordrange trigger). The input data is encoded in EBCDIC. The trigger type is
optional, but defaults to group.
TRIGGER2=6,50:52,X'C1838396A495A340D5A494828599',(TYPE=GROUP)

74 Indexing Reference

Recordrange trigger:

The following trigger parameter causes ACIF to attempt to locate the string value
Account Number beginning in column fifty within a range of records (the trigger
string value can occur in records six, seven, or eight following TRIGGER1) in each
group.

An asterisk must be used for record number (ACIF uses the recordrange to
determine which records to search for the trigger string value). The input data is
encoded in EBCDIC. The trigger type is optional, but must be group for a
recordrange trigger.
TRIGGER2=*,50,X’C1838396A495A340D5A494828599’,(TYPE=GROUP,RECORDRANGE=(6,8))

Float trigger:

The following trigger parameter causes ACIF to attempt to match the string value
Type of Income, beginning in column five of every record in the group.

An asterisk must be specified for the record number. The input data is encoded in
EBCDIC. The trigger type is float and must be specified.
TRIGGER3=*,5,X’E3A8978540968640C99583969485’,(TYPE=FLOAT)

Trigger using structured field data:

The following trigger parameter shows how to specify structured field data.
Because ACIF changes the order of the length bytes in all structured fields before
indexing the data, you must make sure that the order of the length bytes in the
trigger string value is the same as the data in ACIF storage.

Note: This example is for ACIF running on a Windows server

This example could be used to index mixed mode data, such as a line data report
that contains NOP structured fields, allowing ACIF to logically segment the report
into documents.
TRIGGER1=*,1,X’5A1000D3EEEE0000000000000000000000’,(TYPE=GROUP)

Triggers using a regular expression:

The following TRIGGER parameter examples use regular expressions to search for
strings.

Restriction: Regular expressions are not available on z/OS operating systems.

The following trigger parameter causes ACIF to search for the string "PAGE 1". The
search will start in column 1 and continue until the end of each record.
CPGID=850
TRIGGER1=*,*,REGEX=’PAGE 1’,(TYPE=GROUP)

The following trigger parameter causes ACIF to search for a string containing four
uppercase letters followed by three digits. The regular expression must match the
text starting in column 10.
CPGID=819
TRIGGER2=*,10,REGEX=’[A-Z]{4}[0-9]{3}’,(TYPE=FLOAT)

ACIF indexer 75

The following trigger parameter causes ACIF to search in columns 15 through 18
for a string containing the letter "P" followed by three lowercase letters. The TYPE
is GROUP by default.
CPGID=500
TRIGGER1=*,15:18,REGEX=X’D74A8160A95AC0F3D0’
/* regular expression is P[a-z]{3} */

UNIQUEBNGS
Determines whether ACIF creates a unique group name by generating an
eight-character numeric string and appending the string to the group name. The
group name contains an index value and a sequence number.

Required
No

Default Value
YES

Data Type
AFP, Line

Syntax

UNIQUEBNGS=value

Options and values

The value can be:

YES
ACIF generates an eight-character numeric string and appends the string to the
group name. The default, if you specify DCFPAGENAMES=NO.

NO ACIF does not generate the string. The default, if you specify
DCFPAGENAMES=YES. Specify no if you use the AFP API to generate group
names. Specify no if you use DCF to generate the input data.

Related parameters

“DCFPAGENAMES” on page 19

USERLIB
On multiplatform systems, USERLIB identifies the names of user directories
containing AFP resources for processing the input file. On z/OS systems, USERLIB
specifies data sets containing AFP resources for processing the input data set.

Required
No

Default Value
(None)

Data Type
AFP

USERLIB in a multiplatform environment

The directories can contain any AFP resources (fonts, page segments, overlays,
page definitions, form definitions, bar code objects, image objects, or graphics

76 Indexing Reference

objects). By convention, these resources are typically used by one user, as opposed
to the system resources (specified with the RESLIB parameter) that are shared by
many users. Therefore, you should use the USERLIB parameter to specify resources
that are not retrieved with the FDEFLIB, FONTLIB, OVLYLIB, PDEFLIB, or
PSEGLIB parameters. ACIF searches for resources in the following order:
1. Paths you specify with the USERLIB parameter, if any.
2. Paths you specify with the FDEFLIB, FONTLIB, OVLYLIB, PDEFLIB, or

PSEGLIB parameters, for specific types of resources, if any.
3. Paths you specify with the RESLIB parameter, if any.
4. On UNIX servers, the paths specified in the PSFPATH environment variable (if

it is set). On Windows servers, ACIF first attempts to get the path from the
registry; if that fails, ACIF attempts to get the path from the PSFPATH
environment variable.

5. On UNIX servers, the directory /usr/lpp/psf/reslib, if it exists.
6. On UNIX servers, the directory /usr/lpp/ipfonts, if it exists.
7. On UNIX servers, the directory /usr/lpp/afpfonts, if it exists.
8. On UNIX servers, the directory /usr/lpp/psf/fontlib, if it exists.

Syntax and options in a multiplatform environment

USERLIB=pathlist

The pathlist is a string of one or more valid path names. For example:
USERLIB=/tmp:/usr/resources:/opt/IBM/ondemand/v9.5/userlib

ACIF searches the paths in the order specified. Delimit path names in UNIX with
the colon (:) character. Delimit path names in Windows with the semicolon (;)
character.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

USERLIB in a z/OS environment

You can specify a maximum of 16 data sets. ACIF dynamically allocates these data
sets and searches for resources in them in the order specified in the USERLIB
parameter. If a resource is not found, ACIF searches the appropriate resource
libraries defined for that resource type (for example, PDEFLIB for page
definitions). The libraries you specify can contain any AFP resources (fonts, page
segments, overlays, page definitions, or form definitions). If Resource Access
Control Facility (RACF) is installed on your system, RACF checks the authority of
the user ID requesting access to a user library (data set). If ACIF is not authorized
to allocate the data set, it reports an error condition and ends processing.
v Because AFP resources (except page segments) have reserved prefixes, naming

conflicts should not occur.
v An inline resource overrides a resource of the same name contained in the

USERLIB parameter.
v For systems before MVS/DFP Version 2.3, data sets must be concatenated with

the largest block size first.

ACIF indexer 77

Syntax and options in a z/OS environment

USERLIB=dsname1[,dsname2][,dsname3]...

You can specify a maximum of 16 data sets. For example:
USERLIB=USER.IMAGES,USER.AFP.RESOURCES

Data sets must be specified as fully-qualified names without quotation marks.
Delimit data set names with the comma (,) character.

USERMASK
Identifies a symbol and string used to match a field.

Required
No

Default Value
(None)

Data Type
AFP, Line

The symbol can represent one or more characters, including the characters reserved
for the field mask. The string contains the character or characters you want to
match to the field data.

Syntax

USERMASK=number,symbol,'string'

Options and values

number
The number of the user mask. You can define up to four user masks, using the
numbers 1 (one) through 4 (four).

symbol
The symbol that represents the characters in the string. You can use any
printable character, except those reserved for the field mask (#@=¬^%). The
character that you specify does not match its literal value in the field. That is,
if you specify an * (asterisk) as the symbol, ACIF will not match an asterisk
character in the field.

string
One or more characters that you want to match in the field data. If the input
data is not ASCII, the string must be specified in hexadecimal. For example,
when the code page is 500 and the input data is EBCDIC:
USERMASK=1,’*’,X’C181C282C383’

Example

A typical use of a USERMASK is to match specific characters that may appear in a
field column. For example, the following definitions:
USERMASK=1,’*’,’AaBbCc’
FIELD3=*,*,15,(OFFSET=(10:24),MASK=’*@@@@@@@@@@@@@@’,ORDER=BYROW)

Cause ACIF to match an upper or lower case A, B, or C in the first position of a
fifteen character string, such as a name.

78 Indexing Reference

A user mask can also be used to match one of the field mask symbols. ACIF
reserves the symbols #@=¬^% for the field mask. If the field data contains one of the
mask symbols, you must define a user mask so that ACIF can find a match. For
example, the following definitions:
USERMASK=2,’*’,’%’
FIELD4=*,*,3,(OFFSET=(10:12),MASK=’##*’,ORDER=BYROW)

Cause ACIF to match a three-character string that contains two numerics and the
percent sign, for example 85%.

Related parameters

“FIELD” on page 24
Related concepts:
“ACIF indexer parameters” on page 13

USERPATH
Specifies the names of user directories that contain TrueType and OpenType fonts
or data object resources that are installed with a resource access table (RAT) such
as color management resources (CMRs). TrueType and OpenType fonts are
Unicode-enabled AFP fonts that are not defined by the Font Object Content
Architecture (FOCA).

By convention, resources that are specified with the USERPATH parameter are
typically used by one user, as opposed to the system resources that are shared by
many users (for example, those specified with the FONTPATH or OBJCPATH
parameters).

Syntax

USERPATH=pathlist

Options and values

Table 4. Additional options and values for the USERPATH parameter. The pathlist is any valid
search path. You must use a colon (:) on AIX and z/OS systems or a semicolon (;) in
Windows to separate multiple paths.

Platform Value

AIX userpath=/jdoe/fonts/truetype:/jdoe/fonts
/truetype/myfonts/

Windows userpath=/jdoe/fonts/truetype:/jdoe/fonts
/truetype/myfonts/

z/OS INPUTDD=INFILE
OUTPUTDD=OUTFILE
PAGEDEF=PAGTRUE
FORMDEF=F1A10110
USERPATH='/jdoe/fonts/truetype:

/jdoe/fonts/truetype/myfonts/'

ACIF searches the paths in the order in
which they are specified.

Important: The total number of all characters in the string of path names cannot
exceed 4095 bytes.

ACIF indexer 79

Print messages
ACIF prints a message list at the end of each compilation. A return code of 0 (zero)
means that ACIF completed processing without any errors. ACIF supports the
standard return codes.

ACIF messages contain instructions for the Content Manager OnDemand, PSF or
Infoprint Manager system programmer. Show your system programmer these
messages, because they might not be contained in the Content Manager
OnDemand, PSF or Infoprint Manager messages publications.

See IBM Content Manager OnDemand: Messages and Codes for a list of the messages
that can be generated by ACIF, along with explanations of the messages and
actions that you can take to respond to the messages.

User exits and attributes of the input file
A user exit is a point during ACIF processing that enables you to run a
user-written program and return control of processing to ACIF after your
user-written program ends.

ACIF provides data at each exit that can serve as input to the user-written
program.

This section describes the following topics:
v User programming exits
v Non-zero return codes
v Attributes of the input print file
Related reference:
“INDXEXIT (Multiplatform)” on page 44

User programming exits
IBM provides several sample programming exits to assist you in customizing ACIF.

On AIX and Solaris, the sample programs are in /opt/IBM/ondemand/V9.5/exits/
acif. On Linux, the sample programs are in /opt/ibm/ondemand/V9.5/exits/acif.
On Windows, the sample programs are in \Program Files\IBM\OnDemand\V9.5\
exits\acif. The compiled programs do not have to be placed into any specific
directory, they only have to match the directory specified on the ACIF exit
parameter: INPEXIT, OUTEXIT, INDXEXIT, RESEXIT.

Important: IBM provides compiled versions of the sample user exit programs. If
you make changes to the sample user exit programs or create your own user exit
programs, you must compile them before the programs can be used by ACIF.

Because the header files for the user exit programs can change between releases
and fix packs, IBM recommends that you recompile all user exit programs after
upgrading the ACIF component of Content Manager OnDemand. Failure to do so
may cause unexpected results when indexing data with ACIF.

See the ACIF README file on the Content Manager OnDemand server CD for
more information about supported compilers and files provided by IBM to assist
you with programming the user exits.

80 Indexing Reference

Use of the programming exits is optional.

IBM provides the following ACIF sample exits:

apkinp.c
Input record exit

apkind.c
Index record exit

apkout.c
Output record exit

apkres.c
Resource exit

In addition, IBM provides the following ACIF user input record exits to translate
input data streams:

apka2e.c
Converts ASCII stream data to EBCDIC stream data.

asciinp.c
Converts unformatted ASCII data that contains carriage returns and form
feeds into a record format that contains an American National Standards
Institute (ANSI) carriage control character. This exit encodes an ANSI
carriage control character in byte 0 (zero) of every record.

asciinpe.c
Converts unformatted ASCII data into a record format as does asciinp.c,
and then converts the ASCII stream data to EBCDIC stream data.

The apkexits.h C language header file for all ACIF exit programs is also provided.

Input record exit
ACIF provides an exit that enables you to add, delete, or modify records in the
input file. You can also use the exit to insert indexing information.

For example, imagine that you have unformatted ASCII data, such as a phone bill
which contains two consecutive asterisks (**) to distinguish each page break. You
can use the exit to add carriage control characters to the data so that ACIF can
recognize where page breaks should occur. The program invoked at this exit is
defined in the INPEXIT parameter.

This exit is called after each record is read from the input file. The exit can request
that the record be discarded, processed, or processed and control returned to the
exit for the next input record. The largest record that can be processed is
32756 bytes. This exit is not called when ACIF is processing resources from
directories (libraries on z/OS).

In a MO:DCA-P document, indexing information can be passed in the form of a
Tag Logical Element (TLE) structured field. The exit program can create these
structured fields while ACIF is processing the print file. You can insert No
Operation (NOP) structured fields into the input file in place of TLEs and use
ACIF's indexing parameters (FIELD, INDEX, and TRIGGER) to index the NOPs.
This is an alternative to modifying the application in cases where the indexing
information is not consistently present in the application output.

Important: TLEs are not supported in line-mode or mixed-mode data.

ACIF indexer 81

The following example contains a sample C language header that describes the
control block that is passed to the exit program.
typedef struct _INPEXIT_PARMS /* Parameters for the input record exit */
{

char *work; /* Address of 16-byte static work area */
PFATTR *pfattr; /* Address of print file attribute information */
char *record; /* Address of the input record */
void *reserved1; /* Reserved for future use */
unsigned short recordln; /* Length of the input record */
unsigned short reserved2; /* Reserved for future use */
char request; /* Add, delete, or process the record */
char eof; /* EOF indicator */

} INPEXIT_PARMS;

The address of the control block containing the following parameters is passed to
the input record exit:

work (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

pfattr (Bytes 5–8)
A pointer to the print file attribute data structure. See the attributes of the
input file for more information on the format of this data structure and the
information it contains.

record (Bytes 9–12)
A pointer to the first byte of the input record including the carriage control
character. The record resides in a buffer that resides in storage allocated by
ACIF, but the exit program is allowed to modify the input record.

reserved1 (Bytes 13–16)
These bytes are reserved for future use.

recordln (Bytes 17–18)
Specifies the number of bytes (length) of the input record. If the input record is
modified, this parameter must also be updated to reflect the actual length of
the record.

reserved2 (Bytes 19–20)
These bytes are reserved for future use.

request (Byte 21)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00', X'01', or X'02', where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record not be processed by ACIF.

X'02' Specifies that the record be processed by ACIF and control returned to
the exit program to allow it to insert the next record. The exit program
can set this value to save the current record, insert a record, and then
supply the saved record at the next call. After the exit inserts the last
record, the exit program must reset the request byte to X'00'. Refer to
the asciinpe.c input record exit for details.

A value of X'00' on entry to the exit program specifies that the record be
processed. If you want to ignore the record, change the request byte value to

82 Indexing Reference

X'01'. If you want the record to be processed, and you want to insert an
additional record, change the request byte value to X'02'. Any value greater
than X'02' is interpreted as X'00', and the exit processes the record.

Note: Only one record can reside in the buffer at any time.

eof (Byte 22)
An End-Of-File (eof) indicator. This indicator is a one-byte character code that
specifies whether an eof condition has been encountered. When eof is signaled
(eof value=‘Y’), the last record has already been presented to the input exit,
and the input file has been closed. The record pointer is no longer valid.
Records may not be inserted when eof is signaled. The valid values for this
parameter:

Y Specifies that eof has been encountered.

N Specifies that eof has not been encountered.

This end-of-file indicator allows the exit program to perform some additional
processing at the end of the print file. The exit program cannot change this
parameter.

The following example contains a sample DSECT that describes the control block
for the z/OS exit program.
PARMLIST DSECT Parameters for the input record exit
WORK@ DS A Address of 16-byte static work area
PFATTR@ DS A Address of print-file-attribute information
RECORD@ DS A Address of the input record

DS A Reserved for future use
RECORDLN DS H Length of the input record

DS H Reserved for future use
REQUEST DS X Add, delete, or process the record
EOF DS C EOF indicator

The address of the control block containing the following parameters is passed to
the input record exit. For z/OS, the address is passed to a standard parameter list
pointed to by Register 1.

WORK@ (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

PFATTR@ (Bytes 5–8)
A pointer to the print file attribute data structure. See attributes of the input
file for more information about the format of this data structure and the
information that it contains.

RECORD@ (Bytes 9–12)
A pointer to the first byte of the input record including the carriage control
character. The record resides in a buffer that resides in storage allocated by
ACIF, but the exit program is allowed to modify the input record. The record
resides in a 32 KB (where KB equals 1024 bytes) buffer.

RESERVED1 (Bytes 13–16)
These bytes are reserved for future use.

ACIF indexer 83

RECORDLN (Bytes 17–18)
Specifies the number of bytes (length) of the input record. If the input record is
modified, this parameter must also be updated to reflect the actual length of
the record.

RESERVED2 (Bytes 19–20)
These bytes are reserved for future use.

REQUEST (Byte 21)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00', X'01', or X'02', where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record not be processed by ACIF.

X'02' Specifies that the record be processed by ACIF and control returned to
the exit program to let it insert the next record. The exit program can
set this value to save the current record, insert a record, and then
supply the saved record at the next call. After the exit inserts the last
record, the exit program must reset the REQUEST byte to X'00'.

A value of X'00' on entry to the exit program specifies that the record is to be
processed. If you want to ignore the record, change the REQUEST byte value
to X'01'. If you want the record to be processed, and you want to insert an
additional record, change the REQUEST byte value to X'02'. Any value greater
than X'02' is interpreted as X'00', and the exit processes the record.

Remember: Only one record can reside in the buffer at any time.

EOF (Byte 22)
An end-of-file (EOF) indicator. This indicator is a one-byte character code that
specifies whether an EOF condition has been encountered. When EOF is
signaled (EOF=Y), the last record has already been presented to the input exit,
and the input file has been closed. The pointer RECORD@ is no longer valid.
Records cannot be inserted when EOF is signaled. The only valid values for
this parameter:

Y Specifies that EOF has been encountered.

N Specifies that EOF has not been encountered.

This end-of-file indicator lets the exit program perform some additional
processing at the end of the print file. The exit program cannot change this
parameter.

Using the user input record exits (Multiplatform)
The apka2e input record exit program translates data that is encoded in ASCII
(code set IBM-850) into EBCDIC (code set IBM-037) encoded data. You should use
this exit when the print data requires fonts such as GT12, which has only EBCDIC
code points defined.

To execute the apka2e input record exit program, specify these parameters using
either the Keyboard Edit function of the administrative client or the graphical
indexer.
inpexit=apka2e
cc=yes
cctype=a

84 Indexing Reference

Also, make sure that the directory where the apka2e input record exit program
resides is included in the INPEXIT parameter (specify the full path name) or if
running ACIF from the command line, in the PATH environment variable (or
specify the full path name).

The asciinp input record exit program transforms an ASCII data stream into a
record format that contains a carriage control character in byte 0 of every record. If
byte 0 of the input record is an ASCII carriage return (X'0D'), byte 0 is transformed
into an ASCII space (X'20') that causes a data stream to return and advance one
line; no character is inserted. If byte 0 of the input record is an ASCII form feed
character (X'0C'), byte 0 is transformed into an ANSI skip to channel 1 command
(X'31') that serves as a form feed in the carriage control byte. If the data contains
the ASCII form feed character (X'0C') the asciinp exit must be used to insert ANSI
carriage controls so that the data can be loaded into Content Manager OnDemand.

To execute the asciinp input record exit program, specify these parameters using
either the Keyboard Edit function of the administrative client or the graphical
indexer.
inpexit=asciinp
cc=yes
cctype=z
fileformat = stream,(newline=X’0A’)

Also, make sure that the directory where the asciinp input record exit program
resides is included in the INPEXIT parameter (specify the full path name) or if
running ACIF from the command line, in the PATH environment variable (or
specify the full path name).

Note: If the indexing parameters were created before asciinp processed the file,
the following change must be made to the TRIGGER and FIELD parameters: All
column offsets must be increased by 1 to account for the fact that the asciinp exit
inserts an extra byte at the beginning of each record.

The asciinpe input record exit program combines both user input record exits
described above. If the data contains the ASCII form feed character (X'0C'), the
asciinpe exit must be used to insert ANSI carriage controls so that the data can be
loaded into Content Manager OnDemand. If you are running ACIF with
CONVERT=YES, set cctype=z. If you are running ACIF with CONVERT=NO, set
cctype=a. To execute, set the following parameters in your ACIF parameter file:
inpexit=asciinpe
cc=yes
cctype=z
cpgid=500
fileformat = stream,(newline=X’0A’)

Also, make sure that the directory where the asciinpe input record exit program
resides is included in the INPEXIT parameter (specify the full path name) or if
running ACIF from the command line, in the PATH environment variable (or
specify the full path name).

While the asciinp and asciinpe input record exits do not recognize other ASCII
printer commands, you can modify these exits to account for the following
commands:

backspacing (X'08')
horizontal tabs (X'09')
vertical tabs (X'0B')

ACIF indexer 85

For more information on using and modifying these programs, refer to the
comments at the beginning of the asciinp.c source file, which is provided with
Content Manager OnDemand.

Note: If the indexing parameters were created before asciinpe processed the file,
the following changes must be made to the TRIGGER, FIELD, and INDEX
parameters:
1. All column offsets must be increased by 1 to account for the fact that the

asciinpe exit inserts an extra byte at the beginning of each record.
2. All TRIGGER values, constant FIELD values, and INDEX names must be

encoded in EBCDIC.

Index record exit
ACIF provides an exit that allows you to modify or ignore the records that ACIF
writes in the index object file.

The program invoked at this exit is defined by the INDXEXIT parameter.

This exit receives control before a record (structured field) is written to the index
object file. The exit program can request that the record be ignored or processed.
The exit program cannot insert records at this exit. The largest record that can be
processed is 32752 bytes (this does not include the record descriptor word).

The example contains a sample C language header that describes the control block
that is passed to the exit program.
typedef struct _INDXEXIT_PARMS /* Parameters for the index record exit */
{

char *work; /* Address of 16-byte static work area */
PFATTR *pfattr; /* Address of print file attribute information */
char *record; /* Address of the record to be written */
unsigned short recordln; /* Length of the index record */
char request; /* Delete or process the record */
char eof; /* Last call indicator to ACIF */

} INDXEXIT_PARMS;

The address of the control block containing the following parameters is passed to
the index record exit:

work (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

pfattr (Bytes 5–8)
A pointer to the print file attribute data structure.

record (Bytes 9–12)
A pointer to the first byte of the index record including the carriage control
character. The record resides in a 32 KB (where KB equals 1024 bytes) buffer.
The buffer resides in storage allocated by ACIF, but the exit program is
allowed to modify the index record.

recordln (Bytes 13–14)
Specifies the length, in bytes, of the index record. If the index record is
modified, this parameter must also be updated to reflect the actual length of
the record.

86 Indexing Reference

request (Byte 15)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01' where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record not be processed by ACIF.

A value of X'00' on entry to the exit program specifies that the record be
processed. If you want to ignore the record, change the request byte value to
X'01'. Any value greater than X'01' is interpreted as X'00'; the record is
processed.

Only one record can reside in the buffer at any time.

eof (Byte 16)
An End-Of-File (eof) indicator. This indicator is a one-byte character code that
signals when ACIF has finished processing the index object file.

When eof is signaled (eof value=‘Y’), the last record has already been
presented to the index exit. The record pointer is no longer valid. The only
valid values for this parameter:

Y Specifies that the last record has been written.

N Specifies that the last record has not been written.

This end-of-file flag, used as a last call indicator, allows the exit program to
return control to ACIF. The exit program cannot change this parameter.

The following example contains a sample DSECT that describes the control block
that is passed to the exit program.
PARMLIST DSECT Parameters for the index record exit
WORK@ DS A Address of 16-byte static work area
PFATTR@ DS A Address of print-file-attribute information
RECORD@ DS A Address of the record to be written
RECORDLN DS H Length of the index record
REQUEST DS X Delete or process the record
EOF DS C Last call indicator to ACIF

The address of the control block containing the following parameters is passed to
the index record exit. For z/OS, the address is passed in a standard parameter list
that is pointed to by Register 1.

WORK@ (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

PFATTR@ (Bytes 5–8)
A pointer to the print file attribute data structure.

RECORD@ (Bytes 9–12)
A pointer to the first byte of the index record including the carriage control
character. The record resides in a 32KB (where KB equals 1024 bytes) buffer.
The buffer resides in storage allocated by ACIF, but the exit program is
allowed to modify the index record.

ACIF indexer 87

RECORDLN (Bytes 13–14)
Specifies the length, in bytes, of the index record. If the index record is
modified, this parameter must also be updated to reflect the actual length of
the record.

REQUEST (Byte 15)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01' where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record not be processed by ACIF.

A value of X'00' on entry to the exit program specifies that the record is to be
processed. If you want to ignore the record, change the REQUEST byte value
to X'01'. Any value greater than X'01' is interpreted as X'00'; the record is
processed.

Only one record can reside in the buffer at any time.

EOF (Byte 16)
An end-of-file (EOF) indicator. This indicator is a one-byte character code that
signals when ACIF has finished processing the index object file.

When EOF is signaled (EOF=Y), the last record has already been presented to
the index exit. The pointer RECORD@ is no longer valid. Records cannot be
inserted when EOF is signaled. The only valid values for this parameter:

Y Specifies that the last record has been written.

N Specifies that the last record has not been written.

This end-of-file flag, used as a last call indicator, allows the exit program to
return control to ACIF. The exit program cannot change this parameter.

Output record exit
Using the output record exit, you can modify or ignore the records ACIF writes
into the output document file. The program invoked at this exit is defined by the
OUTEXIT parameter.

The exit receives control before a record is written to the output document file. The
exit can request that the record be ignored or processed. The largest record that the
exit can process is 32752 bytes, not including the record descriptor word. The exit
is not called when ACIF is processing resources.

The following example contains a sample C language header that describes the
control block passed to the exit program.
typedef struct _OUTEXIT_PARMS /* Parameters for the output record exit */
{

char *work; /* Address of 16-byte static work area */
PFATTR *pfattr; /* Address of print file attribute information */
char *record; /* Address of the record to be written */
unsigned short recordln; /* Length of the output record */
char request; /* Delete or process the record */
char eof; /* Last call indicator */

} OUTEXIT_PARMS;

The address of the control block containing the following parameters is passed to
the output record exit:

88 Indexing Reference

work (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

pfattr (Bytes 5–8)
A pointer to the print file attribute data structure.

record (Bytes 9–12)
A pointer to the first byte of the output record. The record resides in a 32 KB
(where KB equals 1024 bytes) buffer. The buffer resides in storage allocated by
ACIF, but the exit program is allowed to modify the output record.

recordln (Bytes 13–14)
Specifies the length, in bytes, of the output record. If the output record is
modified, this parameter must also be updated to reflect the actual length of
the record.

request (Byte 15)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01', where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record be ignored by ACIF.

A value of X'00' on entry to the exit program specifies that the record be
processed. If you want to ignore the record, change the request byte value to
X'01'. Any value greater than X'01' is interpreted as X'00'; the exit processes the
record.

Only one record can reside in the buffer at any time.

eof (Byte 16)
An End-Of-File (eof) indicator. This indicator is a one-byte character code that
signals when ACIF has finished writing the output file.

When eof is signaled (eof value=‘Y’), the last record has already been
presented to the output exit. The record pointer is no longer valid. The only
valid values for this parameter:

Y Specifies that the last record has been written.

N Specifies that the last record has not been written.

This end-of-file flag, used as a last-call indicator, allows the exit program to
return control to ACIF. The exit program cannot change this parameter.

The following example contains a sample DSECT that describes the control block
passed to the z/OS exit program.
PARMLIST DSECT Parameters for the output record exit
WORK@ DS A Address of 16-byte static work area
PFATTR@ DS A Address of print-file-attribute information
RECORD@ DS A Address of the record to be written
RECORDLN DS H Length of the output record
REQUEST DS X Delete or process the record
EOF DS C Last call indicator

ACIF indexer 89

The address of the control block containing the following parameters is passed to
the output record exit. For z/OS, the address is passed in a standard parameter list
that is pointed to by Register 1.

WORK@ (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

PFATTR@ (Bytes 5–8)
A pointer to the print file attribute data structure.

RECORD@ (Bytes 9–12)
A pointer to the first byte of the output record. The record resides in a 32KB
(where KB equals 1024 bytes) buffer. The buffer resides in storage allocated by
ACIF, but the exit program is allowed to modify the output record.

RECORDLN (Bytes 13–14)
Specifies the length, in bytes, of the output record. If the output record is
modified, this parameter must also be updated to reflect the actual length of
the record.

REQUEST (Byte 15)
Specifies how the record is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01', where:

X'00' Specifies that the record be processed by ACIF.

X'01' Specifies that the record be ignored by ACIF.

A value of X'00' on entry to the exit program specifies that the record is to be
processed. If you want to ignore the record, change the REQUEST byte value
to X'01'. Any value greater than X'00' is interpreted as X'00'; the exit processes
the record.

Only one record can reside in the buffer at any time.

EOF (Byte 16)
An end-of-file (EOF) indicator. This indicator is a one-byte character code that
signals when ACIF has finished writing the output file.

When EOF is signaled (EOF=Y), the last record has already been presented to
the output exit. The pointer RECORD@ is no longer valid. Records cannot be
inserted when EOF is signaled. The only valid values for this parameter:

Y Specifies that the last record has been written.

N Specifies that the last record has not been written.

This end-of-file flag, used as a last-call indicator, allows the exit program to
return control to ACIF. The exit program cannot change this parameter.

Important: If the output and index file from ACIF are stored in Content Manager
OnDemand, do not delete output records using Output record exit as this might
invalidate the indexing information.

90 Indexing Reference

Resource exit
ACIF provides an exit that lets you filter resources from being included in the
resource file. If you want to exclude a specific type of resource (for example, an
overlay), you can control this with the RESTYPE parameter.

This exit is useful in controlling resources at the file name level. For example,
assume that you were going to send the output of ACIF to PSF and you only
wanted to send those fonts that were not shipped with the PSF product. You could
code this exit program to contain a table of all fonts shipped with PSF and filter
those from the resource file. Security is another consideration for using this exit
because you could prevent certain named resources from being included. The
program invoked at this exit is defined by the RESEXIT parameter.

This exit receives control before a resource is read from a directory (library in
z/OS). The exit program can request that the resource be processed or ignored
(skipped), but it cannot substitute another resource name in place of the requested
one. If the exit requests any overlay to be ignored, ACIF will automatically ignore
any resources the overlay may have referenced (that is, fonts and page segments).

The following example contains a sample C language header that describes the
control block that is passed to the exit program.
typedef struct _RESEXIT_PARMS /* Parameters for the resource exit */
{

char *work; /* Address of 16-byte static work area */
PFATTR *pfattr; /* Address of print file attribute information */
char resname[8]; /* Name of requested resource */
char restype; /* Type of resource */
char request; /* Ignore or process the resource */
char eof; /* Last call indicator */

} RESEXIT_PARMS;

The address of the control block containing the following parameters is passed to
the resource exit:

work (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

pfattr (Bytes 5–8)
A pointer to the print file attribute data structure.

resname (Bytes 9–16)
Specifies the name of the requested resource. This value cannot be modified
(changed) by the exit program.

restype (Byte 17)
Specifies the type of resource the name refers to. This is a one-byte
hexadecimal value where:

X'03' Specifies a GOCA (graphics) object.

X'05' Specifies a BCOCA (barcode) object.

X'06' Specifies an IOCA (IO image) object.

X'40' Specifies a font character set.

X'41' Specifies a code page.

ACIF indexer 91

X'FB' Specifies a page segment.

X'FC' Specifies an overlay.

ACIF does not call this exit for the following resource types:
v Page definition

The page definition (pagedef) is a required resource for processing line-mode
application output. The page definition is never included in the resource file.

v Form definition
The form definition (formdef) is a required resource for processing print
files. If you do not want the form definition included in the resource file,
specify restype=none or explicitly exclude it from the restype list.

v Coded fonts
If you specify MCF2REF=CF, ACIF includes coded fonts. If MCF2REF=CPCS
(the default), ACIF processes coded fonts to determine the names of the code
pages and font character sets they reference. This is necessary in creating
Map Coded Font-2 (MCF-2) structured fields.

request (Byte 18)
Specifies how the resource is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01' where:

X'00' Specifies that the resource be processed by ACIF.

X'01' Specifies that the resource not be processed by ACIF.

A value of X'00' on entry to the exit program specifies that the resource be
processed. If you want to ignore the resource, change the request byte value to
X'01'. Any value other than X'01' will cause ACIF to process the resource.

The following example contains a sample DSECT that describes the control block
that is passed to the z/OS exit program.
PARMLIST DSECT Parameters for the resource exit
WORK@ DS A Address of 16-byte static work area
PFATTR@ DS A Address of print-file-attribute information
RESNAME DS CL8 Name of requested resource
RESTYPE DS X Type of resource
REQUEST DS X Ignore or process the resource
EOF DS X

The address of the control block containing the following parameters is passed to
the resource exit. For z/OS, the address is passed in a standard parameter list that
is pointed to by Register 1.

WORK@ (Bytes 1–4)
A pointer to a static, 16-byte memory block. The exit program can use this
parameter to save information across calls (for example, pointers to work
areas). The 16-byte work area is aligned on a full word boundary and is
initialized to binary zeros prior to the first call. The user-written exit program
must provide the code required to manage this work area.

PFATTR@ (Bytes 5–8)
A pointer to the print file attribute data structure.

RESNAME (Bytes 9–16)
Specifies the name of the requested resource. This value cannot be modified
(changed) by the exit program.

92 Indexing Reference

RESTYPE (Byte 17)
Specifies the type of resource the name refers to. This is a one-byte
hexadecimal value where:

X'03' Specifies a GOCA (graphics) object.

X'05' Specifies a BCOCA (barcode) object.

X'06' Specifies an IOCA (IO image) object.

X'40' Specifies a font character set.

X'41' Specifies a code page.

X'42' Specifies a coded font.

X'FB' Specifies a page segment.

X'FC' Specifies an overlay.

ACIF does not call this exit for the following resource types:
v Page definition

The page definition (PAGEDEF) is a required resource for processing
line-mode application output. The page definition is never included in the
resource file.

v Form definition
The form definition (FORMDEF) is a required resource for processing print
files. If you do not want the form definition included in the resource file,
specify RESTYPE=NONE or explicitly exclude it from the RESTYPE list.

v Coded fonts
If MCF2REF=CF is specified, coded fonts are included in the resource file.
Otherwise, ACIF does not include any referenced coded fonts in the resource
file; therefore, resource filtering is not applicable. ACIF needs to process
coded fonts to determine the names of the code pages and font character
sets they reference, which is necessary to create MCF-2 structured fields.

v COM setup files
A COM setup file (setup) is a required resource for processing microfilm
files (microfilm can mean either microfiche or 16 mm film). If you do not
want a setup file included in the resource file, specify RESTYPE=NONE or
explicitly exclude it from the RESTYPE list.

REQUEST (Byte 18)
Specifies how the resource is to be processed by ACIF. On entry to the exit
program, this parameter is X'00'. When the exit program returns control to
ACIF, this parameter must have the value X'00' or X'01' where:

X'00' Specifies that the resource be processed by ACIF.

X'01' Specifies that the resource not be processed by ACIF.

A value of X'00' on entry to the exit program specifies that the resource is to be
processed. If you want to ignore the resource, change the REQUEST byte
value to X'01'. Any value greater than X'01' is interpreted as X'00' and the exit
processes the resource.

EOF (Byte 19)
An end-of-file (EOF) indicator. This indicator is a one-byte character code that
signals when ACIF has finished writing the output file.

ACIF indexer 93

When EOF is signaled (EOF=Y), the last record has already been presented to
the resource exit. The pointer RECORD@ is no longer valid. Records cannot be
inserted when EOF is signaled. The only valid values for this parameter:

Y Specifies that the last record has been written.

N Specifies that the last record has not been written.

This end-of-file flag, used as a last-call indicator, allows the exit program to
return control to ACIF. The exit program cannot change this parameter.

User exit search order
z/OS systems only: When ACIF loads a specified user exit program during
initialization, the z/OS operating system determines the search order and method
used to locate these load modules.

Exit load modules can reside in a load library that is used as STEPLIB, JOBLIB, or
in a system library. ACIF uses the standard z/OS search order to locate the exit
load module. ACIF looks first in the STEPLIB, then in the JOBLIB, and finally in
the system libraries.

Non-Zero return codes
If ACIF receives a non-zero return code from any exit program, ACIF issues
message APK412 and terminates processing. See IBM Content Manager OnDemand:
Messages and Codes for information about ACIF messages.

Attributes of the input file
ACIF provides information about the attributes of the input print file in a data
structure available to ACIF’s user exits.

The following example shows the format of the data structure in UNIX and
Windows in the form of a sample print file attributes C language header.
typedef struct _PFATTR /* Print File Attributes */
{

char cc[3]; /* Carriage controls? - "YES" or "NO " */
char cctype[1]; /* CC type - A (ANSI), M (Machine), Z (ASCII) */
char chars[20]; /* CHARS values, including commas (eg. GT12,GT15) */
char formdef[8]; /* Form Definition (FORMDEF) */
char pagedef[8]; /* Page Definition (PAGEDEF) */
char prmode[8]; /* Processing mode */
char trc[3]; /* Table Reference Characters - "YES" or "NO " */

} PFATTR;

The address of the control block containing the following parameters is passed to
the user exits:

cc (Bytes 1–3)
The value of the cc parameter as specified to ACIF. ACIF uses the default value
if this parameter is not explicitly specified.

cctype (Byte 4)
The value of the cctype parameter as specified to ACIF. ACIF uses the default
value if this parameter is not explicitly specified.

chars (Bytes 5–24)
The value of the chars parameter as specified to ACIF, including any commas
that separate multiple font specifications. Because the chars parameter has no
default value, this field contains blanks if no values are specified.

94 Indexing Reference

formdef (Bytes 25–32)
The value of the formdef parameter as specified to ACIF. Because the formdef
parameter, has no default value, this field contains blanks if no value is
specified.

pagedef (Bytes 33–40)
The value of the pagedef parameter as specified to ACIF. Because the pagedef
parameter has no default value, this field contains blanks if no value is
specified.

prmode (Bytes 41–48)
The value of the prmode parameter as specified to ACIF. Because the prmode
parameter has no default value, this field contains blanks if no value is
specified.

trc (Bytes 49–51)
The value of the trc parameter as specified to ACIF. ACIF uses the default
value if this parameter is not explicitly specified.

1. Each of the previous character values is left-justified; that is, padding blanks
are added to the end of the string. For example, if you specify
PAGEDEF=P1TEST, the page definition value in the above data structure is
P1TEST (the string P1TEST followed by two blank characters).

2. Exit programs cannot change the values supplied in this data structure. For
example, if P1TEST is the page definition value, and an exit program changes
the value to P1PROD, ACIF still uses P1TEST.

3. This data structure is provided for informational purposes only.

The following example shows the format of the data structure in the form of a
z/OS sample print file attributes DSECT.
PFATTR DSECT Print File Attributes
CC DS CL3 Carriage controls? - ’YES’ or ’NO ’
CCTYPE DS CL1 Carriage control type - A (ANSI) or M (Machine)
CHARS DS CL20 CHARS values, including commas (eg. GT12,GT15)
FORMDEF DS CL8 Form Definition (FORMDEF)
PAGEDEF DS CL8 Page Definition (PAGEDEF)
PRMODE DS CL8 Processing mode
TRC DS CL3 Table Reference Characters - ’YES’ or ’NO ’

The address of the control block containing the following parameters is passed to
the input record exit. For z/OS, the address is passed in a standard parameter list
that is pointed to by Register 1.

CC (Bytes 1–3)
The value of the CC parameter as specified to ACIF. ACIF uses the default
value if this parameter is not explicitly specified.

CCTYPE (Byte 4)
The value of the CCTYPE parameter as specified to ACIF. ACIF uses the
default value if this parameter is not explicitly specified.

CHARS (Bytes 5–24)
The value of the CHARS parameter as specified to ACIF, including any
commas that separate multiple font specifications. Because the CHARS
parameter has no default value, this field contains blanks if no values are
specified.

FORMDEF (Bytes 25–32)
The value of the FORMDEF parameter as specified to ACIF. Because the
FORMDEF parameter has no default value, this field contains blanks if no
value is specified.

ACIF indexer 95

PAGEDEF (Bytes 33–40)
The value of the PAGEDEF parameter as specified to ACIF. Because the
PAGEDEF parameter has no default value, this field contains blanks if no
value is specified.

PRMODE (Bytes 41–48)
The value of the PRMODE parameter as specified to ACIF. Because the
PRMODE parameter has no default value, this field contains blanks if no
value is specified.

TRC (Bytes 49–51)
The value of the TRC parameter as specified to ACIF. ACIF uses the default
value if this parameter is not explicitly specified.

1. Each of the previous character values is left-justified, with padding blanks
added to the right-end of the string. For example, if you specify
PAGEDEF=P1TEST, the page definition value in the above data structure is
P1TEST (the string P1TEST followed by two blank characters).

2. Exit programs cannot change the values supplied in this data structure. For
example, if P1TEST is the page definition value, and an exit program changes
the value to P1PROD, ACIF still uses P1TEST.

3. This data structure is provided for informational purposes only.

ACIF exits written in COBOL (z/OS systems)
ACIF is not a COBOL Language Environment aware application so special
considerations are needed to use ACIF exits with the COBOL Language
Environment.

When you use ACIF to invoke an exit, a Language Environment is not active. The
normal behavior for Language Environment is that when the exit is entered, the
Language Environment is created, and the Language Environment branches to the
actual exit code. When the actual exit code returns, the Language Environment is
destroyed and you return to ACIF.

What this means is that every time an exit is invoked, the Language Environment
is created and destroyed, causing significant performance overhead. Reinitialization
of the environment also reinitializes variables every time the exit is invoked. For
COBOL, Language Environment provides a runtime option, RTEREUS(ON), which
allows the Language Environment to persist as long as certain programming
requirements are met. The environment is not destroyed every time the exit
returns, but reused when an exit is reentered. Certain compile options are
incompatible with RETREUS(ON). See the Language Environment Programming
Reference for restrictions and guidelines about the RTEREUS(ON).

Attention: You can specify a RTEREUS(ON) in a number of ways. For example,
the CEEOPTS DD. RTEREUS(ON) should only be specified in a manner which
only affects the ACIF COBOL exits. If a CEEOPTS DD is used, it affects all
Language Environment programs in that JOB step, like ARSLOAD. Do not use a
CEEPRMxx member of PARMLIB.

In order to minimize the scope of RTEREUS(ON), a CEEUOPT CSECT must be
assembled and link-edited with the COBOL object code. For more information on
constructing a CEEUOPT CSECT, see the z/OS Language Environment Customization
Guide.

You can use this sample as a model, but you must be sure that the following
option is specified:

96 Indexing Reference

RTEREUS=(ON)

Tip: Specify the ALL31(ON) option. You must ensure that the resulting module is
link-edited as NOT RE-ENTRANT and NOT REUSABLE. This is required to allow
the local variables in the COBOL exit code to retain their values across multiple
invocations.

CEEUOPT CSECT sample
CEEUOPT CSECT ,
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT
ABPERC=(NONE), +
ABTERMENC=(ABEND), +
AIXBLD=(OFF), +
ALL31=(ON), +
ANYHEAP=(16K,8K,ANYWHERE, FREE) +
BELOWHEAP=(8K,4K,FREE), +
CBLOPTS=(ON), +
CBLPSHPOP=(ON), +
CBLQDA=(OFF), +
CEEDUMP=(60,SYSOUT=*,FREE=END,SPIN=UNALLOC), +
CHECK=(ON), +
COUNTRY=(US), +
DEBUG=(OFF), +
DEPTHCONDLMT=(10), +
DYNDUMP=(*USERID,NODYNAMIC,TDUMP), +
ENVAR=(’’), +
ERRCOUNT=(0), +
ERRUNIT=(6), +
FILEHIST=(ON), +
FILETAG=(NOATOCVT,NOAUTOTAG), +
HEAP=(32K,32K,ANYWHERE,KEEP,8K,4K), +
HEAPCHK=(OFF,1,0,0,0), +
HEAPPOOLS=(OFF,8,10,32,10,128,10,156,10,1024,10,2048, +
10,0,10,0,10,0,10,0,10,0,10,0,10), +
INFOMSGFILTER=(OFF,,,,), +
INQPCOPN=(ON), +
INTERRUPT=(OFF), +
LIBSTACK=(4K,4K,FREE), +
MSGFILE=(SYSOUT,FBA,121,0,NOENQ), +
MSGQ=(15), +
NATLANG=(ENU), +
NOAUTOTASK=, +
NOTEST=(ALL,*,PROMPT,INSPPREF), +
NOUSRHDLR=(’’), +
OCSTATUS=(ON), +
PC=(OFF), +
PLITASKCOUNT=(20), +
POSIX=(OFF), +
PROFILE=(OFF,’’), +
PRTUNIT=(6), +
PUNUNIT=(7), +
RDRUNIT=(5), +
RECPAD=(OFF), +
RPTOPTS=(OFF), +
RPTSTG=(OFF), +
RTEREUS=(ON), +
SIMVRD=(OFF), +
STACK=(128K,128K,ANYWHERE,KEEP,512K,128K), +
STORAGE=(NONE,NONE,NONE,OK), +
TERMTHDACT=(TRACE,,96), +
THREADHEAP=(4K,4K,ANYWHERE,KEEP), +
THREADSTACK=(OFF,4K,4K,ANYWHERE,KEEP,128K,128K), +

ACIF indexer 97

TRACE=(OFF,4KDUMP,LE=0), +
TRAP=(ON,SPIE), +
UPSI=(00000000), +
VCTRSAVE=(OFF), +
XPLINK=(OFF), +
XUFLOW=(AUTO) +

END ,

ACIF data stream information
General-use Programming Interface and Associated Guidance Information is
contained in this section.

This section contains the following topics:
v Tag Logical Element
v Formats of the resource file
v Understanding how ACIF processes fully composed AFP files

Tag Logical Element (TLE) structured field
TLE structured fields are allowed only in AFP data stream (MO:DCA-P)
documents.

AFP Application Programming Interface (AFP API) supports the TLE structured
field and can be used from host COBOL and PL/I applications to create indexed
AFP data stream (MO:DCA-P) documents. Document Composition Facility (DCF),
with APAR PN36437, can also be used to insert TLE structured fields in an output
document.

The format of the TLE structured field that ACIF supports and generates is as
follows:

Carriage Control Character (X'5A')
Specifies the carriage control character, which is required in the first position of
the input record to denote a structured field.

Structured Field Introducer (8 bytes)
Specifies the standard structured field header containing the structured field
identifier and the length of the entire structured field, including all of the data.

Tag Identifier Triplet (4–254 bytes)
Specifies the application-defined identifier or attribute name associated with
the tag value. An example is 'Customer Name'. This is a Fully Qualified Name
triplet (X'02') with a type value of X'0B' (Attribute Name). For more
information, refer to Mixed Object Content Architecture Reference.

Tag Value Triplet (4–254 bytes)
Specifies the actual value of the index attribute. If the attribute is 'Customer
Name', the actual tag value might be 'Bob Smith'. This triplet contains a length
in byte 1, a type value of X'36' (Attribute Value) in byte 2, two reserved bytes
(X'0000'), and the tag value.

The following example shows a 39-byte TLE structured field containing an index
name and an index value. For the purposes of illustration, each field within the
structured field is listed on a separate line. X' ' denotes hexadecimal data, and " "
denotes EBCDIC or character data.

98 Indexing Reference

X’5A0026D3A090000000’
X’11020B00’
"Customer Name"
X’0D360000’
"Bob Smith"

TLE structured fields can be associated with a group of pages or with individual
pages. Consider a bank statement application. Each bank statement is a group of
pages, and you may want to associate specific indexing information at the
statement level (for example, account number, date, customer name, and so on).
You may also want to index (tag) a specific page within the statement, such as the
summary page. The example below shows a print file that contains TLEs at the
group level as well as at the page level:
BDT

BNG
TLE Account #, 101030
TLE Customer Name, Mike Smith

BPG
Page 1 data

EPG
BPG

Page 2 data
EPG
...
...
BPG

TLE Summary Page, n
Page n data

EPG
ENG
...

EDT

ACIF can accept input files that contain both group-level and page-level indexing
tags. You can also use the input record exit of ACIF to insert TLE structured fields
into an AFP data stream (MO:DCA-P) file, where applicable. The indexing
information in the TLE structured field applies to the page or group containing
them. In the case of groups, the TLE structured field can appear anywhere between
a Begin Named Group (BNG) structured field and the first page (BPG structured
field) in the group. In the case of composed-text pages, the TLE structured field
can appear anywhere following the Active Environment Group, between the End
Active Environment (EAG) and End Page (EPG) structured fields. Although ACIF
does not limit the number of TLE structured fields that can be placed in a group or
page, you should consider the performance and storage ramifications of the
number included.

ACIF does not require the print file to be indexed in a uniform manner; that is,
every page containing TLE structured fields does not have to have the same
number of tags as other pages or the same type of index attributes or tag values.
This allows a great deal of flexibility for the application. When ACIF completes
processing a print file that contains TLE structured fields, the resultant indexing
information file may contain records of variable length.

Format of the resource file
ACIF retrieves referenced AFP resources from specified directories (libraries in
z/OS) and creates a single file (dataset in z/OS) that contains these resources.

ACIF indexer 99

Using ACIF, you can control the number of resources as well as the type of
resources in the file by using a combination of RESTYPE values and processing in
the resource exit.

ACIF can retrieve all the resources used by the print file and can place them in a
separate resource file. The resource file contains a resource group structure whose
syntax is as follows:
BRG

BR
AFP Resource 1

ER
BR

AFP Resource 2
ER
..
BR

AFP Resource n
ER

ERG

ACIF does not limit the number of resources that can be included in this object,
but available storage is certainly a limiting factor.

Begin Resource Group (BRG) structured field
ACIF assigns a null token name (X'FFFF') to this structured field and also creates
three additional triplets: an FQN type X'01' triplet, an Object Date and Time Stamp
triplet, and an FQN type X'83' triplet.

The FQN type X'01' triplet contains the path and file name of the resource group.
The Object Date and Time Stamp triplet contains date and time information from
the operating system on which ACIF runs. The date and time values reflect when
ACIF was invoked to process the print file. The FQN type X'83' triplet contains the
AFP output print file name identified by the OUTPUTDD parameter.

Begin Resource (BR) structured field
ACIF uses this structured field to delimit the resources in the file.

ACIF also identifies the type of resource (for example, overlay) that follows this
structured field. The type is represented as a one-byte hexadecimal value where:

X'03' Specifies a GOCA.

X'05' Specifies a BCOCA.

X'06' Specifies a IOCA.

X'40' Specifies a font character set.

X'41' Specifies a code page.

X'92' Specifies an object container.

X'FB' Specifies a page segment.

X'FC' Specifies an overlay.

X'FE' Specifies a form definition.

End Resource (ER) and End Resource Group (ERG) structured
fields
ACIF always assigns a null token name (X'FFFF') to the Exx structured fields it
creates.

100 Indexing Reference

The null name forces a match with the corresponding BR and BRG structured
fields.

ACIF processing of fully composed AFP files
Fully composed AFP files contain BNG and TLE Structured Fields in the following
form:

BDT
BNG

TLE (group)
...
...
BPG

TLE (page - optional)
...
...

EPG
ENG
...
...

EDT

When an input file contains BNG - ENG pairs or TLE Structured Fields, ACIF does
not index the file. If you specify indexing parameters (such as TRIGGER, FIELD, or
INDEX) for a file that contains TLE Structured Fields, then ACIF will fail with
error message 462 - A trigger parameter was specified, but the input file is
already indexed. If you specify indexing parameters for a file that contains BNG -
ENG pairs, but does not contain TLE Structured Fields, ACIF will fail with error
message 459 - Index needed for the groupname was not found.

ACIF processes a file containing BNG - ENG pairs and TLE Structured Fields in
the following way:
1. For every BNG in the input, ACIF creates a group IEL Structured Field in the

Index File.
2. ACIF makes a copy of the TLE Structured Fields from the input and places

them into the Index File. The original TLE Structured Fields remain in the input
file.

Therefore, the result of ACIF processing under these circumstances is the creation
of an Index File. ACIF can complete normally but the load process into Content
Manager OnDemand may still fail if the format of the input file is incorrect:
v If the input file contained BNG - ENG pairs with no group level TLE Structured

Fields between them, then the load process will fail with the message: 0 fields
submitted, n expected, where n is the number of fields defined to Content
Manager OnDemand.

v If the input file does not contain any BNG - ENG pairs, then the load process
may run out of memory looking for the start and end of the groups.

Format of the ACIF index object file
General-use Programming Interface and Associated Guidance Information is
contained in this chapter.

One of the optional files ACIF can produce contains indexing, offset, and size
information. The purpose of this file is to enable applications such as archival and
retrieval applications to selectively determine the location of a page group or page
within the AFP data stream print file, based on its index (tag) values.

ACIF indexer 101

The following example shows the general internal format of this object:
BDI

IEL GroupName=G1
TLE (INDEX1)
...
TLE (INDEXn)

IEL PageName=G1P1
TLE (INDEX1)
...
TLE (INDEXn)

...
IEL PageName=G1Pn

...
IEL GroupName=Gn

TLE (INDEX1)
...
TLE (INDEXn)

IEL PageName=GnP1
TLE (INDEX1)
...
TLE (INDEXn)

...
IEL PageName=GnPn

EDI

The example illustrates an index object file containing both page-level and
group-level Index Element (IEL) and Tag Logical Element (TLE) structured fields.

Group-level Index Element (IEL) structured field

If INDEXOBJ=GROUP is specified, ACIF creates an index object file with the
following format:
BDI

IEL Groupname=G1
TLE
...
TLE

...
IEL Groupname=Gn

TLE
...
TLE

EDI

This format is useful to reduce the size of the index object file, but it allows
manipulation only at the group level; that is, you cannot obtain the offset and size
information for individual pages. You also lose any indexing information (TLEs)
for pages; the TLE structured fields for the pages still exist in the output print file,
however.

Page-level Index Element (IEL) structured field
If INDEXOBJ=ALL is specified, ACIF creates an index object file with the
following format:
BDI

IEL Groupname=G1
TLE
...

IEL Pagename=G1P1
TLE
...

...

102 Indexing Reference

IEL Pagename=G1Pn....
...
IEL Groupname=Gn

TLE
...

IEL Pagename=GnP1
...
IEL Pagename=GnPn

TLE
...

EDI

This example contains IEL structured fields for both pages and groups. Notice that
TLE structured fields are associated with both pages and groups. In this example,
where an application created an indexed AFP print file containing both page-level
and group-level TLE structured fields, ACIF can create IEL structured fields for the
appropriate TLE structured fields.

An index object file containing both page-level and group-level IEL structured
fields can provide added flexibility and capability to applications that operate on
the files created by ACIF. This type of index object file provides the best
performance when you are viewing a file using Content Manager OnDemand.

Begin Document Index (BDI) structured field
ACIF assigns a null token name (X'FFFF') and an FQN type X'01' triplet to this
structured field. The FQN type X'01' value is the file name identified by the
INDEXDD parameter.

ACIF also creates an FQN type X'83' triplet containing the name of the AFP output
print file, identified by the OUTPUTDD parameter.

ACIF also creates a Coded Graphic Character Set Global Identifier triplet X'01'
using the code page identifier specified in the CPGID parameter. ACIF assigns a
null value (X'FFFF') to the Graphic Character Set Global Identifier.
Related concepts:
“ACIF indexer parameters” on page 13

Index Element (IEL) structured field
The IEL structured field associates indexing tags with a specific page or group of
pages in the output document file.

It also contains the byte and structured field offset to the page or page group and
the size of the page or page group in both bytes and structured field count. The
following is a list of the triplets that compose this structured field:
v FQN Type X'8D'

This triplet contains the name of the active medium map associated with the
page or page group. In the case of page groups, this is the medium map that is
active for the first page in the group, because other medium maps can be
referenced after subsequent pages in the group. If no medium map is explicitly
invoked with an Invoke Medium Map (IMM) structured field, ACIF uses a null
name (8 bytes of X'FF') to identify the default medium map; that is, the first
medium map in the form definition.

v Object Byte Extent (X'57')
This triplet contains the size, in bytes, of the page or group this IEL structured
field references. The value begins at 1.

ACIF indexer 103

v Object Structured Field Extent (X'59')
This triplet contains the number of structured fields that compose the page or
group referenced by this IEL structured field. In the host environment, each
record contains only one structured field, so this value also represents the
number of records in the page or group. The value begins at 1.

v Direct Byte Offset (X'2D')
This triplet contains the offset, in bytes, from the start of the output print file to
the particular page or group this IEL structured field references. The value
begins at 0.

v Object Structured Field Offset (X'58')
This triplet contains the offset, in number of structured fields, from the start of
the output print file to the start of the particular page or group this IEL
structured field references. The value begins at 0.

v FQN Type X'87'
This triplet contains the name of the page with which this IEL structured field is
associated. The name is the same as the FQN type X'01' on the BPG structured
field. This triplet applies only to page-level IEL structured fields.

v FQN Type X'0D'
This triplet contains the name of the page group with which this IEL structured
field is associated. The name is the same as the FQN type X'01' on the BNG
structured field. This triplet applies only to group-level IEL structured fields.

v Medium Map Page Number (X'56')
This triplet defines the relative page count since the last Invoke Medium Map
(IMM) structured field was processed or from the logical invocation of the
default medium map. In the case of page groups, this value applies to the first
page in the group. The value begins at 1 and is incremented for each page.

Tag Logical Element (TLE) structured field
ACIF creates TLE structured fields as part of its indexing process, or it can receive
these structured fields from the input print file.

When ACIF creates TLE structured fields, the first TLE structured field is INDEX1,
the next TLE structured field is INDEX2, and so on, to a maximum of 128 per page
group. When ACIF processes a print file that contains TLE structured fields, it
always outputs the TLE structured fields in the same order and position. The TLE
structured fields in this object are exactly the same as those in the output
document file, and they follow the IEL structured field with which they are
associated.

End Document Index (EDI) structured field
ACIF assigns a null token name (X'FFFF') to this structured field, which forces a
match with the BDI structured field name.

Format of the ACIF output document file
This chapter contains General-use Programming Interface and Associated Guidance
Information.

ACIF can create three separate output files, one of which is the print file in AFP
data stream format. In doing so, ACIF may create the following structured fields:
v Tag Logical Element (TLE)
v Begin Named Group (BNG)

104 Indexing Reference

v End Named Group (ENG)

The following examples illustrate the two possible AFP data stream document
formats ACIF may produce.

Example of Code Containing Group-Level Indexing:
BDT

BNG Groupname=(index value + sequence number)
TLE (INDEX1)
TLE (INDEX2)
...
TLE (INDEXn)

BPG
Page 1 of group 1

EPG
BPG

Page 2 of group 1
EPG
...
BPG

Page n of group 1
EPG

ENG
...
BNG Groupname=(index value + sequence number)

TLE (INDEX1)
TLE (INDEX2)
...
TLE (INDEXn)

BPG
Page 1 of group n

EPG
BPG

Page 2 of group n
EPG
...
BPG

Page n of group n
EPG

ENG
EDT

The following example illustrates one of the formats (containing group-level and
page-level indexing) that ACIF can produce when it converts and indexes a print
file, generating indexes at the group level.
BDT

BNG Groupname=(index value + sequence number)
TLE (INDEX1)
TLE (INDEX2)
...
TLE (INDEXn)

BPG
TLE (INDEX1)
...
TLE (INDEXn)
Page 1 of group 1

EPG
BPG

Page 2 of group 1
EPG
...
BPG

TLE (INDEX1)
...

ACIF indexer 105

TLE (INDEXn)
Page n of group 1

EPG
ENG
...
BNG Groupname=(index value + sequence number)

TLE (INDEX1)
TLE (INDEX2)
...
TLE (INDEXn)

BPG
Page 1 of group n

EPG
BPG

TLE (INDEX1)
...
TLE (INDEXn)
Page 2 of group n

EPG
...
BPG

Page n of group n
EPG

ENG
EDT

The “Format of the ACIF output document file” on page 104 topic illustrates the
other format that ACIF can produce when it converts and indexes a print file,
generating indexes at both the group and page level.

Page groups
Page groups are architected groups of one or more pages to which some action or
meaning is assigned.

Consider the example of the bank statement application. Each bank statement in
the print file comprises one or more pages. By grouping each statement in a logical
manner, you can assign specific indexing or tag information to each group
(statement). You can then use this grouping to perform actions such as archival,
retrieval, viewing, preprocessing, postprocessing, and so on. The grouping also
represents a natural hierarchy. In the case of Content Manager OnDemand, you can
locate a group of pages and then locate a page within a group. If you again use the
example of the bank statement application, you can see how useful this can be.
You can retrieve from the server all of the bank statements for a specific branch.
You can then select a specific bank statement (group-level) to view and select a
tagged summary page (page-level).

Begin Document (BDT) structured field
When ACIF processes an AFP data stream print file, it checks for an FQN type
X'01' triplet in the BDT structured field. If the FQN triplet exists, ACIF uses it;
otherwise, ACIF creates one using the file name identified in the OUTPUTDD
parameter.

ACIF uses the FQN value when it creates an FQN type X'83' triplet on the Begin
Document Index (BDI) structured field in the index object file and on the Begin
Resource Group (BRG) structured field in the resource file. Although the input file
may contain multiple BDT structured field, the ACIF output will contain only one
BDT structured field. (The same is true of End Document (EDT) structured fields.)

106 Indexing Reference

In the case of line-mode files, ACIF creates the BDT structured field. ACIF assigns
a null token name (X'FFFF') and creates an FQN type X'01' triplet using the file
name identified in the OUTPUTDD parameter.

ACIF also creates a Coded Graphic Character Set Global Identifier triplet X'01'
using the code page identifier specified in the CPGID parameter. ACIF assigns a
null value (X'FFFF') to the Graphic Character Set Global Identifier.

ACIF also creates two additional FQN triplets for the resource name (type X'0A')
and the index object name (type X'98'). These two values are the same as those
contained in their respective type X'01' triplets on the BDI and BRG structured
fields.

Begin Named Group (BNG) structured field
When ACIF processes an AFP data stream print file containing page groups, it
checks for an FQN type X'01' triplet on each BNG structured field.

If the FQN triplet exists, ACIF uses the value when it creates an FQN type X'0D'
triplet on the corresponding Index Element (IEL) structured field in the index
object file. ACIF appends an eight-byte rolling sequence number to ensure
uniqueness in the name. If no FQN triplet exists, ACIF creates one. Here too, ACIF
appends a rolling, eight-byte EBCDIC sequence number to ensure uniquely named
groups, up to a maximum of 99 999 999 groups within a print file.

When ACIF indexes a print file, it creates the BNG structured fields. It assigns a
rolling eight-byte EBCDIC sequence number to the token name (for example,
00000001 where 1=X'F1'). The sequence number begins with 00000001 and is
incremented by 1 each time a group is created. ACIF also creates an FQN type
X'01' triplet by concatenating the specified index value (GROUPNAME) with the
same sequence number used in the token name. If the value of the index specified
in GROUPNAME is too long, the trailing bytes are replaced by the sequence
number. This occurs only if the specified index value exceeds 242 bytes in length.
A maximum of 99 999 999 groups can be supported before the counter wraps. This
means that ACIF can guarantee a maximum of 99 999 999 unique group names.

Tag Logical Element (TLE) structured field
As was mentioned in the format of the ACIF index object file, ACIF creates TLE
structured fields as part of its indexing process, or it can receive these structured
fields from the input print file.

When ACIF creates TLE structured fields, the first TLE is INDEX1, the next TLE is
INDEX2, and so on to a maximum of 128 per page group. When ACIF processes a
print file that contains TLE structured fields, it always outputs the TLE structured
fields in the same order and position.

Begin Page (BPG) structured field
When ACIF processes an AFP data stream print file, it checks for an FQN type
X'01' triplet on every page. If the FQN triplet exists, ACIF uses the value when it
creates an FQN type X'87' triplet on the corresponding Index Element (IEL)
structured field in the index object file.

ACIF indexer 107

If one does not exist, ACIF creates one, using a rolling eight-byte EBCDIC sequence
number. This ensures uniquely named pages up to a maximum of 99 999 999 pages
within a print file. ACIF creates IEL structured fields for pages only if
INDEXOBJ=ALL is specified.

When ACIF processes a line-mode print file, it creates the BPG structured fields. It
assigns a rolling eight-byte EBCDIC sequence number to the token name (for
example, 00000001, where 1=X'F1'). The sequence number begins with 00000001
and is incremented by 1 each time a group is created. ACIF also creates an FQN
type X'01' triplet using the same sequence number value, and uses this value in the
appropriate IEL structured field if INDEXOBJ=ALL is specified. A maximum of
99 999 999 groups can be supported before the counter wraps. This means that
ACIF can guarantee a maximum of 99 999 999 unique group names.

End Named Group (ENG), End Document (EDT), and End Page
(EPG) structured fields

ACIF always assigns a null token name (X'FFFF') to the Exx structured fields it
creates.

It does not modify the Exx structured field created by an application unless it
creates an FQN type X'01' triplet for the corresponding Bxx structured field. In this
case, it assigns a null token name (X'FFFF'), which forces a match with the Bxx
name.

Output MO:DCA data stream
When ACIF produces an output file in the MO:DCA format, each MO:DCA in the
file is a single record preceded by a X'5A' carriage control character.

There are required changes that ACIF must make to an AFP input file to support
MO:DCA-P output format.

Composed Text Control (CTC) structured field
Because this structured field has been declared obsolete, ACIF ignores it
and does not pass it to the output file.

Map Coded Font (MCF) Format 1 structured field
Unless MCF2REF=CF is specified, ACIF resolves the coded font into the
appropriate font character set and code page pairs.

Map Coded Font (MCF) Format 2 structured field
ACIF does not modify this structured field, and it does not map any
referenced GRID values to the appropriate font character set and code page
pairs. This may affect document integrity in the case of archival, because
no explicit resource names are referenced for ACIF to retrieve.

Presentation Text Data Descriptor (PTD) Format 1 structured field
ACIF converts this structured field to a PTD Format 2 structured field.

Begin Print File (BPF) and End Print File (EPF) Structured Fields
MO:DCA-P data that ACIF processes might contain BPF and EPF
structured fields, which define the boundaries of a print file.

The BPF structured field is at the beginning of the MO:DCA-P input file
and the EPF structured field is at the end of the file.

Some products concatenate the ACIF resource file (RESOBJDD) to the front
of the output file (OUTPUTDD). However, if any data, such as a resource
group, is found before the BPF structured field or after the EPF structured

108 Indexing Reference

field in the ACIF output file, the MO:DCA-P data stream is not valid. By
default, ACIF removes the BPF and EPF structured fields from the
MO:DCA-P input file before processing the file. Also, if the input file
contains an index object, ACIF ignores it and does not pass it to the output
file.

The EXTENSION=PASSPF parameter indicates that ACIF must pass the
BPF and EPF structured fields to the output file when they are found in
the input file. This parameter also verifies whether a BPF/EPF structured
field pair that the input record exit tries to insert is actually inserted. If
PASSPF is not specified and the input record tries to insert a BPF/EPF pair,
the attempt fails and the pair is discarded.

Attention:

1. Be careful using PASSPF. If the output file contains BPF and EPF
structured fields and it is concatenated with the resource file, the
resulting MO:DCA-P data stream is not valid.

2. When PASSPF is specified, ACIF passes all Begin Document (BDT) and
End Document (EDT) structured field pairs from the MO:DCA-P input
file to the output data stream without adding the normal comment and
timestamp triplets.

3. ACIF issues an error message if PASSPF is specified with the
IDXCPGID parameter. If EXTENSIONS=ALL is specified, PASSPF is
ignored and IDXCPGID is used.

4. ACIF does not verify whether the input file is MO:DCA IS/3 compliant.
Before ACIF discards or passes the BPF and EPF structured fields, it
checks the placement and format of the pair in the input file. For
example, if the input file contains a BPF structured field, it must also
contain an EPF structured field. If the BPF/EPF pair is incorrect, ACIF
issues an error message. If the placement and format is correct, ACIF
discards or passes the pair.

Inline resources
MO:DCA-P does not support inline resources at the beginning of a print
file (before the BDT structured field); therefore, inline resources must be
removed. The resources will be saved and used as requested.

Page definitions
Because page definitions are used only to compose line-mode data into
pages, this resource is not included in the resource file. The page definition
is not included because it is no longer needed to view or print the
document file.

ACIF examples

Example one: Bank loan report
This example describes how to create indexing information for a sample loan
report. A loan report typically contains hundreds of pages of line data. The detail
records contain several fields, including the loan number. The example also shows
a sample page of the loan report, as it appears when viewed using an IBM Content
Manager OnDemand client program.

The loan report
REPORT D94100100 PENNANT NATIONAL BANK DATE 10/01/94
BANK 001 TIME 16:03:46
FROM 10/01/94 MODE 9

ACIF indexer 109

TO 10/01/94 LOAN DELINQUENCY REPORT PAGE 00001

LOAN CUSTOMER LOAN DELINQUENT DELINQUENT DELINQUENT
NUMBER NAME AMOUNT 30 DAYS 60 DAYS 90 DAYS

0000010000 MCMULLIGAN, PATRICK $10000000.00 $ 50.00 $ 50.00 $.00
0000010001 ABBOTT, DAVID $ 11000.00 $ 100.00 $ 200.00 $.00
0000010002 ABBOTT, DAVID $ 12000.00 $ 140.00 $.00 $.00
0000010003 ABBOTT, DAVID $ 13000.00 $ 150.00 $.00 $.00
0000010005 ROBINS, STEVEN $ 500.00 $ 50.00 $.00 $.00
0000010006 PALMER, ARNOLD $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0000010007 PETERS, PAUL $ 650.00 $ 50.00 $.00 $.00
0000010008 ROBERTS, ABRAHAM $ 9000.00 $ 120.00 $.00 $.00
0000010009 SMITH, RANDOLPH $ 8000.00 $ 115.00 $.00 $.00
0000010010 KLINE, PETER $ 8500.00 $ 110.00 $.00 $.00
0000010017 WILLIAMS, ALFRED $ 10000.00 $ 50.00 $ 50.00 $.00
0000010019 JAMES, TIMOTHY $ 11000.00 $ 100.00 $ 200.00 $.00
0000010022 THOMAS, JAMES $ 12000.00 $ 140.00 $.00 $.00
0000010026 ROBBINS, KARL $ 13000.00 $ 150.00 $.00 $.00
0000010029 MILLER, FREDERICK $ 500.00 $ 50.00 $.00 $.00
0000010033 DAVIDSON, ALBERT $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0000010049 STEVENS, MARY $ 650.00 $ 50.00 $.00 $.00
0000010050 MICHAELS, LOUISE $ 9000.00 $ 120.00 $.00 $.00
0000010051 ABEL, CHARLIE $ 8000.00 $ 115.00 $.00 $.00
0000010056 BAKER, THOMAS $ 8500.00 $ 110.00 $.00 $.00
0000010101 TAYLOR, ADRIANNE $ 13000.00 $ 150.00 $.00 $.00
0000010111 MILLER, ROBERT $ 500.00 $ 50.00 $.00 $.00
0000010123 DAVID, NEIL $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0000010132 STEVENS, SUSAN $ 650.00 $ 50.00 $.00 $.00
0000010133 MITCHELL, PAMELA $ 9000.00 $ 120.00 $.00 $.00
0000010135 FRANCIS, WILLIAM $ 8000.00 $ 115.00 $.00 $.00
0000010146 THOMAS, GEORGIA $ 8500.00 $ 110.00 $.00 $.00
0000010152 PHILLIPS, CHARLES $ 13000.00 $ 150.00 $.00 $.00
0000010158 WATKINS, DIANA $ 500.00 $ 50.00 $.00 $.00
0000010171 FRANKLIN, ELIZABETH $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0000010179 TOMLIN, FRANK $ 650.00 $ 50.00 $.00 $.00
0000010200 CASTLES, AARON $ 9000.00 $ 120.00 $.00 $.00
0000010207 WILLOBOUGHY, LUKE $ 8000.00 $ 115.00 $.00 $.00
0000010229 HOPKINS, GEORGE $ 8500.00 $ 110.00 $.00 $.00
0000010251 SHEPHERD, RANDY $ 8000.00 $ 115.00 $.00 $.00
0000010316 AARON, ROBERT $ 8500.00 $ 110.00 $.00 $.00
0000010324 JOHNSON, JONATHON $ 13000.00 $ 150.00 $.00 $.00
0000010327 SELLERS, NELSON $ 500.00 $ 50.00 $.00 $.00
0000010328 ATKINS, ELWOOD $ 1000.00 $ 75.00 $ 150.00 $ 225.00

Each page in the loan report follows the same format: a report page header (five
records) that includes the report data, a report field header (three records), and up
to 58 sorted detail records.

For faster loading and retrieval, the report should be segmented into 100 page
groups when it is loaded into the system. One row should be created for each
group of pages. The row contains three user-defined indexes: the report date, the
beginning loan number, and the ending loan number. The example shows the
indexer parameters that are required for ACIF to process the loan report.

Report data processing
To process a sample report, you typically create or extract a subset of a complete
report.

The example shows how to use the graphical indexer to process a sample report
and create indexing information. The graphical indexer is part of the Content
Manager OnDemand server and is a program that runs on a Windows
workstation. The report in this example was generated on a z/OS system and
transferred to the PC as a binary file, and then loaded into the graphical indexer.

The sample data used to create the indexing information must match the actual
data to be indexed and loaded into the database. When you load a report into the
system, Content Manager OnDemand uses the indexing parameters, options, and
data values that are stored with the Content Manager OnDemand application to

110 Indexing Reference

index the data. If the data being loaded does not match the data that you used to
generate indexing parameters with the graphical indexer, Content Manager
OnDemand might not index the data properly. For example, Content Manager
OnDemand might not be able to locate triggers, indexes, and fields or extract the
correct index values.

Key concepts
Group Trigger. Group triggers identify the beginning of a group. You must define
at least one group trigger. Trigger1 must be a group trigger.

Transaction Field. A field that is used to index a report and that contains one or
more columns of sorted data. Because it is not always practical to store every index
value in the database, ACIF extracts the first and last sorted values in each group.
Depending on the format (ASCII or EBCDIC) of the report data, the data is sorted
according to the collating sequence of the code page.

Field Offset. The location of the field from the beginning of the record.

Field Mask. A pattern of symbols that ACIF matches with data located in the field
columns.

Field Order. Identifies row-oriented data or column-oriented data.

Group Index. Indexes generated once for each group. All data stored in Content
Manager OnDemand must be indexed by group (even if a group contains only one
page).

Grouprange Index. Indexes generated for the starting and ending sorted values in
each group.

Index Break. Indexes that determine when ACIF closes the current group and
begins a new group. A group index determines when ACIF breaks groups.
However, a group index based on a floating trigger cannot be used to control
group breaks. A grouprange index cannot be used to control group breaks.

Defining the application, part 1
A Content Manager OnDemand application identifies the type of data that is
stored in the system, the method used to index the data, and other information
used to load and view reports.

General page:

The General page is where you name the application and assign the application to
an application group.

Assign the application to the application group in which the loan report data will
be maintained. The application group contains database fields for the report date,
beginning loan number, and ending loan number.

View Information page:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display the loan report. Some of the
information is also used for the indexing parameters.

ACIF indexer 111

Because the loan report will be stored in the system as line data, set the Data Type
to Line. Other important settings on this page include:

Code Page
Set the code page to 500. This is the code page of the data as it is stored in
the system and viewed by programs such as the graphical indexer.

RECFM
Records in the input data are fixed length, 133 characters in length.

CC The input data contains carriage control characters in column one of the
data.

CC Type
The input data contains ANSI carriage control characters coded in EBCDIC.

Indexer Information page:

The Indexer Information page is where you specify information that is used to
generate index data for the report.

First, change the Indexer to ACIF. Notice the ACIF indexing parameters, options,
and data values that the administrative client automatically set, based on the
choice of indexer and the settings on the View Information page:

CONVERT=NO
The default value for a line data input file. When loading line data into the
system, ACIF does not have to convert the data.

CPGID=500
The code page of the data as it is stored in the system.

FILEFORMAT=RECORD,133
The FILEFORMAT parameter contains information that identifies the
format and length of the input records.

The remaining parameters are standard ACIF parameters that contain default
values for processing line data.

Next, define additional ACIF parameters, including those that determine the index
data that will be extracted from the report and loaded into the database. To do so,
you can process sample report data with the Content Manager OnDemand
graphical indexer.

Opening reports
When you load a report into the system, Content Manager OnDemand uses the
indexing parameters, options, and data values that are stored with the Content
Manager OnDemand application to index the data.

To open a report:
1. In the Add an Application window, click the Indexer Information page.
2. Select Sample Data.
3. Click Modify.
4. Select the name of the file that contains the sample data and then click Open.

In the Parameter Source area, the client opens the Indexer Properties dialog box.
After you click OK or Cancel, the client loads the input file into the report
window.

112 Indexing Reference

The name of the input file is displayed at the top of the window with a warning
that the data must match the data that is being loaded.

Restriction: If the data that is being loaded does not match the data that you used
to generate indexing parameters with the graphical indexer, Content Manager
OnDemand might not index the data properly. For example, Content Manager
OnDemand might not be able to locate triggers, indexes, and fields or extract
correct index values.

Defining fields
The first field identifies where ACIF locates the date.

ACIF uses fields to determine where to locate index values. For the sample loan
report, define two fields. The second field identifies where ACIF locates the loan
number.

The Identifier (Field1) determines the name of the field parameter. The Trigger
(Trigger1) determines the name of the trigger parameter that ACIF uses to locate
the field. The Records to Search area contains the number of the record where
ACIF can find the field, offset from the trigger. For the loan report, the field record
and the trigger record are the same. The Columns to Search area determines the
column number (83) where ACIF locates the beginning of the field. The Size area
determines the length (8) of the field. The Reference String area lists the selected
field value.

To define fields:
1. Select the field by clicking the area in the report that contains the field data.

For example, in the sample loan report, select the date value displayed in
column 83 of the first record on the page. The date is displayed as 10/01/94
(mm/dd/yy). The graphical indexer highlights the value.

2. Right-click the field and select Field to display the Add a Field.
3. Save the field information and click OK to add the field and return to the

report window.
4. Right-click the Transaction field to open the Add a Field dialog box. To support

the way that Content Manager OnDemand should segment and load the data
and the way users will search for reports, define a transaction field. A
transaction field allows Content Manager OnDemand to index a group of pages
by using the first index value on the first page and the last index value on the
last page. This is an excellent way to segment large reports, which results in
proper data loading and better retrieval performance.

5. Select the field by clicking the area in the report that contains the field data.
Select the loan number that is displayed in column three of the ninth record on
the page. The loan number is displayed as 0000010000.

Verify the options and data values for the field. The Identifier is Field2. The Order
(By Row) identifies how the field data is organized. The Mask determines the
pattern of symbols that ACIF matches to data located in the field. The number
symbol (#) matches any numeric character. The string of ten number symbols
matches a ten-character numeric field. The Size area contains the field length (10).
The Column Offsets area determines the location of the field value from the
beginning of the record. A transaction field can identify up to eight data values,
each located with a Start and End value. For the loan report, the field identifies
one value, starting in column three and ending in column twelve.

ACIF indexer 113

Defining fields

ACIF uses fields to determine where to locate index values. For the sample loan
report, define two fields. The first field identifies where ACIF locates the date. The
second field identifies where ACIF locates the loan number.

Select a field by clicking on the area in the report that contains the field data. In
the sample loan report, select the date value displayed in column 83 of the first
record on the page. The date is displayed as 10/01/94 (mm/dd/yy). After selecting
the field, the graphical indexer highlights the value. Next, with the pointer on the
field, click the right mouse button and select Field to display the Add a Field
dialog box.

The Identifier (Field1) determines the name of the field parameter. The Trigger
(Trigger1) determines the name of the trigger parameter that ACIF uses to locate
the field. The Records to Search area contains the number of the record where
ACIF can find the field, offset from the trigger. For the loan report, the field record
and the trigger record are the same. The Columns to Search area determines the
column number (83) where ACIF locates the beginning of the field. The Size area
determines the length (8) of the field. The Reference String area lists the selected
field value.

To save the field information, click OK to add the field and return to the report
window.

The second field to define contains the loan number. To support the way that
Content Manager OnDemand should segment and load the data, and the way
users will search for reports, define a transaction field. A transaction field allows
Content Manager OnDemand to index a group of pages by using the first index
value on the first page and the last index value on the last page. This is an
excellent way to segment large reports, resulting in good data loading and retrieval
performance. Select the field by clicking on the area in the report that contains the
field data. Select the loan number displayed in column three of the ninth record on
the page. The loan number is displayed as 0000010000. Next, with the pointer on
the field, click the right mouse button and select Transaction Field to open the Add
a Field dialog box.

Verify the options and data values for the field. The Identifier is Field2. The Order
(By Row) identifies how the field data is organized. The Mask determines the
pattern of symbols that ACIF matches to data located in the field. The number
symbol (#) matches any numeric character. The string of ten number symbols
matches a ten-character numeric field. The Size area contains the field length (10).
The Column Offsets area determines the location of the field value from the
beginning of the record. A transaction field can identify up to eight data values,
each located with a Start and End value. For the loan report, the field identifies
one value, starting in column three and ending in column twelve.

To save the field information, click OK to add the field and return to the report
window.

Defining indexes
The indexes determine the values that are stored in the database and the type of
index. For the loan report, define two indexes. The first index contains a date value
for a group of pages. The second index contains the beginning and ending loan
number values for a group of pages.

114 Indexing Reference

To define indexes:
1. Clear any selected triggers or fields by clicking a blank area of the report.
2. Click the Add an Index icon on the toolbar to open the Add an Index dialog

box.
3. Accept the suggested default and the application group database field name,

report_date. The Identifier (Index1) determines the name of the index
parameter. The Attribute is the name of the index. When data is loaded into
the application group, the date index values will be stored in the report_date
application group database field.

4. Select Group. To store data in the system, you must define at least one group
index. The Type of Index determines the type of index generated by ACIF.

5. Set Break to Yes. A group index must always control the break. Even though
in this example, the group index does not control the break, the
GROUPMAXPAGES parameter does.

6. Identify the field parameter that ACIF uses to locate the index and click Add.
The Fields area lists the field parameters that were defined (in the Fields list)
for the report.

7. Type Loan Number in the Attribute field. The Identifier is Index2. Later, on the
Load Information page, you will map the index to application group database
fields. Loan number values are not mapped directly to a database field, so you
must enter your own index name in the Attribute field.

8. Select an index type of GroupRange and identify the field parameter that
ACIF uses to locate the index. ACIF should extract the beginning and ending
loan numbers for a group of pages. Because a grouprange trigger can never
break a group, Break must always be set to No.

9. Select Field2 and add it to the Order list. Click Add to add the index.
10. Click Done to close the Add an Index dialog box.

Displaying triggers, fields, and indexes
You can display the triggers, fields and indexes information in the graphical
indexer. When you click the icon, the graphical indexer changes to display mode
(note the status bar). The triggers and fields appear highlighted.

To display triggers, fields, and indexes:
1. Click the Display and Add Parameters icon on the toolbar to verify the

indexing information. When you click the icon, the graphical indexer changes
to display mode. Note the status bar. The triggers and fields appear
highlighted.

2. Scroll through pages of the report to verify that they appear in the correct
location on all pages.

3. Click the Display and Add Parameters icon to return to add mode.
4. Click the Select Trigger, Index, Field Parameters icon on the toolbar to open

the Select dialog box. By using this dialog box, you can display and maintain
trigger, index, and field information. For example, click Field1 to highlight the
area of the report where the field was defined. Click Field1 again to highlight
the area on the next page. Click Field2 to highlight the field in the report. Click
Index1 and then click Properties to display the Update an Index dialog box.

5. Click Cancel and Trigger1 and then click Properties to display the Update a
Trigger dialog box.

6. Click Cancel and then close theSelect dialog box.

ACIF indexer 115

Setting values in the Indexer Properties dialog box
After defining the view information, the triggers, fields, and indexes, complete the
indexing information for the loan report by setting values in the Indexer Properties
dialog box.

This is a central place to maintain information about the format of the input data,
the resources required to index the data, the index output file, and the optional
user-written programs that can be used to process input, output, and index records
and resources. Some of the parameter values are based on the choices that you
make on the View Information page.

To set values in the Indexer Properties dialog box:
1. Click the Output Information tab. Type 100 (one hundred) in the Max Pages

in a Group field. This is the maximum number of pages in a group. The loan
report will be indexed in groups of 100 pages.

2. Click OK to save the changes and return to the report window.
3. Close the report window. When prompted, click Yes to save your changes and

return to the Indexer Information page.

Defining the application, part 2

Indexer parameters:

The Indexer Parameters area contains all of the indexing parameters required for
ACIF to process the loan report.

Use the scroll bars to review the parameters, including those that were added
based on the settings in the Indexer Properties dialog box.

Load Information page:

The Load Information page is where you map the index attribute name that was
defined to hold loan number attribute values to application group data base fields

For the loan report, ACIF generates indexes for the first and last loan numbers in a
group of pages. The attribute name is Loan Number. Content Manager OnDemand
should store the attribute values in the bgn_loan_num and end_loan_num database
fields.

In the Application Group DB Name list, select bgn_loan_num. Type Loan Number
in the Load ID Name field. Select end_loan_num. Type Loan Number in the Load
ID Name field.

Adding the application:

Click OK to add the application, update the database, and return to the
Administrative Tasks window.

Example Two: Phone bill
This example describes how to create index information for a sample telephone bill
report. A telephone bill report typically contains hundreds of pages of line data.

116 Indexing Reference

The phone bill

Phone Bill Data Stream
1 WILLIAM R. SMITH

5280 SUNSHINE CANYON DR
BOULDER CO 80000-0000

- TOTAL AMOUNT DUE: $56.97
DATE DUE: JAN 29, 1993

-
-
0 1 BASIC SERVICE.$30.56

2 LONG DISTANCE CHARGES.$26.41
0 TOTAL$56.97
-
0 BILL DATE: JAN 11, 1993

ACCOUNT NUMBER: 303-222-3456-6B
-
- $66.79 $66.79 $0.00 $0.00

$56.97
JAN 29, 1993

$56.97
-

ACIF indexer 117

0 SUMMARY OF CURRENT CHARGES
0 RESIDENCE SERVICE $25.07

911 SURCHARGE $0.50
CUSTOMER ACCESS SERVICE $3.50
WIRING MAINTENANCE PLAN $0.50
FEDERAL EXCISE TAX $0.50
STATE TAX $0.49
LONG DISTANCE CHARGES (ITEMIZED BELOW) $30.56

0 LONG DISTANCE CHARGES
0 NO. DATE TIME TO PLACE TO AREA NUMBER MINUTES AMOUNT
0 1 DEC 11 7:15P LOVELAND CO 303 666-7777 006 $0.82

2 DEC 15 9:16A NIWOT CO 303 555-6666 012 $1.56
3 DEC 24 9:32P SANTA BARBARA CA 805 999-6666 032 $15.80
4 DEC 25 2:18P LAS VEGAS NV 702 888-7654 015 $8.23

- TOTAL$26.41
-
-
0 PAGE 1

Phone bill example ACIF parameters
/* DATA INPUT/OUTPUT CHARACTERISTICS */
CC=YES /* carriage controls present */
CCTYPE=A /* ANSI carriage controls in EBCDIC */
CONVERT=YES /* line data to AFP */
CPGID=500 /* code page of the input data */
FILEFORMAT=RECORD,133 /* fixed length records */

/* TRIGGER/FIELD/INDEX DEFINITIONS */
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=12,50,X’C1C3C3D6E4D5E340D5E4D4C2C5D9’,(TYPE=GROUP) /* ACCOUNT NUMBER */
FIELD1=0,66,15,(TRIGGER=2,BASE=0) /* account number field */
FIELD2=0,50,30,(TRIGGER=1,BASE=0) /* name field */
FIELD3=11,61,12,(TRIGGER=1,BASE=0) /* bill date field */
INDEX1=X’818383A36D95A494’,field1,(TYPE=GROUP,BREAK=YES) /* acct_num index */
INDEX2=X’95819485’,field2,(TYPE=GROUP,BREAK=NO) /* cust name index */
INDEX3=X’828993936D8481A385’,field3,(TYPE=GROUP,BREAK=NO) /* bill_date index */

/* INDEXING INFORMATION */
IMAGEOUT=ASIS /* leave image alone */
INDEXOBJ=GROUP /* group-level indexes */
INDEXSTARTBY=1 /* must find index by page 1 */

/* RESOURCE INFORMATION */
CHARS=GT10 /* coded font for AFP */
FORMDEF=F1PHBILL /* formdef name required for AFP */
PAGEDEF=P1PHBILL /* pagedef name required for AFP */
FDEFLIB=/usr/lpp/psf/res/fdeflib /* formdef directories */
FONTLIB=/usr/lpp/psf/res/fontlib /* font directories */
OVLYLIB=/usr/lpp/psf/res/ovlylib /* overlay directories */
PDEFLIB=/usr/lpp/psf/res/pdeflib /* pagedef directories */
PSEGLIB=/usr/lpp/psf/res/pseglib /* pseg directories */
USERLIB=/tmp/res/phbill /* user resources */
RESTYPE=fdef,pseg,ovly /* collect these resources */

The report is logically segmented into statements. The beginning of a statement
occurs when two conditions exist: a record that contains a skip-to-channel one
carriage control and a record that contains the string ACCOUNT NUMBER. Each
statement can contain one or more pages. Because users should view the
statements in the same format as the customer's printed copy, ACIF converts the
input line data to AFP and collects the resources required to view the statements.
“The phone bill” on page 117 shows an example of a statement viewed with one of
the Content Manager OnDemand client programs. The “Phone Bill Data Stream”
on page 117 shows what the input data looks like viewed with an ISPF browser on
the z/OS system. Because the input data is encoded in EBCDIC, the ACIF trigger
and index parameter values must be coded in hexadecimal.

For ease of retrieval, the report should be segmented into groups of pages, with
one statement in each group. One index row should be generated for each group.
The row contains three user-defined indexes: the account number, the customer's
name, and the bill date. The “Phone bill example ACIF parameters” shows the

118 Indexing Reference

ACIF indexer parameters required to process the data on a UNIX operating
system.

Accessing the report
The graphical indexer is part of the Content Manager OnDemand administrative
client, a program that runs on a Windows workstation.

This example provides instructions about using the Content Manager OnDemand
graphical indexer to process a sample report and create indexing information. To
process a sample report, you typically create or extract a subset of a complete
report. The report in this example was generated on a z/OS system and
transferred to the personal computer as a binary file, and then loaded into the
graphical indexer.

The sample data used to create the indexing information must match the actual
data to be indexed and loaded into the database. When you load a report into the
system, Content Manager OnDemand uses the indexing parameters, options, and
data values that are stored with the Content Manager OnDemand application to
index the data. If the data being loaded does not match the data that you used to
generate indexing parameters with the graphical indexer, Content Manager
OnDemand might not index the data properly. For example, Content Manager
OnDemand might not be able to locate triggers, indexes, and fields or extract the
correct index values.

Key concepts
Group Trigger

Group triggers identify the beginning of a group. You must define at least
one group trigger. Trigger1 must be a group trigger.

Group Index
Indexes generated once for each group. All data stored in Content Manager
OnDemand must be indexed by group (even if a group contains only one
page).

Index Break
Indexes that determine when ACIF closes the current group and begins a
new group. One of the group indexes determines when ACIF breaks
groups. However, a group index based on a floating trigger cannot be used
to control the group break.

Convert
Determines whether ACIF converts the input data to AFP. You typically
convert line data to AFP to format the data into pages and enhance the
appearance of the output with images, graphics, fonts, and bar codes.

Resources
Objects required to load, view, and print AFP data. If the input data is AFP
or you convert line data to AFP, you must specify resources and resource
paths.

Defining the application, part 1
A Content Manager OnDemand application identifies the type of data that is
stored in the system, the method used to index the data, and other information
used to load and view reports. This section provides information about the
application for the sample phone bill report.

ACIF indexer 119

General page:

The General page is where you name the application and assign the application to
an application group.

Assign the application to the application group in which the phone bill report data
will be maintained. The application group contains database fields for the account
number, customer name, and bill date.

View Information page:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display the phone bills. Some of the
information is also used for the indexing parameters.

Even though the phone bill report will be stored in Content Manager OnDemand
as AFP data, the Data Type should initially be set to Line to prepare the indexer
information. After completing the indexer information, the Data Type should be set
to AFP, which is the format of the data as stored in the system. Other important
settings on this page include:

Code Page
Set the code page to 500. This is the code page of the input data being
processed by ACIF and the graphical indexer.

RECFM
Records in the input data are fixed length, 133 characters in length.

CC The input data contains carriage control characters in column one of the
data.

CC Type
The input data contains ANSI carriage control characters coded in EBCDIC.

Indexer Information page:

The Indexer Information page is where you specify information that is used to
generate index data for the report.

First, change the Indexer to ACIF. Notice the ACIF indexing parameters, options,
and data values that the administrative client automatically set, based on the
choice of indexer and the settings on the View Information page:

CONVERT=NO
The default value for a line data input file. Although the report will be
stored in the system as AFP data, you first need to process a sample of the
source data with the ACIF graphical indexer. After generating the indexing
parameters, change CONVERT to YES.

CPGID=500
The code page of the input data.

FILEFORMAT=RECORD,133
The FILEFORMAT parameter contains information that identifies the format
and length of the input records.

The remaining parameters are standard ACIF parameters with default values for
processing line data.

120 Indexing Reference

Next, define additional ACIF parameters, including those that determine the index
data extracted from the report and loaded into the database. To do so, process a
sample of the report data with the Content Manager OnDemand graphical indexer.

Opening the report
The name of the input file is displayed at the top of the window with a warning
that the data must match the data being loaded.

Restriction: When you load a report into the system, Content Manager OnDemand
uses the indexing parameters, options, and data values that are stored with the
Content Manager OnDemand application to index the data. If the data being
loaded does not match the data that you used to generate indexing parameters
with the graphical indexer, then Content Manager OnDemand might not index the
data properly. For example, Content Manager OnDemand might not be able to
locate triggers, indexes, and fields or extract correct index values.

When processing sample data with the graphical indexer, you typically define
triggers first, then fields, and finally, indexes.

To open the report:
1. From the Parameter Source area, select Sample Data.
2. Click Modify.
3. Select the name of the file that contains the sample data. Click Open.

Defining triggers
ACIF uses one or more triggers to determine where to begin to locate index values.

For the phone bill report, define two triggers:
v A trigger that instructs ACIF to examine the first byte of every input record for

the presence of an EBCDIC skip-to-channel one carriage control character (X'F1').
This is the TRIGGER1 record.

v A trigger that instructs ACIF to locate the string ACCOUNT NUMBER starting in
column 50 of the 12th record following the TRIGGER1 record.

Together, these triggers uniquely identify the start of a statement in the phone bill
report.

Defining TRIGGER1:

Because the graphical indexer displays the report as it is viewed in Content
Manager OnDemand, the carriage control characters in column one of the data
cannot be viewed from the graphical indexer.

The Identifier (Trigger1) determines the name of the trigger parameter. Trigger1
must always be defined and establishes a starting point where other group triggers
and non-floating fields can be found. The Records to Search area determines the
records ACIF searches to locate the trigger. For the phone bill report, ACIF should
search every record. The Columns to Search area determines the column number of
the trigger record where ACIF begins to search for the trigger string value. Set the
Columns to Search to Carriage Control so that ACIF searches column one of each
record. When that is done, the graphical indexer displays the trigger string value
(X'F1') in the Value area.

To define TRIGGER1:

ACIF indexer 121

1. Select any column in the first record. When you select a column, the graphical
indexer highlights the data.

2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box.
3. Click the Carriage Control button in the Columns to Search box.
4. Click OK to add the trigger and return to the report window.

Locating the account number:

The Identifier (Trigger2) determines the name of the trigger parameter. The trigger
Type is Group.

ACIF should create a group index for each account number that it finds in the
phone bill report. The Records to Search area determines the records ACIF searches
to locate the trigger. For a group trigger other than TRIGGER1, the record is based
on TRIGGER1. Because the trigger string value can be found in a specific record in
each group, only one record will be searched (record 12 in the sample report). The
Columns to Search area determines the columns of the trigger record ACIF
searches. The graphical indexer displays the starting column number of the string
that was selected in the report. In the sample report, ACIF begins its search in
column 50. The Value area contains the trigger string value that ACIF searches for.

To locate the account number:
1. Select the string ACCOUNT NUMBER in the report. The graphical indexer highlights

the string.
2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box.
3. Click OK to add the trigger and return to the report window.

Defining fields
ACIF uses fields to determine where to locate index values.

For the sample phone bill report, define three fields:
v A field that instructs ACIF to locate account number values beginning in column

66 of the TRIGGER2 record.
v A field that instructs ACIF to locate customer name values beginning in column

50 of the TRIGGER1 record.
v A field that instructs ACIF to locate the date of the phone bill beginning in

column 61 of the 11th record following the TRIGGER1 record.

Defining the account number field:

The Identifier (Field1) determines the name of the field parameter. The Trigger
determines the name of the trigger parameter that ACIF uses to locate the field.

By default, the trigger is TRIGGER1. Select TRIGGER2 from the list so that ACIF
uses TRIGGER2 to locate the field. The Records to Search area contains the number
of the record where ACIF can find the field, offset from the trigger. The Columns
to Search area determines the column number (66) where ACIF locates the
beginning of the field. The Size area determines the length (15) of the field. The
Reference String area lists the selected field value.

To define the account number field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the account number on the first page in the sample report.

122 Indexing Reference

2. Click the Define a Field icon on the toolbar to open the Add a Field dialog
box.

3. Click OK to add the field and return to the report window.

Defining the customer name field:

When you select a field value, include sufficient blank columns (to the right of the
name) to generate a field length to hold the longest name that ACIF will encounter
in an actual report.

For example, if the field in an actual report can include values up to 30 characters
in length and the sample value is only 17 characters in length, you must select an
additional 13 columns in the sample report.

The Identifier (Field2) determines the name of the field parameter. The Trigger
(Trigger1) determines the name of the trigger parameter that ACIF uses to locate
the field. The Records to Search area contains the number of the record where
ACIF can find the field, offset from the trigger. The Columns to Search area
determines the column number (50) where ACIF locates the beginning of the field.
The Size area determines the length (30) of the field. The Reference String area lists
the selected field value.

To define the customer name field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the customer name on the first page in the sample report.
2. After you select the sample field value, click the Define a Field icon on the

toolbar to open the Add a Field dialog box.
3. Click OK to add the field and return to the report window.

Defining the bill date field:

The Identifier (Field3) determines the name of the field parameter.

The Trigger (Trigger1) determines the name of the trigger parameter that ACIF
uses to locate the field. The Records to Search area contains the number of the
record where ACIF can find the field, offset from the trigger. The Columns to
Search area determines the column number (61) where ACIF locates the beginning
of the field. The Size area determines the length (12) of the field. The Reference
String area lists the selected field value.

To define the bill date field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the billing date on the first page in the sample report.
2. After you select the sample field value, click the Define a Field icon on the

toolbar to open the Add a Field dialog box.
3. Click OK to add the field and return to the report window.

Defining indexes
The next task in defining indexing parameters for the phone bill report is to define
indexes.

The indexes determine attribute names and values stored in the database and the
type of index that ACIF creates. For the phone bill report, define three indexes.
ACIF extracts three index values for each group in the report.

ACIF indexer 123

Defining the account number index:

The Identifier (Index1) determines the name of the index parameter.

The Attribute is the name of the index. Accept the suggested default acct_num.
When data is loaded into the application group, the account number index values
will be stored into this database field. The Type of Index determines the type of
index that ACIF generates. For each index that is defined in this example, ACIF
should extract a value for each group in the report.

To define the account number index:
1. Clear any selected triggers or fields by clicking a blank area of the report.
2. Click the Add an Index icon on the toolbar to open the Add an Index dialog

box.
3. Set Break to Yes. ACIF should use the account number index to control the

group break. The Break area determines whether ACIF closes the current group
and begins a new group when the index value changes.

4. Identify the field parameter that ACIF uses to locate the index. The Fields area
lists the field parameters that have been defined for the report.

5. Select Field1 in the Fields list and then click Add to move Field1 from the
Fields list to the Order list. For the account number index values for this
example, use Field1.

6. Click Add to add the index.

Defining the customer name index:

The Identifier (Index2) determines the name of the index parameter. The Attribute
is the name of the index.

The Fields area lists the field parameters that were defined (in the Fields list) for
the report. Identify the field parameter that ACIF uses to locate the index.

To define the customer name index:
1. Accept the suggested default name of name. When the report is loaded into the

application group, the customer name index values will be stored into this
database field. The Type of Index determines the type of index that ACIF
generates. For all indexes in this example, ACIF should generate an index for
each group in the report.

2. Set Break to No. The Break areas determines whether ACIF closes the current
group and begins a new group when the index value changes. ACIF does not
use the customer name index to control the group break.

3. Select Field2 in the Fields list and then click Add to move Field2 from the
Fields list to the Order list.

4. Click Add to add the index.

Defining the bill date index:

The Identifier (Index3) determines the name of the index parameter.

The Attribute is the name of the index. The Break area determines whether ACIF
closes the current group and begins a new group when the index value changes.

To define the bill date index:

124 Indexing Reference

1. Accept the suggested default name of bill_date. When a report is loaded into
the application group, the billing date index values are stored into this database
field. The Type of Index determines the type of index that ACIF generates. For
each index that is defined in this example, ACIF extracts a value for each group
in the report.

2. Set Break to No. ACIF does not use the billing date index to control the group
break. The Fields area lists the field parameters that have been defined for the
report.

3. Identify the field parameter that ACIF uses to locate the index. For the billing
data index values, that is Field3.

4. Select Field3 in the Fields list and then click Add to move Field3 from the
Fields list to the Order list.

5. Click Add to add the index.

Displaying triggers, fields, and indexes

To display triggers, fields, and indexes:
1. Click the Display and Add Parameters icon on the toolbar to verify the

indexing information. When you click the icon, the graphical indexer changes
to display mode. The triggers and fields are highlighted.

2. Scroll through pages of the report to verify that they appear in the correct
location on all pages. When you finish, click the Display and Add Parameters
icon to return to add mode.

3. Click the Select Trigger, Index, Field Parameters icon on the toolbar to open
the Select dialog box. By using this dialog box, you can display and maintain
trigger, index, and field information. For example, click Field1 to highlight the
area of the report where the field was defined.

4. Click Field1 again to highlight the area on the next page.
5. Click Field2 to highlight the field in the report.
6. Click Index1 and then click Properties to open the Update an Index dialog box.

Click Cancel.
7. Click Trigger1 and then click Properties to open the Update a Trigger dialog

box.
8. Click Cancel. Close the Select dialog box.

Setting indexer properties
After defining the view information, triggers, fields, and indexes, complete the
indexing information for the phone bill report by setting values in the Indexer
Properties dialog box.

This is a central place to maintain information about the format of the input data,
the resources required to index the data, the index output file, and the optional
user-written programs that can be used to process input, output, and index records
and resources. Some of the parameter values are based on the choices that you
make on the View Information page.

To set indexer properties:
1. Click the Data Format tab. The line data input should be loaded into the

system as AFP data, set Data Conversion to Yes. The administrative client
automatically changes the Data Type to AFP on the View Information page. The
file format and carriage control areas retain the original settings on the View
Information page.

ACIF indexer 125

2. Specify the name of a form definition and page definition and click the
Resource Information tab. The input data will be converted to AFP, and you
must specify values on this page. For the sample phone bill report, ACIF
should collect form definitions, overlays, and page segments. Check the
appropriate boxes in the Resource File Contents area.

3. In the Search Paths area, identify where ACIF can find the resources. Enter the
names of the directories where the resources reside.

4. Click OK to save the changes and return to the report window.
5. Close the report window.
6. When prompted, click Yes to save your changes and return to the Indexer

Information page.

Defining the application, part 2

View Information page:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display the phone bills.

The Data Type was initially set to Line to prepare the indexer information. After
generating the indexing parameters, setting Convert to Yes (in the Indexer
Parameters dialog box) causes the administrative client to automatically set the
Data Type to AFP, which is the format of the data as it is stored in the system.

Indexer parameters:

The Indexer Parameters area now contains all of the indexing parameters required
for ACIF to process the phone bill report.

Use the scroll bars to review the parameters, including those that were added
based on the settings in the Indexer Properties dialog box.

Load Information page:

The Load Information page is where you map the index attribute names defined to
hold the attribute values ACIF extracts from the report to application group
database field names.

For the sample phone bill report, the attributes are named the same as the
database fields. Therefore, the attributes names to not have to be mapped on the
Load Information page. To verify this, select each name in the Application Group
DB Name list. The corresponding index attribute name appears in the Load ID
Name field. The names should be the same.

The Load Information page also contains other values used when Content
Manager OnDemand stores index data in the database. For example, if the
appearance of the date field in the report is different than the default date format
for the application group, you can identify the date format for the report. Verify
the date format for the bill date field. Select bill_date in the Application Group DB
Name list. The Format field should contain the format specifier that describes the
appearance of the date in the report. If it does not, select the format specifier that
correctly describes the appearance of the date in the report.

126 Indexing Reference

Adding the application:

Click OK to add the application, update the database, and returns to the
Administrative Tasks window.

Example three: Income statement
This example describes how to create index information for a sample income
statement report. An income statement report typically contains hundreds of pages
of line data.

The income statement report
Page 1 of 5

Income Statement# 123-45-6789 Date: 09/1994

Eugene & Pearl Aardvark
18005 Le May Street
West Hills PA 12345

Total Income - $ 2,931.26
Type of Income - W2 Wages
Subtotal: 1,015.00

Source Amount
The Pastry Shoppe 1,015.00

Type of Income - Interest
Subtotal: 491.35

Source Amount
Big Bank 123.45
TPS Credit Union 367.90

Type of Income - SEP/IRA
Subtotal: 50.00

Source Amount
LOTTO 50.00

Type of Income - Dividend
Subtotal: 53.91

Source Amount
XVT Railroad 53.91

Type of Income - Farm
Subtotal: 1,321.00

Source Amount
CRP 1,321.00

ACIF parameters for the income statement
/* DATA INPUT/OUTPUT CHARACTERISTICS */
CC=YES /* carriage controls present */
CCTYPE=A /* ANSI controls in EBCDIC */
CONVERT=YES /* convert line data input */

/* to AFP so that page-level */
/* indexes can be generated */

CPGID=500 /* code page ID */
TRC=NO /* table ref chars not present */
FILEFORMAT=RECORD,133 /* Fixed length input file */

/* TRIGGER/FIELD/INDEX DEFINITIONS */
TRIGGER1 = *,1,X’F1’,(TYPE=GROUP) /* 1 */
FIELD1 = 1,73,7,(TRIGGER=1,BASE=0) /* sdate field */
INDEX1 = X’A28481A385’,FIELD1,(TYPE=GROUP,BREAK=YES) /* sdate index */
TRIGGER2 = 1,2,X’C9958396948540E2A381A385948595A3’,(TYPE=GROUP) /* Income Statement */
FIELD2 = 0,20,11,(TRIGGER=2,BASE=0) /* incstmt field */
INDEX2 = X’899583A2A394A3’,field2,(TYPE=GROUP,BREAK=YES) /* incstmt index */

/* Total Income */
TRIGGER3 = *,31,X’E396A3819340C99583969485’,(TYPE=GROUP,RECORDRANGE=(7,8))
FIELD3 = 0,46,10,(TRIGGER=3,BASE=0) /* totinc field */
INDEX3 = X’A396A3899583’,FIELD3,(TYPE=GROUP,BREAK=NO) /* totinc index */
TRIGGER4 = *,5,X’E3A8978540968640C99583969485’,(TYPE=FLOAT) /* Type of Income */
FIELD4 = 0,22,12,(TRIGGER=4,BASE=0) /* Type of Income field */
INDEX4 = X’E3A8978540968640C99583969485’,field4,(TYPE=PAGE) /* Type of Income index */
TRIGGER5 = *,5,X’E2A482A396A38193’,(TYPE=FLOAT) /* Subtotal */

ACIF indexer 127

FIELD5 = 0,17,10,(TRIGGER=5,BASE=0) /* Subtotal field */
INDEX5 = X’E2A482A396A38193’,field5,(TYPE=PAGE) /* Subtotal index */

/* INDEXING INFORMATION */
IMAGEOUT=ASIS /* leave images alone */
INDEXOBJ=ALL /* group and page indexes */
INDEXSTARTBY=1 /* must find index by page 1 */

/* RESOURCE INFORMATION */
CHARS=GT10 /* coded font for AFP */
FORMDEF=F1A10110 /* formdef name required for AFP */
PAGEDEF=P1A08682 /* pagedef name required for AFP */
FDEFLIB=/usr/lpp/psf/res/fdeflib /* formdef directories */
PDEFLIB=/usr/lpp/psf/res/pdeflib /* pagedef directories */
RESTYPE=fdef /* collect these resources */

The report is logically segmented into statements. The beginning of a statement
occurs when two conditions exist: a record that contains a skip-to-channel one
carriage control and a record that contains the string Income Statement. Each
statement can contain one or more pages. “The income statement report” on page
127 shows an income statement viewed with one of the Content Manager
OnDemand client programs.

For ease of retrieval, the report should be segmented into groups of pages, with
one statement in each group. One index row should be created for each group. The
row contains three user-defined indexes: the account number, the statement date,
and the total income. In addition, page-level indexes will be generated so that
users can locate the type of income and the subtotal when they view a statement.
The page-level indexes are stored with the document, not in the database (you
cannot use page-level indexes to search for documents). ACIF can only generate
this type of page-level information when converting the input data to AFP. This
type of page-level information is generated by specifying the CONVERT=YES and
INDEXOBJ=ALL parameters, and by creating an index field with the TYPE=PAGE
option.

“ACIF parameters for the income statement” on page 127 shows the ACIF indexer
parameters required to process the data.

Accessing the sample report
This example provides instructions about using the Content Manager OnDemand
graphical indexer to process a sample report and create indexing information.

The graphical indexer is part of the Content Manager OnDemand administrative
client, a program that runs on a Windows workstation. To process a sample report,
you typically create or extract a subset of a complete report. The report in this
example was generated on a z/OS system and transferred to the PC as a binary
file, and then loaded into the graphical indexer.

The sample data used to create the indexing information must match the actual
data to be indexed and loaded into the database. When you load a report into the
system, Content Manager OnDemand uses the indexing parameters, options, and
data values that are stored with the Content Manager OnDemand application to
index the data. If the data being loaded does not match the data that you used to
generate indexing parameters with the graphical indexer, Content Manager
OnDemand might not index the data properly. For example, Content Manager
OnDemand might not be able to locate triggers, indexes, and fields or extract the
correct index values.

128 Indexing Reference

Key concepts
Group Trigger

Group triggers identify the beginning of a group. You must define at least
one group trigger. Trigger1 must be a group trigger.

Group Index
Indexes generated once for each group. All data stored in Content Manager
OnDemand must be indexed by group (even if a group contains only one
page).

Recordrange Trigger
Triggers that can be found in a range of records. For example, the trigger
string value is Total Income. The string may appear in record seven or
eight, depending on whether the address contains three or four lines.
Define a recordrange trigger to cause ACIF to search records seven and
eight for the trigger string value.

Float Trigger
Triggers that do not necessarily occur in the same location on each page,
the same page in each group, or each group. For example, customer
statements contain one or more accounts. Not every statement contains all
types of accounts. The location of the account type does not appear on the
same line or page in every statement. Define a float trigger to locate each
type of account, regardless of where it appears in the statement.

Page Index

Indexes that can be created zero or more times for each page in the group.
A page index identifies one and only one field. The field must be based on
a floating trigger. Because the field is based on a floating trigger, the page
index might or might not occur. Page indexes are only allowed within
group indexes. Page indexes cannot break a group index. Page indexes are
stored with the document, not in the database. This means that you cannot
use page indexes to search for documents.

After retrieving a document from the server, you can use the page indexes
to move to a specific page in the document by using the Go To command.
ACIF can only generate this type of page-level information when
converting the input data to AFP. This type of page-level information is
generated by specifying the CONVERT=YES and INDEXOBJ=ALL
parameters, and by creating an index field with the TYPE=PAGE option.
For more information, see TYPE=PAGE.

Index Break
Indexes that determine when ACIF closes the current group and begins a
new group. One or more group indexes can be used to determine when
ACIF breaks groups. However, a group index based on a floating trigger
cannot be used to control group breaks. A page index cannot be used to
control group breaks.

Convert
Determines whether ACIF converts the input data to AFP. To generate
page-level indexes that are written to the output file and can be used to
move to a specific page in the document, you must convert a line data
input file to AFP.

Resources
Objects required to load, view, and print AFP data. If the input data is AFP
or you convert line data to AFP, you must specify resources and resource
paths.

ACIF indexer 129

Related reference:
“INDEX” on page 38

Defining the application, part 1
AContent Manager OnDemand application identifies the type of data that is stored
in the system, the method used to index the data, and other information used to
load and view reports.

This section provides information about the application for the sample income
statement report.

General page:

The General page is where you name the application and assign the application to
an application group.

Assign the application to the application group in which the income statement
report data will be maintained. The application group contains database fields for
the group indexes: statement number, statement date, and total income. (ACIF will
also generate page-level indexes for the types of income and subtotals fields.
However, page-level indexes are not stored in the database.)

View Information page:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display the income statements.

Some of the information is also used for the indexing parameters.

Even though the income statement report will be stored in the system as AFP data,
the Data Type should be set to Line at this time to define the triggers, fields, and
indexes. After defining the indexing information, the Data Type will be reset to
AFP, which is the format of the data as it is stored in the system. Other important
settings on this page include:

Code Page
Set the code page to 500. This is the code page of the data as it is viewed
by the graphical indexer.

RECFM
Records in the input data are fixed length, 133 characters in length.

CC The input data contains carriage control characters in column one of the
data.

CC Type
The input data contains ANSI carriage control characters coded in EBCDIC.

Indexer Information page:

The Indexer Information page is where you specify information that is used to
generate index data for the report.

First, change the Indexer to ACIF. Notice the ACIF indexing parameters, options,
and data values that the administrative client automatically set, based on the
choice of indexer and the settings on the Indexer Information page:

CONVERT=NO
The default value for a line data input file. Although the report will be stored

130 Indexing Reference

in the system as AFP data, a sample of the input line data will be processed by
using the graphical indexer. After generating the indexing parameters,
CONVERT will be set to YES.

CPGID=500
The code page of the data as it is viewed by the graphical indexer.

FILEFORMAT=RECORD,133
The FILEFORMAT parameter contains information that identifies the format
and length of the input records.

The remaining parameters are standard ACIF parameters with default values for
processing line data.

Next, define additional ACIF parameters, including those that determine the index
data extracted from the report and loaded into the database. To do so, process a
sample of the report data with the Content Manager OnDemand graphical indexer.

Opening the report
The name of the input file is displayed at the top of the window along with a
warning that the data must match the data being loaded.

When you load a report into the system, Content Manager OnDemand uses the
indexing parameters, options, and data values that are stored with the Content
Manager OnDemand application to index the data. If the data being loaded does
not match the data that you used to generate indexing parameters with the
graphical indexer, Content Manager OnDemand might not index the data properly.
For example, Content Manager OnDemand might not be able to locate triggers,
indexes, and fields or extract the correct index values.

When processing sample data with the graphical indexer, you typically define
triggers first, then fields, and finally, indexes.

To open the report:
1. Parameter Source area, select Sample Data. The client opens the Indexer

Properties dialog box.
2. Click Modify.
3. Select the name of the file that contains the sample data. Click Open.
4. After you click OK or Cancel, the client loads the input file into the report

window.

Defining triggers
ACIF uses one or more triggers to determine where to begin to locate index values

For the income statement report, define five triggers:
v A trigger that instructs ACIF to examine the first byte of every input record for

the presence of an EBCDIC skip-to-channel one carriage control character (X'F1').
This is the TRIGGER1 record.

v A trigger that instructs ACIF to examine every input record for the string Income
Statement beginning in column two of the record following the TRIGGER1
record. This trigger, along with TRIGGER1, uniquely identifies the start of a
statement in the report.

ACIF indexer 131

v A trigger that instructs ACIF to locate the string Total Income starting in column
31 of the seventh or eighth record following the TRIGGER1 record. The trigger
string value can occur in one of two records because it follows the address,
which may contain three or four lines.

v A trigger that instructs ACIF to locate the string Type of Income starting in
column 5 of any record in the group. A statement can contain one or more types
of income, there may be several records that contain this trigger string value.
ACIF should collect all income types for each group.

v A trigger that instructs ACIF to locate the string Subtotal starting in column 5 of
any record in the group. A subtotal value is associated with a type of income, so
ACIF should collect all the subtotals for each group.

Defining TRIGGER1:

The graphical indexer displays the report as it is viewed in Content Manager
OnDemand, you cannot see the carriage control characters in column one of the
data.

The Identifier (Trigger1) determines the name of the trigger parameter. Trigger1
must always be defined and establishes a starting point where other group triggers
and non-floating fields can be found. The Records to Search area determines the
records ACIF searches to locate the trigger. For the income statement report, ACIF
should search every record. The Columns to Search area determines the column
number of the trigger record where ACIF begins to search for the trigger string
value. Set the Columns to Search to Carriage Control so that ACIF searches column
one of each record. When that is done, the graphical indexer displays the trigger
string value (X'F1') in the Value area.

To define the trigger:
1. Select any column in the first record. When you select a column, the graphical

indexer highlights the data.
2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box.
3. Click the Carriage Control icon in the Columns to Search box.
4. ClickOK to add the trigger and return to the report window.

Locating the statement number:

The Identifier (Trigger2) determines the name of the trigger parameter.

Trigger2 is a group trigger that, along with Trigger1, establishes the beginning of
an income statement. The Records to Search area shows that ACIF can locate this
trigger in the first record after the TRIGGER1 record. The Columns to Search area
determines the columns of the trigger record ACIF searches. The graphical indexer
displays the starting column number of the string that is selected in the report.
ACIF begins its search in this column (2 in the sample report). The Value area
contains the trigger string value that ACIF searches for.

To define the trigger:
1. Locate the income statement number and select the string Income Statement in

the report: The graphical indexer highlights the string.
2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box.
3. Click OK to add the trigger and return to the report window.

132 Indexing Reference

Locating the total income:

The Identifier (Trigger3) determines the name of the trigger parameter. The trigger
Type is Group. ACIF should create a total income index for each group in the
report.

To define the trigger:
1. Select the string Total Income in the report. The graphical indexer highlights

the string.
2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box.
3. Specify a Record Range. The total income value can occur in one of two

records, which depend on the number of address lines in a statement.
4. Click OK to add the trigger and return to the report window.

The Records to Search area determines the records ACIF searches to locate the
trigger. The Start value is the first record that can contain the total income value. In
the example, the Start value is the number of the record (7, seven) that contains the
trigger string value selected in the report. The End value is the last record that
ACIF searches for the trigger. In the example, the End value is 8 (eight). The
Columns to Search area determines the column of the trigger record where ACIF
begins to search for the trigger string value. The graphical indexer displays the
starting column number of the string selected in the report. In the sample report,
ACIF begins its search in column 31. The Value area contains the trigger string
value that ACIF searches for.

Locating the type of income:

To define the trigger used to locate the type of income:
1. Select the string Type of Income in the report. The graphical indexer highlights

the string. ACIF should collect index values for all the income types found in
each group. It does not matter which Type of Income string is selected if there
is more than one on the page currently displayed in the report window.

2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box. The
Identifier (Trigger4) determines the name of the trigger parameter. An income
statement can contain one or more income types. ACIF should search every
record in the group. A float trigger is how this is accomplished.

3. Change the Type to Float. When the Type is changed to Float, the graphical
indexer automatically sets the Records to Search to Every Record. The Columns
to Search area determines the columns of the trigger record ACIF searches. The
graphical indexer displays the starting column number of the string selected in
the report. ACIF begins its search in this column (5 in the sample report). The
Value area contains the trigger string value that ACIF searches for.

4. Click OK to add the trigger and return to the report window.

Locating the subtotal:

To define the trigger used to locate the subtotal:
1. Select the string Subtotal in the report. The graphical indexer highlights the

string. ACIF should collect index values for all the subtotals found in each
group. It does not matter which Subtotal string is selected if there is more than
one on the page in the report window.

2. Click the Trigger icon on the toolbar to open the Add a Trigger dialog box. The
Identifier (Trigger5) determines the name of the trigger parameter. An income

ACIF indexer 133

statement can contain one or more subtotals (one for each income type). ACIF
should search every record in the group. A float trigger is how this is
accomplished.

3. Change the Type to Float. When the Type is changed to Float, the graphical
indexer automatically sets the Records to Search to Every Record. The Columns
to Search area determines the columns of the trigger record ACIF searches.
ACIF begins its search in this column (5 in the sample report). The Value area
contains the trigger string value that ACIF searches for. The graphical indexer
displays the starting column number of the string selected in the report.

4. Click OK to add the trigger and return to the report window.

Defining fields

ACIF uses fields to determine where to locate index values. For the sample income
statement report, define five fields:
v A field that instructs ACIF to locate statement date values beginning in column

73 of the record following the TRIGGER1 record.
v A field that instructs ACIF to locate income statement number values beginning

in column 20 of the TRIGGER2 record.
v A field that instructs ACIF to locate total income values beginning in column 46

of the TRIGGER3 record.
v A field that instructs ACIF to locate type of income values beginning in column

22 of the TRIGGER4 record.
v A field that instructs ACIF to locate subtotal values beginning in column 17 of

the TRIGGER5 record.

Defining the statement date field:

To define the statement date field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the statement date on the first page in the sample report.
2. Click the Define a Field icon on the toolbar to open the Add a Field dialog

box. The Identifier (Field1) determines the name of the field parameter. The
Trigger determines the name of the trigger parameter that ACIF uses to locate
the field. By default, ACIF uses TRIGGER1. The Records to Search area contains
the number of the record where ACIF can find the field, offset from the trigger
(in the example, one). The Columns to Search area determines the column
number (73) where ACIF locates the beginning of the field. The Size area
determines the length (7) of the field. The Reference String area lists the
selected field value.

3. Click OK to add the field and return to the report window.

Defining the statement number field:

To define the statement number field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the statement number on the first page in the sample report.
2. Click the Define a Field icon on the toolbar to open the Add a Field dialog

box. The Identifier (Field2) determines the name of the field parameter. The
Trigger determines the name of the trigger parameter that ACIF uses to locate
the field. By default, ACIF uses TRIGGER1. Because ACIF should locate the
statement number field using TRIGGER2, select TRIGGER2 from the Trigger
list. The Records to Search area contains the number of the record where ACIF

134 Indexing Reference

can find the field, offset from the trigger (in the example, zero). The Columns
to Search area determines the column number (20) where ACIF locates the
beginning of the field. The Size area determines the length (11) of the field. The
Reference String area lists the selected field value.

3. Click OK to add the field and return to the report window.

Defining the total income field:

To define the total income field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select the total income value on the first page in the sample report.
When you select a field value, include two blank columns (to the right of the
value) to generate a field length to hold the largest total income value that
ACIF will encounter in an actual report. For example, if the field can include
values up to ten characters in length and the sample value is only eight
characters in length, select an additional two columns in the sample report.

2. Select the sample field value and click the Define a Field icon on the toolbar to
open the Add a Field dialog box. The Identifier (Field3) determines the name of
the field parameter. The Trigger determines the name of the trigger parameter
that ACIF uses to locate the field. By default, ACIF uses TRIGGER1. Because
ACIF should locate the total income field using TRIGGER3, select TRIGGER3
from the Trigger list. The Records to Search area contains the number of the
record where ACIF can find the field, offset from the trigger (in the example,
zero). The Columns to Search area determines the column number (46) where
ACIF locates the beginning of the field. The Size area determines the length
(10) of the field. The Reference String area lists the selected field value.

3. Click OK to add the field and return to the report window.

Defining the type of income field:

To define the type of income field:
1. Select a field by clicking the area in the report that contains the field data. For

example, select one of the type of income values on the first page in the sample
report. When you select a field value, include sufficient blank columns (to the
right of the value) to generate a field length to hold the largest type of income
value that ACIF will encounter in an actual report. For example, if the field can
include values up to twelve characters in length and the sample value is only
eight characters in length, select an additional four columns in the sample
report.

2. Select the sample field value and click the Define a Field icon on the toolbar to
open the Add a Field dialog box. The Identifier (Field4) determines the name of
the field parameter. The Trigger determines the name of the trigger parameter
that ACIF uses to locate the field. By default, ACIF uses TRIGGER1. Because
ACIF should locate the type of income field using TRIGGER4, you must select
TRIGGER4 from the Trigger list. The Records to Search area contains the
number of the record where ACIF can find the field, offset from the trigger (in
the example, zero). The Columns to Search area determines the column number
(22) where ACIF locates the beginning of the field. The Size area determines the
length (12) of the field. The Reference String area lists the selected field value.

3. Click OK to add the field and return to the report window.

Defining the subtotal field:

To define the subtotal field:

ACIF indexer 135

1. Select a field by clicking the area in the report that contains the field data. For
example, select one of the subtotal values on the first page in the sample
report. When you select a field value, include sufficient blank columns (to the
right of the value) to generate a field length to hold the largest subtotal value
that ACIF will encounter in an actual report. For example, if the field can
include values up to ten characters in length and the sample value is only eight
characters in length, select an additional two columns in the sample report.

2. Select the sample field value and click the Define a Field icon on the toolbar to
open the Add a Field dialog box. The Identifier (Field5) determines the name of
the field parameter. The Trigger determines the name of the trigger parameter
that ACIF uses to locate the field. By default, ACIF uses TRIGGER1. Because
ACIF should locate the total income field using TRIGGER5, you must select
TRIGGER5 from the Trigger list. The Records to Search area contains the
number of the record where ACIF can find the field, offset from the trigger (in
the example, zero). The Columns to Search area determines the column number
(19) where ACIF locates the beginning of the field. The Size area determines the
length (10) of the field. The Reference String area lists the selected field value.

3. Click OK to add the field and return to the report window.

Defining indexes
The next task in defining indexing parameters for the income statement report is to
define indexes.

The indexes determine attribute names and values of the group indexes that are
stored in the database and the page indexes that are stored with the AFP
document, and the type of index ACIF creates. For the income statement report,
define five indexes. ACIF extracts a minimum of five index values for each group
in the report. ACIF can extract additional page-level index values if there is more
than one type of income present in a statement.

Defining the statement date index:

To define an index, first clear any selected triggers or fields by clicking a blank
area of the report:
1. Click the Add an Index icon on the toolbar to open the Add an Index dialog

box. The Identifier (Index1) determines the name of the index parameter. The
Attribute is the name of the index. Accept the suggested default, sdate. When
the report is loaded into the application group, the date index values will be
stored into this database field. The Type of Index determines the type of index
ACIF generates. ACIF should extract one date index value for each group in
the report, accept the default Type of Group.

2. Set Break to Yes. The Break areas determines whether ACIF closes the current
group and begins a new group when the index value changes. ACIF should use
the statement date index to control the group break. The Fields area lists the
field parameters that have been defined for the report.

3. Identify the field parameter that ACIF uses to locate the index. For the
statement date index values, that is Field1.

4. Select Field1 in the Fields list and then click Add to move Field1 from the
Fields list to the Order list.

5. Click Add to add the index.

136 Indexing Reference

Defining the statement number index:

The Identifier (Index2) determines the name of the index parameter. The Attribute
is the name of the index. Accept the suggested default, incstmt. When data is
loaded into the application group, the statement number index values will be
stored into this database field. The Type of Index determines the type of index
ACIF generates.

To define the statement number index:
1. Accept the default Type of Group. ACIF should extract one income statement

value for each group in the report.
2. Set Break to Yes. The Break area determines whether ACIF closes the current

group and begins a new group when the index value changes. ACIF should use
the statement number index to control the group break. The Fields area lists the
field parameters that have been defined for the report.

3. Identify the field parameter that ACIF uses to locate the index. For the
statement number index values, that is Field2. Select Field2 in the Fields list
and then click Add to move Field2 from the Fields list to the Order list.

4. Click Add to add the index.

Defining the total income index:

The Identifier (Index3) determines the name of the index parameter. The Attribute
is the name of the index. Accept the suggested default, totinc. When the report is
loaded into the application group, the total income index values will be stored into
this database field. The Type of Index determines the type of index ACIF generates.

To define the total income index:
1. Accept the default Type of Group. Identify the field parameter that ACIF uses

to locate the index. ACIF should extract one total income value for each group
in the report.

2. Set Break to No. The Break area determines whether ACIF closes the current
group and begins a new group when the index value changes. ACIF should not
use the total income index to control the group break. The Fields area lists the
field parameters that have been defined for the report.

3. For the total income index values, that is Field3. Select Field3 in the Fields list
and then click Add to move Field3 from the Fields list to the Order list.

4. Click Add to add the index.

Defining the type of income index:

The Identifier (Index4) determines the name of the index parameter. The Attribute
is the name of the index. For AFP documents, Content Manager OnDemand
displays the attribute names and values of page indexes in the Go To dialog box,
allowing users a way to navigate pages of a statement.

Attribute names should be meaningful to the user. Enter Type of Income. The Type
determines the type of index ACIF generates. The page indexes are stored with the
AFP document. A page index cannot be used to break a group.

To define the type of income index:
1. Set the Type to Page. ACIF extracts type of income indexes for each page in a

statement.

ACIF indexer 137

2. Identify the field parameter that ACIF uses to locate the index. The Fields area
lists the field parameters that were defined for the report.

3. For the type of income index values, that is Field4. Select Field4 in the Fields
list and then click Add to move Field4 from the Fields list to the Order list.

4. Click Add to add the index.

Defining the subtotal index:

The Identifier (Index5) determines the name of the index parameter.

The Attribute is the name of the index. For AFP documents, Content Manager
OnDemand displays the attribute names and values of page indexes in the Go To
dialog box, which allows users a way to navigate pages of a statement.

Attribute names should be meaningful to the user. Enter Subtotal. The Type of
Index determines the type of index ACIF generates. The page indexes are stored
with the AFP document. A page index cannot be used to break a group. The Fields
area lists the field parameters that were defined for the report.

To define the subtotal index:
1. Set the Type to Page. ACIF extracts subtotal indexes for each page in a

statement.
2. Identify the field parameter that ACIF uses to locate the index. For the subtotal

index values, that is Field5.
3. Select Field5 in the Fields list and then click Add to move Field5 from the

Fields list to the Order list.
4. Click Add to add the index.
5. Click Done to close the Add an Index dialog box.

Displaying triggers, fields, and indexes
Click the Display and Add Parameters icon on the toolbar to verify the indexing
information. When you click the icon, the graphical indexer changes to display
mode (note the status bar). The triggers and fields appear highlighted. Scroll
through pages of the report to verify that they appear in the correct location on all
pages. When you have finished, click the Display and Add Parameters icon to
return to add mode.

Click the Select Trigger, Index, Field Parameters icon on the toolbar to open the
Select dialog box. Using this dialog box, you can display and maintain trigger,
index, and field information. For example, click Field1 to highlight the area of the
report where the field is defined. Click Field1 again to highlight the area on the
next page. Click Field2 to highlight the field in the report. Click Index1 and then
click Properties to open the Update an Index dialog box. Click Cancel. Click
Trigger1 and then click Properties to open the Update a Trigger dialog box. Click
Cancel. Close the Select dialog box.

Defining indexer properties
After defining the view information, triggers, fields, and indexes, complete the
indexing information for the income statement report by setting values in the
Indexer Properties dialog box.

This is a central place to maintain information about the format of the input data,
the resources required to index the data, the index output file, and the optional
user-written programs that may be used to process input, output, and index

138 Indexing Reference

records and resources. Some of the parameter values are based on the choices that
you make on the View Information page. Click Help on each page to display
information about the fields.

To define the indexer properties:
1. Click the Data Format tab. The input data will be stored in the system as AFP

data (to support the page-level indexes in the output file).
2. Set Data Conversion to Yes. The administrative client automatically changes the

Data Type to AFP on the View Information page. The file format and carriage
control areas retain the original settings that were made on the View
Information Page.

3. Click the Resource Information tab. The line data input will be converted to
AFP. Specify the name of a form definition and page definition.

4. To collect form definitions, select the appropriate option in the Resource File
Contents area.

5. In the Search Paths area, specify the location of the resources. Enter the name
of the directories where the resources reside.

6. Click OK to return to the report window. Close the report window.
7. When prompted, click Yes to save your changes and return to the Indexer

Information page.

Defining the application, part 2

View Information page:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display the income statements.

To define the triggers, fields, and indexes, the Data Type was set to Line, which is
the format of the input data. After defining the indexing parameters, the Data
Conversion option was set to Yes, causing the Data Type to be set to AFP, which is
the format of the data as it is stored in the system.

Indexer parameters:

The Indexer Parameters area now contains all of the indexing parameters required
for ACIF to process the income statement report. Use the scroll bars to review the
parameters.

Load Information page:

The Load Information page is where you map index attribute names defined to
hold the attribute values that ACIF extracts from the report to application group
database field names.

For the sample income statement report, the attribute names are the same as the
database fields. Therefore, there is no need to map the attributes names on the
Load Information page. To verify this, select each name in the Application Group
DB Name list. The corresponding index attribute name appears in the Load ID
Name field. The names should be the same.

The Load Information page also contains other values used when the index data is
loaded into the database, for example:

ACIF indexer 139

v If the appearance of the date field in the report is different than the default date
format for the application, you can specify the correct date format found in the
report. Verify the date format for the billing date field. Select sdate in the
Application Group DB Name list. The Format field should contain the format
specifier that describes the appearance of the date in the report (%m/%Y for the
MM/YYYY format dates found in the report). If it does not, select the format
specifier that correctly describes the appearance of the date in the report.

v If the field contains special characters, you can specify that you want Content
Manager OnDemand to remove them from the data before storing index values
in the database. For decimal fields, such as the Total Income and Subtotal fields,
you probably want to remove the blank, $ (dollar), , (comma), and . (decimal)
characters from the data. To do so, select the field in the Application Group DB
Name list. In the Embedded field, enter the comma and period characters. In the
Leading field, enter the blank and dollar characters.

Adding the application:

Click OK to add the application, update the database, and return to the
Administrative Tasks window.

Example four: AFP data
This example shows how to create indexing information for an AFP input file that
contains Tagged Logical Element (TLE) structured fields.

140 Indexing Reference

The AFP document

ACIF Parameters for the AFP document
/* DATA INPUT/OUTPUT CHARACTERISTICS */
CC=YES /* carriage controls present */
CCTYPE=A /* ANSI controls in EBCDIC */
CONVERT=YES /* AFP data in the system */

/* TRIGGER/FIELD/INDEX DEFINITIONS */
/* None when ACIF processes AFP input data containing TLEs */

/* INDEXING INFORMATION */
DCFPAGENAMES=YES /* unique page names */
UNIQUEBNGS=YES /* unique group names */
IMAGEOUT=ASIS /* leave images alone */
INDEXOBJ=ALL /* required for large object */

/* RESOURCE INFORMATION */
FORMDEF=F1A10110 /* default formdef */
USERLIB=/opt/IBM/ondemand/V9.5/pubs/reslib /* resource library */
RESTYPE=FDEF,PSEG,OVLY /* collect resources */

The TLEs in the file contain group-level and page-level index tags. The group-level
index information is stored in the database and used to search for and retrieve the

ACIF indexer 141

file. The page-level index information is stored with the file. The page identifiers
can be used to move to a specific page in the file with one of the Content Manager
OnDemand client programs. The IBM Document Composition Facility (DCF) is an
example of an application that can create AFP files that contain TLE structured
fields. “The AFP document” on page 141 shows a page of a sample document
viewed with one of the Content Manager OnDemand client programs.

For faster retrieval, the input data should be loaded into the system as Content
Manager OnDemand large objects in groups of 20 pages. “ACIF Parameters for the
AFP document” on page 141 shows the indexer parameters required for ACIF to
process the AFP file on a UNIX operating system.

Accessing the report
Because there is no need to specify TRIGGER, FIELD, and INDEX parameters for the
report, a sample of the input does not need to be processed with the graphical
indexer.

Key concepts
There are several important concepts you need to understand about this example.

Large Object

Provides enhanced usability and better retrieval performance for reports
that contain very large logical items, for example, statements that exceed
500 pages, and files that contain many images, graphics, fonts, and bar
codes. Content Manager OnDemand segments the input data into groups
of pages, compressed inside of a large object.

You specify the number of pages in a group. When the user selects a
document for viewing, the client retrieves and uncompresses the first
group of pages. As the user moves from page to page of the document, the
client automatically retrieves and uncompresses the appropriate groups of
pages. This type of page-level information is stored in the index file. ACIF
can generate this type of page-level information whether or not the input
data is being converted to AFP. This type of page-level information is
essential for loading Content Manager OnDemand large objects. This type
of page-level information is generated by specifying the INDEXOBJ=ALL
parameter.

Page Identifiers

For AFP data, identifies each page in a report and provides another way to
move to a specific page in a report, which is typically extracted from
page-level TLEs contained in the document. This type of page-level
information is stored in the output file. ACIF can only generate this type of
page-level information when converting the input data to AFP. This type of
page-level information is generated by specifying the CONVERT=YES and
INDEXOBJ=ALL parameters. In this example, the input data already
contains the page-level TLE information.

Convert
Determines the type of output produced by ACIF. When you process AFP
input data with ACIF, you must specify CONVERT=YES.

Resources
Objects required to load, view, and print AFP data. If the input data is AFP,
you must specify resources and resource paths, even if the input data
contains all of the required resources.

142 Indexing Reference

TLEs If an AFP file contains TLEs you cannot specify TRIGGER, FIELD andINDEX
parameters because the file already contains index information.

Defining the application, part 1
A Content Manager OnDemand application identifies the type of data that is
stored in the system, the method used to index the data, and other information
used to load and view reports.

General:

The General page is where you name the application and assign the application to
an application group.

Assign the application to the application group in which the input data will be
maintained. The application group contains database fields for the document date
and document number.

View Information:

The View Information page is where you specify information needed by Content
Manager OnDemand client programs to display data retrieved from the system.
Some of the information is also used for the indexing parameters.

Because the data will be stored in Content Manager OnDemand as AFP data, set
the Data Type to AFP.

Indexer Information:

The Indexer Information page is where you specify ACIF as the Indexer and create
additional ACIF parameters, including those that identify the format of the AFP
file, the type of indexes that ACIF generates, and the resources required by ACIF to
process the input file. In this example, the parameters will be created by using the
keyboard option on the Indexer Information page.

Creating indexing parameters
Create indexing parameters through the Add an Application window.

The system does not verify the parameters, options, or data values that you type in
the Edit Indexer Parameters window.

To create indexing parameters:
1. From the Parameter Source area, select Sample Data.
2. In the Parameter Source area, select Keyboard.
3. Click Modify to open the Edit Indexer Parameters window where you can

type, modify, and delete ACIF parameters.

Data format parameters
You must specify specific values to certain parameters when you process input
data with ACIF and store AFP data in the system.

The following parameters describe the format of the AFP file. Whenever you
process input data with ACIF and store AFP data in the system, you must specify
CONVERT=YES.
v CC=YES
v CCTYPE=A

ACIF indexer 143

v CONVERT=YES

Defining indexing information
The INDEXOBJ parameter describes the type of index information that ACIF
generates. This parameter causes ACIF to generate page-level indexes in addition
to group-level indexes.

In this example, two types of page-level information will be generated:
v Page-level indexes in the index file to support Content Manager OnDemand

large objects.
v Page-level indexes in the output file that can be used from the client to move to

a specific page in the document.
INDEXOBJ=ALL

The following parameter is required because the sample AFP file was generated by
the DCF application: DCFPAGENAMES=YES. Also, you must change the value of the
DCFPAGENAMES parameter.

Defining resource information
Several parameters are required so that ACIF can process the AFP file. These are
the minimum parameters required by ACIF to process AFP data.

The parameters specify the name of a standard form definition and the directory
that contains resources. If all the resources are contained within the AFP file, a
directory is not required, and specify FORMDEF=DUMMY.
v FORMDEF=F1A10110

v USERLIB=/opt/IBM/ondemand/v9.5/pubs/reslib

v RESTYPE=FDEF,PSEG,OVLY

Close the Edit Indexer Parameters window. When prompted, click Yes to save your
changes, update the database, and return to the Indexer Information page.

Defining the application, part 2

Indexer parameters:

The Indexer Parameters area now contains all of the indexing parameters required
for ACIF to process the AFP file.

Use the scroll bars to review the parameters.

Load information:

The sample AFP file contains TLEs that contain the index attribute names and
values. ACIF extracts the index attribute names and values from the input file and
writes them to an index object file.

The index attribute names in the input file must match the application group
database field names. If they do not, then you must map the attributes names to
the database field names on the Load Information page. To do so, select a database
field in the Application Group DB Name list. Verify that the value in the Load ID
Name field is the index attribute name.

The Load Information page also contains other values that can be used when
loading index data into the database. For example, if the appearance of the date

144 Indexing Reference

field in the document is different than the default date format for the application,
you can specify the correct date format found in the report. Verify the date format
for the document date field. Select pubdate in the Application Group DB Name
list. The Format field should contain the format specifier that describes the
appearance of the date in the document. If it does not, select the format specifier
that correctly describes the appearance of the date in the document.

Adding the application:

After completing all the updates to the application, click OK to add the
application.

Click OK to add the application, update the database, and return to the
Administrative Tasks window.

Using ACIF in z/OS
You can run ACIF on a z/OS system on which the ACIF programs are installed.

To run ACIF on a z/OS system requires:
v OS/390 Version 2 Release 10 or later or z/OS Version 1 Release 13 or later
v The ACIF Version 4 Release 5. See the README file provided with the Content

Manager OnDemand product package for ordering information.

Sample JCL
The example shows a sample JCL to invoke ACIF to process print output from an
application.

Sample z/OS JCL to Invoke ACIF
//USERAPPL EXEC PGM=user application
//PRINTOUT DD DSN=print file,DISP=(NEW,CATLG)
//*
//ACIF EXEC=APKACIF,PARM=[[’PARMDD=ddname][,MSGDD=ddname’]],REGION=3M
//INPUT DD DSN=*.USERAPPL.PRINTOUT
//OUTPUT DD DSN=output file,DISP=(NEW,CATLG),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS),
// SPACE=(32760,(nn,nn)),UNIT=SYSDA
//RESOBJ DD DSN=resource file,DISP=(NEW,CATLG),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS),
// SPACE=(32760,(nn,nn)),UNIT=SYSDA
//INDEX DD DSN=index file,DISP=(NEW,CATLG),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS),
// SPACE=(32760,(nn,nn)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ACIF parms go here

About the JCL statements
The JCL statements are explained as follows. For more information about
programming JCL, refer to the PSF Application Programming Guide.

USERAPPL
Represents the job step to run the application that produces the actual print
output. USERAPPL or user application is the name of the program that produces
the print data set.

PRINTOUT
The DD statement that defines the output data set produced from the
application. The application output cannot be spooled to the Job Entry

ACIF indexer 145

Subsystem (JES), because ACIF does not read data from the spool. The print file
is the name of the print data set created by the user application.

ACIF
Represents the job step that invokes ACIF to process the print data set. You can
specify two optional input parameters to ACIF:

PARMDD
Defines the DDname for the data set containing the ACIF processing
parameters. If PARMDD is not specified, ACIF uses SYSIN as the default
DDname and terminates processing if SYSIN is not defined.

MSGDD
Defines the DDname for the message data set. When ACIF processes a
print data set, it can issue a variety of informational or error messages. If
MSGDD is not specified as an invocation parameter, ACIF uses
SYSPRINT as the default DDname and stops processing if SYSPRINT is
not defined.

Although the sample shows a specified REGION size of 3MB, this value can
vary, depending on the complexity of the input data and the conversion and
indexing options requested.

INPUT
This DD statement defines the print data set to be processed by ACIF.

OUTPUT
This DD statement defines the name of the print data set that ACIF creates as a
result of processing the application's print data set.

RESOBJ
This DD statement defines the name of the resource data set that ACIF creates
as a result of processing the print data set. This statement is not required if
RESTYPE=NONE is specified in the processing parameter data set.

INDEX
This DD statement defines the name of the index object file that ACIF creates
as a result of processing the application's print data set.

This parameter is not required unless indexing is requested or unless the input
print data set contains indexing structured fields. If you are not sure whether
the print data set contains indexing structured fields, and you do not want an
index object file created, then specify DD DUMMY; no index object file will be
created.

SYSPRINT
If you are not writing messages to spool, the data set must have the following
attributes: LRECL=137,BLKSIZE= multiple of LRECL + 4 RECFM=VBA.

SYSIN
This DD statement defines the data set containing the ACIF processing
parameters. This is the default DDname if PARMDD is not specified as an
invocation parameter.

Files named by the FDEFLIB, PDEFLIB, PSEGLIB, and OVLYLIB parameters are
allocated to system-generated DDnames.

146 Indexing Reference

ACIF parameters
Many of the parameters specified to ACIF are the same as the parameters specified
to PSF when you print a job. For those parameters that are common to both PSF
and ACIF, you should specify the same value to ACIF as specified to PSF.

For z/OS, you may need to consult your system programmer for information on
resource library names and other printing defaults contained in the PSF startup
procedures used in your installation.

Syntax Rules
Each parameter with its associated values can span multiple records, but the
parameter and the first value must be specified in the same record. If additional
values need to be specified in the following record, a comma (,) must be specified,
following the last value in the previous record.

The following are general syntax rules for parameter files:
v The comma indicates that additional values are specified in one or more of the

following records. Underscored values are the default and are used by ACIF if
no other value is specified. For example:

FDEFLIB=TEMP.USERLIB,PROD.LIBRARY,
OLD.PROD.LIBRARY /* These are the FORMDEF libraries.

v Blank characters inserted between parameters, values, and symbols are allowed
and ignored. For example, specifying:

FORMDEF = F1TEMP
PAGEDEF = P1PROD

INDEX1 = FIELD1 , FIELD2 , FIELD3

Is equivalent to specifying:
FORMDEF=F1TEMP
PAGEDEF=P1PROD
INDEX1=FIELD1,FIELD2,FIELD3

v When ACIF processes any unrecognized or unsupported parameter, it issues a
message, ignores the parameter, and continues processing any remaining
parameters until the end of the file, at which time it terminates processing.

v If the same parameter is specified more than one time, ACIF uses the last value
specified. For example, if the following is specified:
CPGID=037
CPGID=395

ACIF uses code page 395.
v Comments must be specified using “/*” as the beginning delimiter. For example:

FORMDEF=F1TEMP /* Temporary FORMDEF
FORMDEF=F1PROD /* Production-level FORMDEF

Comments can appear anywhere, but ACIF ignores all information in the record
following the “/*” character string.

v Although ACIF supports parameter values spanning multiple records, it does
not support multiple parameters in a single record. The following is an example
of this:
CHARS=X0GT10 CCTYPE=A /* This is not allowed.

JCL and ACIF parameters
The ACIF application example shows an example of z/OS JCL and ACIF
processing parameters used to invoke the ACIF program to index an input file.

ACIF indexer 147

Example of a z/OS ACIF Application
//job... JOB ...
//APKSMAIN EXEC PGM=APKACIF,REGION=8M,TIME=(,30)
//*===*
//* RUN APK, CREATING OUTPUT AND A RESOURCE LIBRARY *
//*===*
//STEPLIB DD DSN=APKACIF.LOAD,DISP=SHR
//INPUT DD DSN=USER.ACIFEX2.DATA,DISP=SHR
//SYSIN DD *

/* DATA CHARACTERISTICS */
CC = YES /* carriage control used */
CCTYPE = A /* carriage control type */
CHARS = GT15
CPGID = 500 /* code page identifier */

/* FIELD AND INDEX DEFINITION */
FIELD1 = 13,66,15 /* Account Number */
FIELD2 = 0,50,30 /* Name */
FIELD5 = 4,60,12 /* Date Due */
INDEX1 = ’Account Number’,field1 /* 1st INDEX attribute */
INDEX2 = ’Name’,field2 /* 2nd INDEX attribute */
INDEX5 = ’Date Due’,field5 /* 5th INDEX attribute */

/* INDEXING INFORMATION */
INDEXOBJ = ALL

/* RESOURCE INFORMATION */
FORMDEF = F1A10110 /* formdef name */
PAGEDEF = P1A08682 /* pagedef name */
FDEFLIB = SYS1.FDEFLIB
FONTLIB = SYS1.FONTLIBB,SYS1.FONTLIBB.EXTRA
OVLYLIB = SYS1.OVERLIB
PDEFLIB = SYS1.PDEFLIB
PSEGLIB = SYS1.PSEGLIB
RESFILE = SEQ /* resource file type */
RESTYPE = FDEF,PSEG,OVLY /* resource type selection */

/* FILE INFORMATION */
INDEXDD = INDEX /* index file ddname */
INPUTDD = INPUT /* input file ddname */
OUTPUTDD = OUTPUT /* output file ddname */
RESOBJDD = RESLIB /* resource file ddname */

/* EXIT AND TRIGGER INFORMATION */
TRIGGER1 = *,1,’1’ /* 1st TRIGGER */
TRIGGER2 = 13,50,’ACCOUNT NUMBER:’ /* 2nd TRIGGER */
/*
//OUTPUT DD DSN=APKACIF.OUTPUT,DISP=(NEW,CATLG),
// SPACE=(32760,(150,150),RLSE),UNIT=SYSDA,
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM,DSORG=PS)
//INDEX DD DSN=APKACIF.INDEX,DISP=(NEW,CATLG),
// SPACE=(32760,(15,15),RLSE),UNIT=SYSDA,
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM,DSORG=PS)
//RESLIB DD DSN=APKACIF.RESLIB,DISP=(NEW,CATLG),
// SPACE=(12288,(150,15),RLSE),UNIT=SYSDA,
// DCB=(LRECL=12284,BLKSIZE=12288,RECFM=VBM,DSORG=PS)
//SYSPRINT DD DSN=APKACIF.SYSPRINT,DISP=(NEW,CATLG),
// SPACE=(9044,(5,5),RLSE),UNIT=SYSDA,
// DCB=(BLKSIZE=9044,RECFM=VBA,DSORG=PS)

z/OS libraries
The example ACIF parameters define the following libraries.

Table 5. Libraries defined in example ACIF parameters

Library Name z/OS Name

FDEFLIB Form definition
library SYS1.FDEFLIB

FONTLIB Font libraries SYS1.FONTLIBB SYS1.FONTLIBB.EXTRA

148 Indexing Reference

Table 5. Libraries defined in example ACIF parameters (continued)

Library Name z/OS Name

OVLYLIB Overlay library SYS1.OVERLIB

PDEFLIB Page definition
library SYS1.PDEFLIB

PSEGLIB Page segment
library SYS1.PSEGLIB

ACIF output
The example shows the ACIF job created the output files.

Table 6. Output files created by example ACIF job

Type of File z/OS Name

Document file, including indexing structured fields APKACIF.OUTPUT

Index object file APKACIF.INDEX

Resource file APKACIF.RESLIB

Message file listing:

v ACIF parameters used

v Resources used

v Return code

APKACIF.SYSPRINT

Concatenating files
Before the Content Manager OnDemand data loading programs can process the
z/OS files created by ACIF, you must concatenate the index object file and the
resource file to the document file, creating a single input file for Content Manager
OnDemand.

You can then transfer the concatenated file to a Content Manager OnDemand
server and process it with the Content Manager OnDemand data loading
programs.

The example shows that you can use JCL to concatenate the files created by ACIF:
//PRINT EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=APKACIF.INDEX,DISP=SHR
// DD DSN=APKACIF.RESLIB,DISP=SHR
// DD DSN=APKACIF.OUTPUT,DISP=SHR
//SYSUT2 DD DSN=NEW.PRINT.OBJECT,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(32760,nnn),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM)

Where nnn is equal to the size of the index object file, plus the size of the resource
file, plus the size of the document file.

The resource file must have been created by specifying RESFILE=SEQ.

ACIF indexer 149

Hints and tips
This chapter contains General-use Programming Interface and Associated Guidance
Information.

The following topics may provide information that is helpful when using ACIF.
v Working with control statements that contain numbered lines
v Placing TLEs in named groups
v Working with file transfer
v Understanding how ANSI and machine carriage controls are used
v Understanding common methods of transferring files from other systems to

Content Manager OnDemand servers:
– Physical media such as tape
– PC file transfer program
– FTP
– Download

v Using the Invoke Medium Map (IMM) structured field
v Indexing considerations
v Concatenating the resource file and the document
v Concatenating resources to an AFP file
v Specifying the IMAGEOUT parameter
v Running with inline resources
v Writing inline resources to the output file
v Regular expressions

Control statements that contain numbered lines
You sometimes can receive unexpected results when data set names are continued
and the control statements have line numbers in columns 73 - 80 because ACIF
reads all 80 columns of the control statements for processing purposes.

This topic contains information relevant to running ACIF on z/OS systems.

ACIF attempts to use the line number as a data set name and issues messages
APK451S and APK417I with a numeric value. To resolve this problem, remove any
line numbers from the control statements and rerun the job or use a comment
indicator (/*) before each line number.

Placing TLEs in named groups

To avoid having ACIF terminate with errors, IBM recommends that you place
page-level TLEs inside named groups, using one named group per page.

You should be aware that if you specify INDEXOBJ=ALL and the input data
contains composed (AFP data stream) pages, page-level TLEs (TLE records after
the AEG), and no named groups (BNG/ENG), ACIF may end with error message
410 or 408. The reason for this action is that no named groups are present, and the
page-level TLE records must be collected in memory until the end of the input
document or file. MO:DCA index structures contain the extent (size) of the object
being indexed. Indexed objects are delimited by a named group (or end
document-EDT). If no named groups are present, ACIF will continue to build the
index in memory. If the input file is large enough, there will not be enough

150 Indexing Reference

memory, and ACIF will terminate. The ACIF memory manager currently limits the
number (but not the size) of memory blocks that can be allocated; therefore,
increasing the memory available to the indexing process may not alleviate the
problem.

File transfer
ACIF processes print records. A record is a sequence of contiguous characters,
usually representing a printed line or a MO:DCA (AFP data stream) structured
field.

ACIF needs to know the following information to print it:
v The length of each print record
v What kind of carriage control is used

Structured fields are similar to print commands. Each record has a defined
boundary or length. Some files contain information in each record that describes
the record's length; these are called variable-length files. Other files require an
external definition of length; these are called fixed-length files.
v Variable-length files

– Variable-length files may use a length prefix that provides the length of a
record in the file. For variable-length files that contain records with a length
prefix, each record in the file contains a two-byte length prefix that provides
the length of the record. The length prefix is a 16-bit binary number. The
value of the length prefix does not include the two-byte length prefix. Use the
FILEFORMAT=RECORD control statement to identify a file that contains
records with length prefixes.

– Variable-length files may use a separator or delimiter to indicate the end of a
record, instead of using a length prefix. All of the bytes up to, but not
including, the delimiter are considered to be part of the record. In UNIX, the
delimiter is X'0A' (In Windows, the delimiter is X'0D0A'). If the file uses
EBCDIC encoding, the delimiter is X'25'. Use the FILEFORMAT=STREAM
control statement to designate files that use delimiters to indicate record
boundaries.

– ACIF reads the first six bytes and tests for all ASCII charactersCode points
from X'00' to X'7F', to determine if a file is encoded in ASCII or EBCDIC. If no
non-ASCII characters are found, ACIF assumes the file uses the ASCII
newline character, X'0A'. Otherwise, ACIF assumes the file uses the EBCDIC
newline character, X'25'. Because an input file can misguide ACIF, either
intentionally or by accident, a set of rules has been established to determine
how ACIF will interpret how a file will be processed. The following table lists
the possible combinations.

Table 7. Data type and Newline character combinations

Data Type Newline Character

All EBCDIC EBCDIC X'25'

All EBCDIC ASCII X'0A'

All ASCII EBCDIC X'25'

All ASCII ASCII X'0A'

Important: These combinations are possible only if a file contains a prefix
with a string that indicates a different code set than actually exists. For

ACIF indexer 151

EBCDIC data with ASCII newlines, use X'0320202020200A'. For ASCII data
with EBCDIC newlines, use X'03C1C1C1C1C125'.

v Fixed-length files

Fixed-length files contain records that are all the same length. No other
separators or prefixes or self-identifying information exists that indicates the
record length. You must know the record length and use the
FILEFORMAT=RECORD,nnn control statement, where nnn represents the
length of each record.

For variable- and fixed-length files that use length prefixes, MO:DCA structured
fields are treated as a special case. All such structured fields are self-identifying
and contain their own length. They need not contain a length prefix to be correctly
interpreted but will be processed correctly if there is a length prefix.

ANSI and machine carriage controls
In many environments (including IBM mainframes and most minicomputers),
printable data normally contains a carriage control character.

The carriage control character acts as a vertical tab command to position the paper
at the start of a new page, at a specified line on the page, or to control skipping to
the next line. The characters can be one of two types: ANSI carriage control or
machine carriage control.

ANSI carriage control characters

v The most universal carriage control is ANSI, which consists of a single
character that is a prefix for the print line. The following table lists the
standard ANSI controls.

Table 8. Standard ANSI controls

ANSI Command

space Single space the line and print

0 Double space the line and print

- Triple space the line and print

+ Do not space the line and print

1 Skip to channel 1 (the top of the form, by
convention)

2 through 9 Skip to hardware-defined position on the
page

A, B, or C Defined by a vertical tab record or FCB

All ANSI controls perform the required spacing before the line is
printed. ANSI controls may be encoded in EBCDIC (CCTYPE=A) or in
ASCII (CCTYPE=Z).

Machine carriage control characters

v Machine carriage controls were originally the actual hardware control
commands for IBM printers, and are often used on non-IBM systems.
Machine controls are literal values, not symbols. They are not
represented as characters in any encoding and, therefore, machine
controls cannot be translated. The following table lists the typical
machine controls.

152 Indexing Reference

Table 9. Typical machine controls

Machine Command

X'09' Print the line and single space

X'11' Print the line and double space

X'19' Print the line and triple space

X'01' Print the line and don't space

X'0B' Space one line immediately (don't print)

X'89' Print the line, then skip to channel 1 (top of
form, by convention)

X'8B' Skip to channel 1 immediately (don't print)

Note that machine controls print before performing any required
spacing. There are many more machine control commands than ANSI.
Carriage controls may be present in a print file or not, but every record
in the file must contain a carriage control if the controls are to be used.
If the file contains carriage controls, but CC=NO is specified to ACIF, the
carriage controls will be treated as printing characters. If no carriage
controls are specified, the file will be printed as though it were single
spaced.

Common methods of transferring files

You can transfer files from other systems to Content Manager OnDemand servers
using a variety of methods. Each method results in a different set of possible
outputs. Some methods produce output that cannot be used by ACIF. Methods
commonly used to transfer files from other systems to Content Manager
OnDemand servers and produce output that ACIF can use are:
v Physical media (such as tape)
v PC file transfer program
v FTP
v Download

Conventional file transfer programs cannot correctly handle the combination of
variable-length files, which contain bytes that cannot be translated from their
original representation to ASCII, and may also contain machine control characters,
mixed line data and structured fields, or special code points that have no standard
mapping.

The best solution is to either NFS-mount the file, or write a small filter program on
the host system that appends the two-byte record length to each record and
transfer the binary file.

Generally, NFS-mounted files are not translated. However, NFS includes a two-byte
binary record length as a prefix for variable-length records. (Check your NFS
implementation; you may have to use special parameters.)

Restriction: Some NFS systems do not supply the binary record length for
fixed-length files.

ACIF treats a file that contains only structured fields (MO:DCA,AFP, or LIST3820
data streams) as a special case. You can always transfer such a file as a binary file
with no special record separator, and ACIF can always read it because structured

ACIF indexer 153

fields are self-defining, containing their own length; ACIF handles print files and
print resources (form definitions, fonts, page segments, overlays, and so on) in the
same way.

Physical media

Normally, you can copy fixed-length files without any transformation using a
physical media, such as tape.

PC file transfer program
You may transfer files from other systems to Content Manager OnDemand servers
by using an implementation of the most common PC file transfer program
(IND$FILE). You may also transfer files from a host to a personal computer.

The variety of possible parameters that can affect printing are host-dependent. IBM
recommends:
v For z/OS, the default is a binary number.
v For files with fixed-length records, binary numbers are recommended (you must

know the record length).
v For files with variable-length records that contain only printable characters and

either ANSI carriage control characters, or no carriage control characters:
– Use ASCII and CRLF
– Specify the control statement INPEXIT=asciinpe to remove the otherwise

unprintable carriage return (X'0D') that is inserted in the file.
v For VSE files, additional file transfer parameters are available.
v For files with machine carriage control, you can specify BINARY, CRLF and CC.

This provides an EBCDIC file with correct carriage controls separated by ASCII
newlines and carriage returns.

FTP
From most systems, FTP works similarly to PC file transfer, and most of the same
options are provided.

Also, when executing FTP on a Content Manager OnDemand server, you can omit
the extraneous carriage return. However, you must test and check your
implementation; some FTPs use IMAGE as a synonym for BINARY.

Download
You can use Download to transmit a print data set from the JES spool to file
systems on Content Manager OnDemand servers.

The z/OS component of Download operates as one or more JES writers. You
configure the writers to interpret JCL parameters, such as CLASS and DEST, and
route spool files to a Content Manager OnDemand server. You can use other JCL
parameters, such as FORM and DATASET to determine the application group and
application to load. Download transmits data in binary format.

To conserve space and increase transmission speed, Download truncates a record if
it contains one or more blank characters (X'40') at the end of the record. As a
result, after transmitting a report to the server, some records may contain fewer
characters than the assumed record length. If the location of a FIELD begins
outside the actual length of a record, ACIF fails unless you specify a DEFAULT
value. For example, a report on the z/OS system contains fixed length records,
each 133 bytes in length. Columns 129 through 133 of the records contain audit
data generated by the application program. You define an audit field, to extract the

154 Indexing Reference

values of columns 129 through 133 and store them in the database. If a record has
not been audited, the columns contain blank characters. During transmission of the
file, Download eliminates the blank characters from the end of all records that
contain X'40' in columns 129 through 133. To prevent ACIF from failing, you must
define a DEFAULT value for the field. For example:
FIELD2=1,129,4,(DEFAULT=X’D5D6D5C5’)

In the example, if a record is not 129 bytes in length, ACIF generates the value
NONE (X'D5D6D5C5') for FIELD2.

Using the Invoke Medium Map (IMM) structured field
Retrieval programs must be able to detect which medium map is active, to ensure
that pages are reprinted (or viewed) using the correct medium map.

To ensure that the correct medium map is used, use the Active Medium Map
triplet and the Medium Map Page Number triplet (from the appropriate Index
Element [IEL] structured field in the index object file), which designate the name of
the last explicitly invoked IMM structured field and the number of pages produced
since the IMM structured field was invoked. The retrieval system can use this
information to dynamically create IMM structured field at the appropriate locations
when it retrieves a group of pages from the archived document file.

Indexing considerations
The index object file contains Index Element (IEL) structured fields that identify
the location of the tagged groups in the print file.

The tags are contained in the Tagged Logical Element (TLE) structured fields.

The structured field offset and byte offset values are accurate at the time ACIF
creates the output document file. However, if you extract various pages or page
groups for viewing or printing, you will have to dynamically create from the
original a temporary index object file that contains the correct offset information
for the new file. For example, assume:
v ACIF processed all the bank statements for 6 branches, using the account

number, statement date, and branch number.
v The resultant output files were archived using a system that allowed these

statements to be retrieved based on any combination of these three indexing
values.

If you wanted to view all the bank statements from branch 1, your retrieval system
would have to extract all the statements from the print file ACIF created (possibly
using the IELs and TLEs in the index object file) and create another document for
viewing. This new document would need its own index object file containing the
correct offset information. The retrieval system would have to be able to do this.

Under some circumstances, the indexing that ACIF produces may not be what you
expect, for example:
v If your page definition produces multiple-up output, and if the data values you

are using for your indexing attributes appear on more than one of the
multiple-up subpages, ACIF may produce two indexing tags for the same
physical page of output. In this situation, only the first index attribute name will
appear as a group name, when you are using Content Manager OnDemand. To
avoid this, specify a page definition that formats your data without multiple-up
when you run ACIF.

ACIF indexer 155

v If your input file contains machine carriage control characters, and you use a
skip-to-channel character to start a new page (typically X'89' or X'8B') as a
TRIGGER, the indexing tag created will point to the page on which the carriage
control character was found, not to the new page started by the carriage control
character. This is because machine controls write before executing any action,
and are therefore associated with the page or line on which they appear. Note:
Using machine carriage control characters for triggers is not recommended.

v If your input file contains application-generated separator pages (for example,
banner pages), and you want to use data values for your indexing attributes,
you can write an Input Data exit program to remove the separator pages.
Otherwise, the presence of those pages in the file will make the input data too
unpredictable for ACIF to reliably locate the data values. As alternatives to
writing an exit program, you can also change your application program to
remove the separator pages from its output, or you can use the INDEXSTARTBY
parameter to instruct ACIF to start indexing on the first page after the header
pages.

Concatenating resources to an AFP file
A resource group can be created and stored in a file by using the ARSACIF
program. The resource file and the AFP file can then be concatenated together to
form a file that can be processed by the indexing program.

The following lists the parameters used to create a resource file using the ARSACIF
program. The parameters process an AFP file named credit.afp, which is an AFP
file that contains no indexing information or inline resources. The example is for
an AIX system. For this example, the output file and the index file that ACIF
usually generates are not needed; all resources are assumed to be in the directory
named by the USERLIB parameter.

Contents of the ACIF parameter file parms.acif:
CC=YES
CCTYPE=A
RESTYPE=OVLY,PSEG,FDEF
INPUTDD=credit.afp
OUTPUTDD=/dev/null
INDEXDD=/dev/null
RESOBJDD=credit.res
USERLIB=/usr/resources

Command used to generate the resource group file:
arsacif parmdd=parms.acif

Command to concatenate the resource group file and the AFP file:
cat credit.res credit.afp > credit.out

You can then process the credit.out file with the indexing program if you want to
index the data.

Specifying the IMAGEOUT parameter
ACIF converts IM1 format images in the input file, in overlays, and in page
segments to uncompressed IOCA format, if IMAGEOUT=IOCA (the default) is
specified.

An uncompressed IOCA image may use a significantly higher number of bytes
than an IM1 image and may take more processing time to convert, especially for

156 Indexing Reference

shaded or patterned areas. Although IOCA is the MO:DCA-P standard for image
data, and some data stream receivers may require it, all products may not accept
IOCA data. All software products from the IBM Printing Systems Division do,
however, accept IOCA data as well as IM1 image data.

IBM recommends that you specify IMAGEOUT=ASIS, unless you have a specific
requirement for IOCA images.

Running ACIF with inline resources
To successfully process an input file that contains inline resources, the inline
resources must be included in the input file in the order in which they are used or
EXTENSIONS=RESORDER must be specified.

If a resource references another resource, the referenced resource must be included
inline before the resource that references it. For example, if an overlay references a
coded font that consists of the character set C0D0GT18 and code page T1D0BASE,
the inline resources must be in this order:
code page T1D0BASE
character set C0D0GT18
coded font
overlay

ACIF does not look ahead in the inline resources, so, if the inline resources are not
in the correct order, ACIF tries to read the referenced resource from a resource
library. If the resource is not found, ACIF ends processing with an error.

Here is the recommended order that the resources should appear in the input file:
v FORMDEF
v CHARACTER SETS
v CODE PAGES
v PAGE SEGMENTS
v OVERLAYS
v PAGEDEF

Writing inline resources to the output file
When you are indexing and writing inline resources to the output document file,
the offsets in the index object file are the same as if you are doing regular resource
collection to a resource file.

This is because the offsets are calculated from the Begin Document (BDT)
structured field, not from the beginning of the output document file. The offset
from the BDT structured field to the indexed data is the same regardless of
whether resources precede it.

Using regular expressions
A regular expression is a pattern that is used to match characters in a string. There
are many online resources that explain the syntax rules of regular expressions.

Regular expression examples

Restriction: Regular expressions are not available on z/OS systems.
The following examples show some common regular expressions:

ACIF indexer 157

Table 10. Common regular expressions

Regular expression Results

Account Finds the characters "Account." By default searches are case
sensitive.

[A-Z] Finds one uppercase letter.

[A-Z]{3} Finds three consecutive uppercase letters.

[0-9]{5} Finds five consecutive digits.

[0-9]+ Finds one or more digits.

[^a-z] Finds everything except lower case a to z.

\s Finds one whitespace character (space, tab, and so on).

\S Finds any character except for whitespace.

ACIF can use a regular expression in the TRIGGER and FIELD parameter. In the
TRIGGER, the regular expression specifies the pattern for which to search; in the
FIELD, the regular expression is applied to the characters which have been
extracted from the field in a way similar to using a mask.

The regular expression must be specified in the code page given by the CPGID
parameter. If you are running on an ASCII platform and the CPGID of the
document is ASCII then the regular expression can be specified as text, for
example:
CPGID=819
TRIGGER1=*,*,’PAGE’,(TYPE=GROUP)
TRIGGER2=*,25,REGEX=’[A-Z]{3}-[A-Z]{6}’,(TYPE=FLOAT)
FIELD1=0,9,2,(TRIGGER=1,BASE=TRIGGER)
FIELD2=0,38,10,(TRIGGER=2,BASE=0,REGEX=’[A-Z] [0-9]{3}-\S+’)
INDEX1=’Page’,FIELD1,(TYPE=GROUP,BREAK=YES)
INDEX2=’Sub-Source’,FIELD2

In this example TRIGGER2 uses a regular expression, which specifies a pattern of
three uppercase letters, followed by a hyphen, followed by six uppercase letters.
The text "SUB-SOURCE" would match the pattern.

FIELD2 uses a regular expression, which specifies one uppercase letter, followed by
a space, followed by three numbers, followed by a hyphen, followed by one or
more non white space characters. The characters "Q 010-1", "I 000-RS", or "L
133-1B" would match this regular expression.

If you are running on an ASCII platform and the CPGID parameter of the
document is not ASCII then the regular expression must be specified in
hexadecimal in the code page given by the CPGID parameter, for example:
CPGID=500
TRIGGER1=*,1,REGEX=X’4AF060F95AC0F3D0’ /* [0-9]{3} */

Performance

All text to which the regular expression is applied is converted to UTF-16.
v Performance might not be as fast when you use a regular expression. Using a

text string can be faster.
v If the CPGID value is incorrect, the conversion might fail with error message

APK2080.

158 Indexing Reference

If the regular expression is invalid, ACIF will fail with error message APK484.

Regular expressions and the TRIGGER parameter

On the TRIGGER parameter use the regular expression instead of a text string. A
regular expression can be used on both a group trigger and a floating trigger.

The maximum length of the regular expression is 250 bytes.

If an asterisk is specified for the column, ACIF searches the entire record for the
string that matches the regular expression. If a column is specified, ACIF searches
the text starting in that column for the string that matches the regular expression.
The regular expression must match text which begins in that column. If a column
range is specified, ACIF searches only the text within the column range for the
string that matches the regular expression. The regular expression must match text
which begins in one of the columns specified by the column range.

The maximum record length to which the regular expression can be applied is 2K
(2048 bytes). If there are records in the file which are longer, use a trigger column
range to specify a subset of the record.

When the regular expression matches the text in a record, ACIF looks for the next
trigger, or, if all the group triggers have been found, ACIF collects the fields.

Regular expressions and the FIELD parameter

On the FIELD parameter use the regular expression instead of a mask. A mask and
a regular expression cannot both be specified on the same FIELD parameter.

The maximum length of the regular expression is 250 bytes.

The regular expression can be specified on a field based on a group trigger, a field
based on a floating trigger, or a transaction field. Masks can be specified only on
fields based on floating triggers and transaction fields.

ACIF extracts the text specified by the column and length values. The maximum
length of a field that can be specified in the FIELD parameter is 250 bytes. After
the field is extracted, ACIF applies the regular expression to the text. Any text that
matches the regular expression is extracted for the field. If the matching text is
shorter than the length specified in the FIELD parameter, it is padded with blanks
until it equals the length.

Default values for fields

If the regular expression does not match any text in the field, a default value can
be used. Whether a default value is used and which type of default value depends
on the type of field. There are three types of fields: fields based on group triggers,
fields based on floating triggers, and transaction fields.

Group field
1. If a regular expression does not match any text in the group field, the default

value specified on the FIELD parameter is used. If no default value is specified,
ACIF ends with error message APK488.

2. If the record is only long enough to contain part of the field, the regular
expression is applied only to the portion of the record that is present.

ACIF indexer 159

3. If the record is not long enough to contain even the first byte of the field, the
default value specified on the FIELD parameter is used. If no default value is
specified, ACIF ends with error message APK449.

Floating field
1. If a regular expression does not match any text in the floating field, there is no

error and the default value specified on the FIELD parameter is not used.
2. If the record is only long enough to contain part of the field, the regular

expression is applied only to the portion of the record that is present.
3. If the record is not long enough to contain even the first byte of the field, the

default value specified on the FIELD parameter is used. If no default value is
specified, ACIF ends with error message APK449.

4. In the case of (1) the load process can use the default value in the Application.
The other case where the load process uses the default value in the Application
is when a floating trigger is not found within a group. Since the trigger is not
found, there is no field for that group.

Transaction field (grouprange or pagerange field)
1. If the regular expression does not match any text in the transaction field, there

is no error and processing continues. A default value cannot be specified for a
transaction field.

2. If the record is not long enough to contain the entire field, no field is collected.
There are no errors and processing continues.

Examples

Using a regular expression for a trigger:
TRIGGER1=*,1,REGEX=’P[A-Z]{3} ’,(TYPE=GROUP)

This regular expression will match text that begins in column 1 with the letter 'P'
and is followed by three uppercase letters followed by a space. For example:
"PAGE "

Using a regular expression to extract a date in the form of "July 4, 1956":
TRIGGER1=*,1,’1’
FIELD1=0,13,18,(REGEX=’[A-Z][a-z]+ [0-9]+, [0-9]{4}’,DEFAULT=’January 1, 1970’)
INDEX1=’Date’,FIELD1

Using a regular expression with a transaction field to extract a range of Social
Security numbers:
TRIGGER1=*,1,’1’
FIELD1=0,30,3
FIELD2=*,*,12,(OFFSET=(59:70),ORDER=BYROW,REGEX=’[0-9]{3}-[0-9]{2}-[0-9]{4}’)
INDEX1=’DEPT’,FIELD1,(TYPE=GROUP)
INDEX2=’SOCIAL SECURITY NUMBER’,FIELD2,(TYPE=GROUPRANGE)

160 Indexing Reference

OS/390 indexer

You can use the OS/390 indexer to extract index data from and generate index
data about line data and AFP reports. In addition, other data types, such as TIFF
images, can be captured using the ANYSTORE Exit.

Restriction: The OS/390 indexer is supported on the z/OS and AIX platforms.

The OS/390 indexer extracts indexes and stores documents in a single pass of
reading the input data. The OS/390 indexer indexes reports based on the
organization of the data in the report. The OS/390 indexer processes two input
sources:
v Indexing parameters that specify how the data should be indexed. You can

create the indexing parameters when you define a Content Manager OnDemand
application. The parameters are of the same form as used by ACIF, along with
some extensions which are unique to the OS/390 indexer.

v The print data stream.

The OS/390 indexer indexes input data based on the organization of the data:
v AFP reports. For AFP reports, the index values are already specified within the

AFP data stream.
v Document organization. For reports made up of logical items, such as

statements, policies, and invoices. The OS/390 indexer can generate index data
for each logical item in the report.

v Report organization. For reports that contain line data with sorted values on
each page, such as a transaction log or general ledger. The OS/390 indexer can
divide the report into groups of pages and generate index data for each group of
pages.

v Anystore Exit. This exit determines the content and index values of each
document.

v Large Object. Large object support is designed to provide enhanced usability
and better retrieval performance for reports that contain very large documents
by segmenting the documents into groups of pages and downloading only the
page groups that the users request to view.

Before you can index a report with the OS/390 indexer, you must create a set of
indexing parameters. The indexing parameters describe the physical characteristics of
the input data, identify where in the data stream that the OS/390 indexer can
locate index data, and provide other directives to the OS/390 indexer. Collecting
the information needed to develop the indexing parameters requires a few steps.
For example:
1. Examine the input data to determine how users use the report, including what

information they need to retrieve a report from the system (indexing
requirements).

2. Create parameters for indexing.

You run the OS/390 indexer as part of the Content Manager OnDemand load
process with the ARSLOAD program. The Content Manager OnDemand
application retrieves the indexing parameters from the Content Manager
OnDemand database and uses the parameters to process the input data.

© Copyright IBM Corp. 1993, 2014 161

The OS/390 indexer can logically divide reports into individual items, such as
statements, policies, and bills. You can define up to 128 index fields for each item
in a report.

The OS/390 indexer has been enhanced to allow for the storage of documents (or
large object segments) that exceed 2 GB. A report might contain multiple
documents (or large object segments) each of which exceeds 2 GB in size. This
enhancement does not affect the limitations imposed by other indexers.

The limitations on the document size are based on the available hardware and any
other limitations placed on the operating environment:
1. If the document (or large object segment) size exceeds 20 MB, then the

document data is temporarily stored in the Content Manager OnDemand
temporary HFS directory (described below). Therefore, if the largest document
is 6 GB, then the temporary HFS directory must have at least 6 GB of available
space.
If the available HFS disk space is not sufficient to store the largest document in
the report, the load fails.
The temporary HFS directory is defined by one of these options:
v The -c option in the ARSLOAD parameters. If this is not specified, then:
v The environment variable ARS_TMP. If this is not specified, then:
v The environment variable TEMP. If this is not specified, then:
v The current working directory.

2. In the final load stage, the complete document (or large object segment) needs
to be loaded into memory. Therefore, if the document (or large object segment)
is 6 GB in size, then the load program needs to be able to acquire 6 GB of
memory to load the data. If the available memory is not sufficient to store the
largest document in the report, the load fails.

Any data type can be captured using the OS/390 indexer. Native support exists for
line data and AFP data. Other data types, such as PDF and TIFF images, can be
captured by using the Anystore Exit. This provides a method to capture documents
of any type and size (including those greater than 2 GB) into Content Manager
OnDemand.

Indexing

Indexing parameters include information that allow the OS/390 indexer to identify
key items in the input data stream so they can be extracted from the report and
stored in the Content Manager OnDemand database. Content Manager OnDemand
uses these index values for efficient, structured search and retrieval.

The OS/390 indexer uses the following methods to determine the index values for
each document within a report.
v AFP Reports. The OS/390 indexer can capture fully resolved AFP data streams

(AFPDS). The AFPDS must contain the index values either in the form of TLE or
NOP records. For details on these record types, see “INDEXSTYLE” on page 176.
You can capture AFP resources in either of the following ways:
– The resources are in-stream at the beginning of the AFPDS. In this case, the

Begin Resource Group (BRG) record and End Resource Group (ERG) record
must occur prior to the Begin Document (BDT) record.

162 Indexing Reference

– In a z/OS environment, the resources are in a separate input file and
specified in the ARSLOAD JCL via a RESOURCE ddname. On AIX, the
resources must be included inline at the beginning of the load file.

In either case, only resource records beginning with the BRG record and ending
with the ERG record are captured and stored in the Content Manager
OnDemand database.

v Line Print Reports. Line Print Reports consist of text formatted print streams.
Column one of each record contains a carriage control character.
You specify the index information that allows the OS/390 indexer to segment
the print stream into individual items called groups. A group is a collection of
one or more pages. You define the bounds of the collection, for example, a bank
statement, insurance policy, phone bill, or other logical segment of a report file.
A group can also represent a specific number of pages in a report. For example,
you might decide to segment a 10,000 page report into groups of 100 pages. The
OS/390 indexer creates indexes for each group. Groups are determined when
the value of an index changes (for example, account number) or when the
maximum number of pages for a group is reached.
An indexing parameter is made up of an attribute name (for example, Customer
Name) and an attribute value (for example, Earl Hawkins). The parameters
include pointers that tell the OS/390 indexer where to locate the attribute
information in the data stream. For example, the tag Account Number with the
pointer 1,21,16 means that the OS/390 indexer can expect to find Account
Number values starting in column 21 of specific input records. The OS/390
indexer collects 16 bytes of information starting at column 21 and adds it to a
list of attribute values found in the input. For each group that is identified by
the OS/390 indexer, a set of index values that are associated with the group are
stored by the Content Manager OnDemand load process into the Content
Manager OnDemand database.

v Anystore Exits. The use of an Anystore Exit allows for the capture of any type of
data. The exit is responsible for reading the data to be captured, breaking it into
documents, and determining the index values. A sample Anystore Exit is
provided which captures TIFF images using a pre-generated set of indexing
instructions read from a separate file.

v Large Object. Provides enhanced usability and better retrieval performance for
reports that contain very large logical items (for example, statements that exceed
500 pages) and files that contain many images, graphics, fonts, and bar codes.
Content Manager OnDemand segments data into groups of pages, compressed
inside a large object. You determine the number of pages in a group. When the
user retrieves an item, Content Manager OnDemand retrieves and uncompresses
the first group of pages. As the user navigates pages of the item, Content
Manager OnDemand automatically retrieves and uncompresses the appropriate
groups of pages. To enable large object support, fill the Large Object check box
on the Load Information tab of the Application definition.
The Large Object option is supported for AFP reports as well as Line Print
reports.

v The OS/390 indexer also provides support for line print reports with global
and/or local Xerox DJDE records. These documents can be loaded in the same
manner as the standard line print reports described earlier with the addition of
DJDE record handling logic. The global DJDE records are stored separately from
the individual documents and retrieved at print time as required.

OS/390 indexer 163

OS/390 indexer parameters
To provide the segmentation and indexing instructions, the OS/390 indexer process
uses a set of indexing parameters. Some parameters are identical to their ACIF
indexer counterparts. A subset of those parameters have unique sub-parameters or
behave differently than they do in ACIF. If an OS/390 indexer parameter is similar
to an ACIF counterpart, they can be generated using the graphical indexer from
the administration client. There are also parameters that are unique to the OS/390
indexer.

AFPINDEXBUF
Reports that use INDEXSTYLE=AFP can have multiple index rows generated per
document. This is accomplished either by using multiple TLE records with the
same attribute name, or by using the NOP indexing technique with ODZOSDIR
records.

The OS/390 Indexer uses a memory buffer to track the multiple index rows for a
given segment. The AFPINDEXBUF allows for controlling the size of this buffer.
Specify a value representing the number of index rows to put in each buffer.

If the specified value is smaller than the number of index rows for a given
document, additional buffers are allocated until enough are created to hold all the
index rows for the document. If a report contains documents with a large number
of index rows, performance can be improved by setting AFPINDEXBUF to a large
value. Doing this minimizes the time spent allocating memory. If a report contains
documents with only a small number of index rows, you can minimize memory
use by keeping the value of AFPINDEXBUF small.

Parameters

The default value is 10. The range of valid values is 1 to 10 000. Do not include
any punctuation after the equal sign, for example, AFPINDEXBUF=8000.

ANYEXIT
The Anystore Batch Capture Exit can be used to provide all segment and index
data to the report capture program. The exit is called dynamically during the
capture process. The capture program calls the exit when the indexing instructions
for the application include the ANYEXIT parameter. The report administrator
provides a program name for the Anystore Exit.

The report capture program expects the Anystore exit to pass back all segment
data and the associated index information. The capture program will perform only
the data management functions required for the capture process (document
compression, document store, index management and store, etc.)

A sample COBOL exit is provided in ARSEXANY along with the COBOL
copybook ARSANYBK. A sample C exit is provided in ARSECANY along with the
C header files ARSANYBH and ARSZ390H.

Parameters

The following example shows the parameters that are required by ARSEXANY.

The parameters can be found in the Cobol Copybook member ARSANYBK.

164 Indexing Reference

01 ANY-HEADER-RECORD.
02 ANY-APPLICATION-NAME PIC X(60).
02 FILLER.

05 ANY-FIELD OCCURS 32 TIMES PIC X(256).
02 FILLER.

05 ANY-DISPL OCCURS 32 TIMES PIC S9(4) COMP.
02 FILLER.

05 ANY-LEN OCCURS 32 TIMES PIC S9(4) COMP.
02 ANY-DDNAME PIC X(8).

01 ANY-DOC-SPACE.
02 CURRENT-DOC-BUFFER OCCURS 104832 PIC X.

01 ANY-DOC-SIZE COMP PIC S9(8).

01 ANY-STATUS PIC XXX.
88 ANY-EOF VALUE ’EOF’.
88 ANY-OVERFLOW VALUE ’OVF’.
88 ANY-INDEX VALUE ’IDX’.
88 ANY-SEG VALUE ’END’.
88 ANY-ERR VALUE ’ERR’.

01 ANY-IDX-FOUND.
05 ANY-IDX-FOUND-SET PIC X.

88 ANY-IDX-FOUND-SET-YES VALUE ’Y’.
88 ANY-IDX-FOUND-SET-NO VALUE ’N’.

05 ANY-IDX-FOUND-TABLE.
10 ANY-F-FIELD OCCURS 32 TIMES.

15 ANY-F-FIELD-FOUND PIC X.
88 ANY-F-FIELD-FOUND-YES VALUE ’Y’.
88 ANY-F-FIELD-FOUND-NO VALUE ’N’.

01 ANY-INDEX-NAME-COUNT-ORIGINAL PIC S9(8) COMP.

01 ANY-INDEX-NAMES.
05 ANY-INDEX-NAME-COUNT-UPDATED PIC S9(8) COMP.
05 ANY-INDEX-NAME-TABLE OCCURS 32 TIMES.

10 ANY-INDEX-NAME PIC X(250).

01 ANY-FILE-NAME PIC X(1023).

01 ANY-OS-LEVEL-FLAG PIC X.
88 ANY-OS-LEVEL-ZOS VALUE ’Z’.
88 ANY-OS-LEVEL-MP VALUE ’M’.

01 ANY-EBCDIC-ASCII-SWITCH PIC S9(8) COMP.
88 ANY-EBCDIC-CP VALUE 1.
88 ANY-ASCII-CP VALUE 0.

01 ANY-INDEXES-33.
05 ANY-KEY33-IND PIC X(5).
05 ANY-FIELDS33.

10 ANY-FIELD33 OCCURS 96 TIMES PIC X(256).
10 ANY-DISPL33 OCCURS 96 TIMES PIC S9(4) COMP.
10 ANY-LEN33 OCCURS 96 TIMES PIC S9(4) COMP.

05 ANY-IDX-FOUND-TABLE33.
10 ANY-F-FIELD33 OCCURS 96 TIMES.

15 ANY-F-FIELD-FOUND33 PIC X.
88 ANY-F-FIELD-FOUND33-YES VALUE ’Y’.
88 ANY-F-FIELD-FOUND33-NO VALUE ’N’.

05 ANY-INDEX-NAME-TABLE33 OCCURS 96 TIMES.
10 ANY-INDEX-NAME33 PIC X(250).

ANY-APPLICATION-NAME
Set by capture program. The value of the Application Name.

ANY-DDNAME
Set by capture program. The DD Name of the input data file. This is
particularly useful when the load process is initiated by the Spool Capture
facility, because the DD Name changes each time.

OS/390 indexer 165

ANY-DISPL
Set by capture program. The column displacement value. This field represents
an array of values that correspond with the Field parameter value.

ANY-DOC-SIZE
Set by exit. The size of the current segment that is to be passed to the capture
program.

ANY-DOC-SPACE
Set by exit. The segment buffer to be passed to the capture program. Maximum
size of 1048320 allowed. If larger sizes are required, the exit must break them
into multiple physical segments no larger than 1048320.

ANY-EBCDIC-ASCII-SWITCH
Set by calling routine. This flag indicates whether the code page specified in
the indexing parameters (or defaulted to if none was specified) is an EBCDIC
or ASCII code page.

ANY-F-FIELD-FOUND
Set by exit. ANY-F-FIELD-FOUND-YES is set on by the exit for each index
value returned.

ANY-FIELD
Set by exit. The values for the 32 Keys.

ANY-FILE-NAME
Set by calling routine. The path name of the input file. This is provided instead
of the ANY-DDNAME when the load file is coming from a hfs or zfs path.

ANY-INDEX-NAME
Set by both capture program and exit. Contains the name field from the
INDEX indexing parameters. The exit can interrogate this array to determine
which position in the ANY-FIELD array represents which index value. If the
exit adds additional index field names not present in the INDEX indexing
parameters, this array must be updated to give the field name. This must
match the Application Group field name.

ANY-INDEX-NAME-COUNT-ORIGINAL
Set by capture program. The number of indexes identified by the INDEX
indexing parameters.

ANY-INDEX-NAME-COUNT-UPDATED
Set by both capture program and exit. If the exit adds additional index field
names not present in the INDEX indexing parameters, this count must be
updated by the exit to indicate the new total number of indexes.

ANY-INDEXES-33
Set by both capture program and exit. This structure is for index fields 33 -
128. If used, the ANY-KEY33-IND variable must be set to hexadecimal values
of D2C5E8F3F3 (KEY33 in EBCDIC). If any other value is found in
ANY-KEY33-IND, then this structure is ignored. It is initialized to blanks the
first time the exit is called, even if ANY-INDEX-NAME-COUNT-ORIGINAL is greater
than 32.

ANY-IDX-FOUND-SET
Set by capture program. ANY-IDX_FOUND-SET-NO is set on by the calling program
before calling this exit.

ANY-LEN
Set by capture program. The field length value. This field represents an array
of values that correspond with the Field parameter value.

166 Indexing Reference

ANY-OS-LEVEL-FLAG
Set by calling routine. This flag indicates whether the load is being performed
in a z/OS or multiplatform environment.

ANY-STATUS
Set by exit. Processing status to be passed back to the capture program.

Possible values are:

EOF
End of run; no data nor indexes returned.

OVF
Data returned with more to follow; no indexes returned.

IDX
Indexes returned; no data.

END
Data and indexes returned; end of this document.

ERR
An unexpected error occurred; end the run.

Sample scenarios
1. Document is .5 MB in size, one set of indexes:

ANY-STATUS = END
Both the data and the index values are returned.

2. Document is .5 MB in size, three sets of indexes for this document:

ANY-STATUS = END
Data and first set of indexes returned.

ANY-STATUS = IDX
No data, second set of indexes returned.

ANY-STATUS = IDX
No data, third set of indexes returned.

3. Document is 2.5 MB in size, one set of indexes:

ANY-STATUS = OVF
First MB of data returned, no indexes returned.

ANY-STATUS = OVF
Second MB of data returned, no indexes returned.

ANY-STATUS = END
Remainder of data and indexes returned.

4. Document is 2.5 MB in size, three sets of indexes for this document:

ANY-STATUS = OVF
First MB of data returned, no indexes returned.

ANY-STATUS = OVF
Second MB of data returned, no indexes returned.

ANY-STATUS = END
Remainder of data returned, first set of indexes returned.

ANY-STATUS = IDX
No data returned, second set of indexes returned.

OS/390 indexer 167

ANY-STATUS = IDX
No data returned, third set of indexes returned.

Eventually, an ANY-STATUS of EOF is returned. At that time, no data or any indexes
are returned.

Notes
v ANY-IDX-FOUND-SET-NO is set on by the calling program.
v After the ANYSTORE exit returns control, if ANY-IDX-FOUND-SET-NO is still on,

then the calling routine will act as though the ANY-F-FIELD-FOUND-YES and
ANY-F-FIELD-FOUND33-YES flags are on for each valid index field. This behavior
allows the process to work as it did before this change was added to version 8.5,
so existing ANYSTORE exits do not need to be modified.

v If the exit turns on the ANY-IDX-FOUND-SET-YES flag, then the
ANY-F-FIELD-FOUND-YES and ANY-F-FIELD-FOUND33-YES flags must be set on for
each index being returned.

v ANY-INDEX-NAME-COUNT-ORIGINAL and ANY-INDEX-NAME-COUNT-UPDATED are both set
before each time the ANYSTORE exit is called. They are set to the number of
INDEX indexing parameters present in the application definition.

v If the exit is adding an index value to the ANY-FIELD for ANY-FIELD33 arrays for
an application group field for which there is no INDEX indexing parameter, then
the ANY-INDEX-NAME-COUNT-UPDATED field must be set to the new total number of
indexes. The name of the index field, as defined in the application group, must
be added to the ANY-INDEX-NAME or ANY-INDEX-NAME33 array.

Developing an ANYSTORE exit
The sample exit routine stores TIFF data and also creates a second index (for
illustration purposes) for each logical document.

The following approach is recommended for developing an ANYSTORE exit:
1. Create report definition with an ANYSTORE exit name specified in the

ANYEXIT parameter.
2. Create a new member in the Sample library corresponding to the ANYSTORE

exit name.
3. Copy the sample exit into the new member.
4. Modify exit as required.
5. Compile and link the exit.
6. Test.

BREAKYES
A break is a condition that exists in the load file to determine whether the current
page is the start of a new document.

The following indexing parameters determine breaks:
v TRIGGER parameters that use TYPE=GROUP. These parameters are used as a

match condition. The trigger value must be found on this page for a break
condition to exist.

v INDEX parameters that use BREAK=YES These parameters are used as a change
condition. The index value must change on this page from the value found on
the previous page for a break condition to exist.

168 Indexing Reference

When multiple break conditions exist, regardless of whether they are TRIGGER
parameters with TYPE=GROUP or INDEX parameters with BREAK=YES, they are all
logically connected by using AND or OR operators based on the BREAKYES
parameter.

Parameters

When BREAKYES=AND is specified
ALL triggers with TYPE=GROUP must be found and ALL index values
with BREAK=YES must change for the current page to be considered the
start of a new document.

When BREAKYES=OR is specified
At least one TRIGGER with TYPE=GROUP must be found or one INDEX
with BREAK=YES must change for the current page to be considered the
start of a new document.

The default value is BREAKYES=AND
If a value other than AND or OR is specified for this parameter, a warning
message is issued, and the parameter is interpreted as though
BREAKYES=AND was specified.

CPGID
Specifies the code page of the index values being extracted from the documents.
Default value is 500.

The index values are translated from this code page into the code page of the
database at report capture time. The code page identifier is used by the Content
Manager OnDemand client programs to display indexing information.

DJDECNT
This integer field identifies the number of global DJDE records that are to be
expected before the first document is found. This parameter is used in conjunction
with the DJDETRIG and DJDECOL parameters.

DJDECNT=n

Where n is greater than or equal to 0. For example, DJDECNT=4.

DJDECOL
This integer field identifies the column (including the carriage control column) in
which the DJDE identifier can be found. This parameter is used in conjunction
with the DJDETRIG and DJDECNT parameters.

DJDECOL=n

Where n is from 1 to the record length of the input file. For example, DJDECOL=3.

DJDETRIG
This 1 - 10 character string is the DJDE identifier used in the DJDE records. This
parameter is used in conjunction with the DJDECOL and DJDECNT parameters.

DJDETRIG=string

For example, DJDETRIG=$DJDE.

OS/390 indexer 169

FIELD
Identifies the location of index data and can provide constant index values. You
must define at least one field. You can define up to 128 fields.

The OS/390 indexer supports the following types of fields:
v Trigger field, which is based on the location of a trigger string value
v Constant field, which allows you to provide the actual index value that is stored

in the database
v Transaction field, which can be used to index input data that contains one or

more columns of sorted data. It is not practical to store every value in the
database. The OS/390 indexer extracts the beginning and ending sorted values
in each group.

Trigger FIELD syntax
FIELDn=record,column,length,(TRIGGER=n,BASE={0|TRIGGER})

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 .

record
The relative record number from the trigger on which the field is based. This is
the record number where the OS/390 indexer begins to search for the field.
The supported range of values are +/− 0 to 255.

column
The relative column number from the BASE. This is the column number where
the OS/390 indexer begins to search for the field. A value of 1 refers to the first
byte in the record where the carriage control characters reside. For those
applications that use a specific carriage-control character to define page
boundaries (for example, skip-to-channel one), consider defining the value of
the carriage-control character as one of the TRIGGER parameters. The column
value can be 1 to 32756.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values are 1 to 254.

TRIGGER=n
Identifies the trigger parameter that the OS/390 indexer uses to locate the
field. Replace n with the number of a defined TRIGGER parameter.

BASE={0|TRIGGER}
Determines whether the OS/390 indexer uses the starting column number of
the trigger string value to locate the field data. Choose from 0 or TRIGGER. If
BASE=0, the indexer adds zero to the field column offset. If BASE=TRIGGER,
the indexer adds the starting column number of the trigger string value to the
field column offset. You should use BASE=0 if the field data always starts in a
specific column. You should use BASE=TRIGGER if the field data doesn't
always start in a specific column, but is always offset from the trigger string
value a specific number of columns. For example, a trigger occurs in the
second record on a page. The trigger string value can begin in any column in
the record. A field base on this trigger occurs in the trigger record. The starting
column number of the field is always ten bytes from the starting column
number of the trigger. Specify BASE=TRIGGER and a column offset of ten so
that ACIF correctly locates the field, regardless of the starting column of the
trigger string value.

170 Indexing Reference

Example
The following field parameter causes the OS/390 indexer to locate field values
that begin in column 83 of the same record that contains the TRIGGER1 string
value. The field length is eight bytes. We specify BASE=0 because the field data
always starts in the same column.
TRIGGER1=*,1,X’F1’,(TYPE=GROUP)
FIELD1=0,83,8,(TRIGGER=1,BASE=0)

The following field parameter causes the indexer to locate field values that
begin ten columns offset from the trigger string value. The trigger string value
can start in any column in any record. Basing the field on TRIGGER2 and
specifying BASE=TRIGGER allows the indexer to locate the field by adding ten
to the starting column offset of the trigger string value.
TRIGGER2=*,*,X’E2A482A396A38193’,(TYPE=FLOAT)
FIELD2=0,10,12,(TRIGGER=2,BASE=TRIGGER)

Constant FIELD syntax
FIELDn=constant

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1.

constant
The literal (constant) string value of the field. This is the index value that gets
stored in the database. The constant value can be 1 to 254 bytes in length. The
OS/390 indexer does not perform any validity checking on the actual content
of the supplied data.

Example
The following field parameter causes the OS/390 indexer to store the same
string of hexadecimal characters in each INDEX4 value it creates.
FIELD3=X’F0F560F1F760F0F5’ /* CONSTANT 05/17/05 */
INDEX4=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD3,(TYPE=GROUP,BREAK=NO)
/* POSTING_DATE */

Transaction FIELD syntax - for INDEXn with GROUPRANGE
FFIELDn=*,*,length,(OFFSET=(start1:end1[,...start8:end8]),

MASK=’@#=^%’[,ORDER={BYROW | BYCOL}])

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1.

* The record number where the OS/390 indexer begins searching for the field. A
transaction field must specify an asterisk, meaning the OS/390 indexer
searches every record in the group.

* The column number where the OS/390 indexer begins searching for the field.
A transaction field must specify an asterisk. The OFFSET specification
determines the column or columns where the OS/390 indexer locates the field.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values are 1 to 254.

OFFSET=(start:end)
Determines the location of the field value from the beginning of the record.

OS/390 indexer 171

The start is the column where the field begins. The end is the last column of
field data. You can use a maximum of eight pairs of beginning and ending
offset values. Separate the pairs with a comma. When you specify the OFFSET
keyword, you must also specify the MASK keyword. The implied length of an
OFFSET must be the same as the number of characters in the MASK,
otherwise, the OS/390 indexer does not detect a match.

MASK='@#=^%'
Determines the pattern of symbols that the OS/390 indexer matches with data
located in the field columns. When you specify the MASK keyword, you must
also specify the OFFSET keyword. When you define a field that includes a
mask, an INDEX parameter based on the field cannot reference any other
fields. An INDEX parameter based on a field that includes a mask must create
grouprange indexes. Valid mask symbols include the following:

@ Matches alphabetic characters.

Matches numeric characters.

^ Matches any non-blank character.

% Matches the blank character and numeric characters.

= Matches any character.

ORDER={BYROW | BYCOL}
Identifies where the OS/390 indexer can locate the smallest value and the
largest value of a group of sorted values that are arranged in either rows or
columns on the page. The default ORDER is BYROW.

For ORDER=BYROW, the OS/390 indexer extracts the first value in the first
row and the last value in the last row that match the MASK. Data within a
row orientation might appear as follows:
1 2 3
4 5 6
7 8

For ORDER=BYCOL, the OS/390 indexer extracts the first value in the first
column and the last value in the last column that match the MASK. Data with
a column orientation might appear as follows:
1 4 7
2 5 8
3 6

Example
The following field parameter causes the OS/390 indexer to locate a ten
character numeric string that begins in column three of any record in the
group. This format of the FIELD parameter is used to create indexes for the
beginning and ending sorted values of each group.
FIELD4=*,*,10,(OFFSET=(3:12),MASK= ’##########’ ,ORDER=BYROW)

Transaction FIELD syntax - for INDEXn with GROUPRANGE2
The FIELD syntax used in conjunction with INDEXn parameters using the
GROUPRANGE2 type use the same syntax as the Trigger FIELD syntax. Refer to the
Trigger FIELD syntax above.

The MASK sub-parameter cannot be used on FIELD parameters when they are
used by INDEXn parameters with the TYPE=GROUPRANGE2 sub-parameter.

172 Indexing Reference

FILEFORMAT
Identifies the format of the input file, and optionally the character or characters
that separate records in the input file.

Important: This parameter is required when the INDEXSTYLE parameter is not set
toAFP.

Syntax

FILEFORMAT={STREAM,(NEWLINE=X'value') | RECORD[,n]}

The values are:

STREAM,(NEWLINE=X'value')
The input file has no length information; it is a stream of data separated by a
newline character. Files in the STREAM format typically come from a
workstation operating system such as AIX, Solaris, or Windows. The
NEWLINE keyword identifies the hexadecimal character or characters that
delimit records in the data stream. The NEWLINE keyword supports a
two-character line delimiter, which is common in data from DOS and Windows
environments. The following example specifies the FILEFORMAT parameter to
process input data that contains two-character line delimiters:
FILEFORMAT=STREAM,(NEWLINE=X'0D0A')

If STREAM is specified, the NEWLINE keyword is required.

RECORD
The input file has a variable record format in which the first two bytes of each
line, called the record descriptor word (RDW), specify the length of the line.
The records can be from 1 to 32767 bytes in length, plus the two bytes for the
RDW.

RECORD,n
The input file has a fixed record format, where each record has a fixed length
of n bytes. The value of n is a number from 1 to 32767 and specifies the fixed
length of the entire record.

GROUPMAXPAGES
Determines the maximum number of pages to be put into a group. This allows the
OS/390 indexer to logically segment a large report into groups of pages and create
indexes for each group. You can specify a number from 1 and 9999.

For INDEXSTYLE values of PAGE, PDOC and NODX: The GROUPMAXPAGES
defaults to 100 if no value is provided.

For INDEXSTYLE of DOC:
v There is no default for GROUPMAXPAGES. If GROUPMAXPAGES is not

specified for INDEXSTYLE of DOC, all pages are grouped into one document
until the BREAK=YES condition(s) are met.

v When the GROUPMAXPAGES value is reached, the current document is closed
and a new document is started.

v When a new document is started because the GROUPMAXPAGES value is
reached (as opposed to because an index with BREAK=YES is satisfied), the
index values used for the new document come from:
– Indexes with BREAK=YES retain the values from the previous document.

OS/390 indexer 173

– Indexes with BREAK=NO will start with the values from the previous
document, but attempts are made to locate new values in the new document
to replace the previous values.

The GROUPMAXPAGES parameter is ignored when the INDEXSTYLE is AFP or
when the ANYEXIT parameter is used.

INDEX
Identifies the index name and the field(s) on which the index is based. You must
define at least one index parameter.

You can define up to 128 index parameters.

Syntax
INDEXn=name,FIELDnn[,...FIELDnn],TYPE=type

Options and values

n The index parameter identifier. When you add an index parameter, use the
next available number beginning with 1.

name
Determines the index name that is associated with the index value. The index
name can be a maximum of 250 bytes. It is recommended that you enter the
name as a hexadecimal string.

FIELDnn
Name of the field parameters that the OS/390 indexer uses to locate the index.

TYPE=type
You can specify type as follows:
TYPE=GROUP,BREAK={YES[,INITVAL=value] | NO} [,KEEP={YES | NO}]
TYPE=GROUPRANGE,BREAK=NO
TYPE=GROUPRANGE2,BREAK=NO

Ensure that you enter value as a hexadecimal string.

Notes
v TYPE=GROUP must be specified for all indexes except:

– INDEX1 when INDEXSTYLE=PAGE
– INDEX2 when INDEXSTYLE=PAGE or PDOC
– INDEX3 when INDEXSTYLE=NODX

v TYPE=GROUPRANGE or TYPE=GROUPRANGE2 must be specified for:
– INDEX1 when INDEXSTYLE=PAGE
– INDEX2 when INDEXSTYLE=PDOC

v TYPE=GROUPRANGE must be specified for:
– INDEX2 when INDEXSTYLE=PAGE
– INDEX3 when INDEXSTYLE=NODX

v You can specify up to 32 FIELD parameters when you specify TYPE=GROUP.
Separate field parameter names with a comma. When you specify multiple
FIELD parameters on a single INDEXn parameter, each FIELD value is
concatenated to form the index value. The total length of all the specified FIELD
parameters cannot exceed 254 bytes. The FIELD values are ignored for indexes 1,
2, and 3 when you specify INDEXSTYLE=NODX.

174 Indexing Reference

v Only one FIELD value can be specified when TYPE=GROUPRANGE is
specified.

v One or two FIELD values can be specified when TYPE=GROUPRANGE2 is
specified.

v When TYPE=GROUPRANGE is used for:
– INDEX1 when INDEXSTYLE=PAGE
– INDEX2 when INDEXSTYLE=PDOC

The single FIELD subparameter must refer to a FIELD parameter that uses the
"mask" format, for example:
INDEX1=X ’D3D6C1D56DD5E4D4C2C5D9C’,FIELD1,(TYPE=GROUPRANGE)
FIELD1=*,*,10,(OFFSET=(3:12),MASK= ’##########’ ,ORDER=BYROW)

v When TYPE=GROUPRANGE2 is used for:
– INDEX1 when INDEXSTYLE=PAGE
– INDEX2 when INDEXSTYLE=PDOC

One or two FIELD subparameters can be specified. The FIELD parameter(s)
pointed to cannot use the "mask" format.
When one FIELD subparameter is specified, it refers to both the begin range
value and the end range value.
INDEX1=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUPRANGE2)
FIELD1=0,3,10,(TRIGGER=3,BASE=0)
TRIGGER3=*,46,X’4B’,(TYPE=FLOAT) /* . */

This set of parameters is interpreted as the following:
– For the begin range value: Start at the top of the page and scan down

looking for a hexadecimal 4B in column 46 (per TRIGGER3). If found, then
(per FIELD1=0,3,10) stay on this line (0), go to column 3 (3), and extract 10
positions (10).

– For the end range value: Start at the bottom of the page and scan up looking
for a hexadecimal 4B in column 46. If found, then stay on this line, go to
column 3 and extract 10 positions. For
FIELDn=x,y,z

x is the number of lines to move from the line where the trigger value was
found. If 0, stay on this line. If negative, move up that number of lines. If
positive, move down that number of lines. y is the column number to start
from on the offset line. z is the number of positions to extract, starting with
column y.

When two FIELD subparameters are specified, the first refers to the begin range
value and the second refers to the end range value.

v When you specify TYPE=GROUP, use BREAK=YES for index values that must
change to indicate that the current page is the start of a new document.
When you specify BREAK=YES, you can optionally specify the INITVAL=value
parameter to give an initial value that the index value must change from before
the first document is captured. This is one method to skip over alignment pages
at the start of a print stream.
The following is an example. Note that this should be entered all on one line.
INDEX3=x’C1C3C3D8E4D5E3’,FIELD2,(TYPE=GROUP,BREAK=YES,
INITVAL=x’5C5C5C5C5C5C5C5C5C’)

OS/390 indexer 175

In this example, all pages at the start of the report file that contain a string of
asterisks in the position of the ACCOUNT field are skipped over. The report
starts capturing its first document when something other than a string of
asterisks is found in that position.

v When you specify TYPE=GROUP, you can optionally specify the KEEP={YES |
NO} parameter. This parameter can be used with any TYPE=GROUP index.
When KEEP=NO is used, this is the same as not specifying the KEEP parameter
at all. Each document in the load file must provide all of its own index values.
When KEEP=YES is used, the index value found for the first document in the
load file is used for that index across all remaining documents in the load file.
Two examples of when this might be useful are:
– The posting date field exists only in the first document of the load file.
– An AFP file generates multiple index rows per document, but the posting

date TLE does not repeat for each generated index row.
v Refer to the “INDEXSTYLE” parameter for examples.

INDEXSTARTBY
The INDEXSTARTBY parameter determines the page number by which the OS/390
indexer must find a page where the TRIGGER parameters with TYPE=GROUP are
found.

The OS/390 indexer fails if it does not find these values before the specified page
number. This parameter is optional. It defaults to zero, which means that these
TRIGGER parameters can be first found on any page. The maximum value for
INDEXSTARTBY parameter is 99.

This parameter is helpful if the input file contains header pages. For example, if
the input file contains two header pages, you can specify a page number one
greater than the number of header pages, for example, INDEXSTARTBY=3, so that the
OS/390 indexer does not start indexing until the page after the header pages.

Important: All pages found before the page containing the TRIGGER values, for
TRIGGER parameters with TYPE=GROUP, are discarded.

Syntax

INDEXSTARTBY=value

Options and values

The value is the page number of the report by which the OS/390 indexer must
find the TRIGGER values for TRIGGER parameters with TYPE=GROUP. A value of 0
indicates that there is no limit to the page where the OS/390 indexer must find the
TRIGGER values.

INDEXSTYLE
This parameter defines the type of report being captured. Certain rules must be
followed regarding the indexes defined in the Content Manager OnDemand
application group to which the Content Manager OnDemand application is
associated. If this parameter is not specified, the default of INDEXSTYLE=DOC is
assumed.

The INDEXSTYLE parameter is ignored when the ANYEXIT parameter is specified.

176 Indexing Reference

All application groups should have an index defined on Posting Date, with a data
type of DATE. This index should be marked as being the segment field for the
application group.

Parameters

You can use the following valid values.

DOC
DOC reports are traditional document reports, such as statements, invoices, and so
forth. No indexes of type GROUPRANGE or GROUPRANGE2 can be specified.

The following example shows typical indexing parameters and values for DOC
reports. Indexing parameters are specified on the Indexer Information page in the
Content Manager OnDemand application.
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,133
TRC=YES
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=*,3,X’D7C1C7C540F140’,(TYPE=GROUP) /* PAGE 1 */
TRIGGER3=*,73,X’C1C3C3D6E4D5E3’,(TYPE=FLOAT) /* ACCOUNT */
TRIGGER4=*,3,X’C3D6D5E3C5D5E3E2’,(TYPE=FLOAT) /* CONTENTS */
TRIGGER5=*,19,X’C5D5C4C9D5C740C2C1D3’,(TYPE=FLOAT) /* ENDING BAL */
FIELD1=-1,89,9,(TRIGGER=3,BASE=0)
FIELD2=1,87,11,(TRIGGER=4,BASE=0)
FIELD3=7,19,12,(TRIGGER=1,BASE=0)
FIELD4=0,87,16,(TRIGGER=5,BASE=0)
FIELD5=0,37,8,(TRIGGER=5,BASE=0)
INDEX1=X’C1C3C3D6E4D5E36DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUP,BREAK=YES) /* ACCOUNT_NUMBER */
INDEX2=X’E2E2D56D6D6DE3C1E76DC9C4’,FIELD2,(TYPE=GROUP,BREAK=NO) /* SSN___TAX_ID */
INDEX3=X’C3E4E2E36DD5C1D4C5’,FIELD3,(TYPE=GROUP,BREAK=NO) /* CUST_NAME */
INDEX4=X’C5D5C4C9D5C76DC2C1D3C1D5C3C5’,FIELD4,(TYPE=GROUP,BREAK=NO) /* ENDING_BALANCE */
INDEX5=X’C3D3D6E2C56DC4C1E3C5’,FIELD5,(TYPE=GROUP,BREAK=NO) /* CLOSE_DATE */
INDEX6=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD5,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=DOC

PAGE
PAGE reports are transaction type reports. The entire report is sorted by some
column value. This sort key is used in the first and second indexes. The
GROUPMAXPAGES parameter can be used to determine the number of pages included
in each segment. If no GROUPMAXPAGES value is specified, the default is 100 pages.

The indexes defined for the Content Manager OnDemand application group must
be as follows:

First Index
Must be the start value for a GROUPRANGE or GROUPRANGE2 index.

Second Index
Must be the end value for the GROUPRANGE or GROUPRANGE2 index.

Third Index
Must be the start value for a GROUPRANGE index on Page Number and
must be defined as an integer. The value for the third index is set by the
OS/390 indexer by counting the pages as they are stored, not from values
extracted from the report data.

Fourth Index
Must be the end value for the GROUPRANGE index on Page Number and
must be defined as an integer. The value for the fourth index is set by the
OS/390 indexer by counting the pages as they are stored, not from values
extracted from the report data.

OS/390 indexer 177

Additional indexes
Can be defined, but cannot be GROUPRANGE or GROUPRANGE2
indexes.

The following parameter list shows the typical indexing parameters and values for
PAGE reports using TYPE=GROUPRANGE on INDEX1. Indexing parameters are
specified on the Indexer Information page in the Content Manager OnDemand
application.

The mask subparameter of the FIELD1 parameter in the following list of parameters
instructs the indexer to look in columns 3 through 12 for a value that matches the
mask. The first value found in a document is used as the start range value and
stored in the first index field of the Application Group Data table. The last value
found in a document is used as the end range value and stored in the second
index field of the Application Group Data table.

The following example shows typical indexing parameters and values for PAGE
reports using TYPE=GROUPRANGE for INDEX1:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=0,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */
FIELD1=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)
FIELD2=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUPRANGE) /* LOAN_NUMBER */
INDEX2=X’D7C1C7C56DD5D66D’,FIELD1,(TYPE=GROUPRANGE) /* PAGE_NO_ */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD2,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PAGE

This parameter list shows typical indexing parameters and values for PAGE
reports using TYPE=GROUPRANGE2 on INDEX1. Indexing parameters are specified on
the Indexer Information page in the Content Manager OnDemand application.

In this example, FIELD1 is used to locate the start range value. FIELD1 uses
TRIGGER1. In this case, when a skip-to-channel-1 is found, then go down eight lines
(to line number 9 of this page) and extract ten positions starting at column 3.

FIELD2 is used to locate the end range value. FIELD2 uses TRIGGER3. In this case,
start at the bottom of the page and look up in column 46 for a period (x'4B'). When
found, stay on that line and extract ten positions starting at column 3.

The following example shows typical indexing parameters and values for PAGE
reports using TYPE=GROUPRANGE2 for INDEX1:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=0,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */
TRIGGER3=*,46,X’4B’,(TYPE=FLOAT) /* . */
FIELD1=8,3,10,(TRIGGER=1,BASE=0)
FIELD2=0,3,10,(TRIGGER=3,BASE=0)
FIELD3=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD1,FIELD2,(TYPE=GROUPRANGE2) /* LOAN_NUMBER */
INDEX2=X’D7C1C7C56DD5D66D’,FIELD1,(TYPE=GROUPRANGE) /* PAGE_NO_ */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD3,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PAGE

178 Indexing Reference

The following parameter list shows another set of typical indexing parameters and
values for PAGE reports using TYPE=GROUPRANGE2 on INDEX1. Indexing parameters
are specified on the Indexer Information page in the Content Manager OnDemand
application.

In this example, FIELD1 is used to locate both the start and end range values.
FILED1 uses TRIGGER3. For the start range value, start at the top of the page and
look down in column 46 for a period (x'4B'). When found, stay on that line and
extract ten positions starting at column 3.

For the end range value, start at the bottom of the page and look up in column 46
for a period (x'4B'). When found, stay on that line and extract ten positions starting
at column 3.

The following example shows typical indexing parameters and values for PAGE
reports using TYPE=GROUPRANGE2 for INDEX1:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=0,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */
TRIGGER3=*,46,X’4B’,(TYPE=FLOAT) /* . */
FIELD1=0,3,10,(TRIGGER=3,BASE=0)
FIELD2=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUPRANGE2) /* LOAN_NUMBER */
INDEX2=X’D7C1C7C56DD5D66D’,FIELD1,(TYPE=GROUPRANGE) /* PAGE_NO_ */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD2,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PAGE

Note the following items:
v The FIELDn value pointed to by the INDEX2 Page Number index is needed to

meet the syntax checking requirements of the graphical indexer, but is not used
by the OS/390 indexer. Any valid FIELDn value may be specified for INDEX2.

v The GROUPRANGE specification for INDEX2 causes the beginning page number
value to be stored in the third application group index field, while the ending
page number value gets stored in the fourth application group index field.
INDEX3 (posting date from above) gets stored in the fifth application group index
field.

PDOC
PDOC reports are transaction type reports, but have a high level index. For
example, a bank might have a report that is organized by Branch Number. Within
each branch, the report is sorted on some column. The GROUPMAXPAGES parameter
can be used to determine the number of pages included in each document. If no
GROUPMAXPAGES value is specified, the default is 100 (pages). A new document is
started when either the high level index changes or the GROUPMAXPAGES value is
reached.

The indexes defined for the Content Manager OnDemand application group must
be as follows:

First Index
Must be the high level index.

Second Index
Must be the start value for the GROUPRANGE or GROUPRANGE2 index
by which the report is sorted within the first index.

OS/390 indexer 179

Third Index
Must be the end value for the GROUPRANGE or GROUPRANGE2 index
by which the report is sorted within the first index.

Additional indexes
Might be defined, but cannot be GROUPRANGE or GROUPRANGE2
indexes.

The following example lists typical indexing parameters and values for PDOC
reports using TYPE=GROUPRANGE on INDEX2. Indexing parameters are specified on
the Indexer Information page in the Content Manager OnDemand application.

The mask subparameter of the FIELD2 parameter in the following example instructs
the indexer to look in columns 3 through 12 for a value that matches the mask.
The first value found in a document is used as the start range value and stored in
the first index field of the Application Group Data table. The last value found in a
document is used as the end range value and stored in the second index field of
the Application Group Data table.

The following example shows typical indexing parameters and values for PDOC
reports that use TYPE=GROUPRANGE for INDEX2:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=*,2,X’C2C1D5D2’,(TYPE=GROUP) /* BANK */
FIELD1=1,11,3,(TRIGGER=1,BASE=0)
FIELD2=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)
FIELD3=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’C2C1D5D26DC2D9C1D5C3C8’,FIELD1,(TYPE=GROUP,BREAK=YES) /* BANK_BRANCH */
INDEX2=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD2,(TYPE=GROUPRANGE) /* LOAN_NUMBER */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD3,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PDOC

The following example lists typical indexing parameters and values for PDOC
reports using TYPE=GROUPRANGE2 on INDEX2. Indexing parameters are specified on
the Indexer Information page in the Content Manager OnDemand application.

In this example, FIELD2 is used to locate the start range value. FIELD2 uses
TRIGGER1. In this case, when a skip-to-channel-1 is found, then go down eight lines
(to line number 9 of this page) and extract ten positions starting at column 3.

FIELD3 is used to locate the end range value. FIELD3 uses TRIGGER3. In this case,
start at the bottom of the page and look up in column 46 for a period (x'4B'). When
found, stay on that line and extract ten positions starting at column 3.

The following example shows typical indexing parameters and values for PDOC
reports using TYPE=GROUPRANGE2 for INDEX2:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=*,2,X’C2C1D5D2’,(TYPE=GROUP) /* BANK */
TRIGGER3=*,46,X’4B’,(TYPE=FLOAT) /* . */
FIELD1=1,11,3,(TRIGGER=1,BASE=0)
FIELD2=8,3,10,(TRIGGER=1,BASE=0)
FIELD3=0,3,10,(TRIGGER=3,BASE=0)
FIELD4=0,83,8,(TRIGGER=1,BASE=0)

180 Indexing Reference

INDEX1=X’C2C1D5D26DC2D9C1D5C3C8’,FIELD1,(TYPE=GROUP,BREAK=YES) /* BANK_BRANCH */
INDEX2=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD2,FIELD3,(TYPE=GROUPRANGE2) /* LOAN_NUMBER */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD4,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PDOC

The following example lists another set of typical indexing parameters and values
for PDOC reports using TYPE=GROUPRANGE2 on INDEX2. Indexing parameters are
specified on the Indexer Information page in the Content Manager OnDemand
application.

In this example, FIELD2 is used to locate both the start and end range values.
FILED2 uses TRIGGER3. For the start range value, start at the top of the page and
look down in column 46 for a period (x'4B'). When found, stay on that line and
extract ten positions starting at column 3.

For the end range value, start at the bottom of the page and look up in column 46
for a period (x'4B'). When found, stay on that line and extract ten positions starting
at column 3.

The following example shows typical indexing parameters and values for PDOC
reports using TYPE=GROUPRANGE2 for INDEX2:
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=100
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
TRIGGER2=*,2,X’C2C1D5D2’,(TYPE=GROUP) /* BANK */
TRIGGER3=*,46,X’4B’,(TYPE=FLOAT) /* . */
FIELD1=1,11,3,(TRIGGER=1,BASE=0)
FIELD2=0,3,10,(TRIGGER=3,BASE=0)
FIELD3=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’C2C1D5D26DC2D9C1D5C3C8’,FIELD1,(TYPE=GROUP,BREAK=YES) /* BANK_BRANCH */
INDEX2=X’D3D6C1D56DD5E4D4C2C5D9’,FIELD2,(TYPE=GROUPRANGE2) /* LOAN_NUMBER */
INDEX3=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD3,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=PDOC

The GROUPRANGE or GROUPRANGE2 specification for INDEX2 will cause the beginning
loan number value to be stored in the second application group index field, while
the ending loan number value gets stored in the third application group index
field. INDEX3 (posting date from above) gets stored in the fourth application
group index field.

NODX
NODX (no index) reports are ones which either do not have obvious index values,
or which are very short and do not need to be broken up into documents. The
GROUPMAXPAGES parameter can be used to determine the number of pages included
in each segment. If no GROUPMAXPAGES value is specified, the default is 100 (pages).

The indexes defined for the Content Manager OnDemand application group must
be as follows:

First Index
Must be defined as Segment Number. Must be defined as an integer. The
OS/390 indexer assigns values to this index by sequentially counting each
segment (document) as it is created.

Second Index
Must be defined as Report Date. Must be defined as a string of length 8
(eight). The OS/390 indexer assigns this value, based on the Posting Date
of the report. The value will have the format of MM/DD/YY. A separate

OS/390 indexer 181

index defined on Posting Date with a data type of DATE should also be
defined. This index should be marked as being the segment field for the
application group

Third Index
Must be the start value for a GROUPRANGE index on Page Number. Must
be defined as an integer. The value for the third index is set by the OS/390
indexer by counting the pages as they are stored, not from values extracted
from the report data.

Fourth Index
Must be the end value for the GROUPRANGE index on Page Number.
Must be defined as an integer. The value for the fourth index is set by the
OS/390 indexer by counting the pages as they are stored, not from values
extracted from the report data.

Additional indexes
May be defined, but cannot be GROUPRANGE or GROUPRANGE2
indexes.

The following example lists typical indexing parameters and values for NODX
reports. Indexing parameters are specified on the Indexer Information page in the
Content Manager OnDemand application.
CC=YES
CCTYPE=A
FILEFORMAT=RECORD,90
GROUPMAXPAGES=50
TRIGGER1=*,1,X’F1’,(TYPE=GROUP) /* 1 */
FIELD1=0,83,8,(TRIGGER=1,BASE=0)
INDEX1=X’E2C5C7D4C5D5E36DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUP,BREAK=NO) /* SEGMENT_NUMBER */
INDEX2=X’D9C5D7D6D9E36DC4C1E3C5’,FIELD1,(TYPE=GROUP,BREAK=NO) /* REPORT_DATE */
INDEX3=X’D7C1C7C56DD5E4D4C2C5D9’,FIELD1,(TYPE=GROUPRANGE) /* PAGE_NUMBER */
INDEX4=X’D7D6E2E3C9D5C76DC4C1E3C5’,FIELD1,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE */
INDEXSTYLE=NODX

Remember:

v The FIELDn value pointed to by the INDEX1, INDEX2, and INDEX3 indexes are
needed to meet the syntax checking requirements of the graphical indexer, but
are not used by the OS/390 indexer. Any validFIELDn value may be specified
for these indexes.

v The GROUPRANGE specification for INDEX3 will cause the beginning page number
value to be stored in the third application group index field, while the ending
page number value gets stored in the fourth application group index field.
INDEX4 (posting date from above) gets stored in the fifth application group
index field.

AFP
AFP (Advanced Function Printing) reports captured through the OS/390 indexer
must already have been formatted into an AFP Data Stream (AFPDS). This can be
done by using ACIF (AFP Conversion and Indexing Facility) or by any third party
program. The OS/390 indexer looks for index values within the AFPDS, either in
TLE or NOP records. ACIF, and other programs, can automatically generate the
TLE records. The NOP records for use by the OS/390 indexer have a fixed format.

The NOP record format provides space for 32 indexes of up to 256 characters each.
One ODZOSSEG record must exist for each document. This identifies that a new
document is starting, and provides one complete set of index values for the
document.

182 Indexing Reference

One or more ODZOSDIR records can exist for each document. This record
provides an additional set of index values for the document.

NOP record formats for earlier releases of Content Manager OnDemand for z/OS
and R/DARS-ESA are supported by the OS/390 indexer for compatibility
purposes.

The following table shows the layout of the ODZOSSEG and ODZOSDIR NOP
record.

Table 11. Layout of the ODZOSSEG and ODZOSDIR NOP record

Position Description

1 X'5A'

2 - 3 Length of this record - 1

4 - 6 X'D3EEEE'

7 - 9 X'000000'

10 - 17 'ODZOSSEG' or 'ODZOSDIR'

18 - 273 Value of field 1 (256 bytes)

274 - 529 Value of field 2 (256 bytes)

530 - 785 Value of field 3 (256 bytes)

786 - 1041 Value of field 4 (256 bytes)

1042 - 1297 Value of field 5 (256 bytes)

1298 - 1553 Value of field 6 (256 bytes)

1554 - 1809 Value of field 7 (256 bytes)

1810 - 2065 Value of field 8 (265 bytes)

2066 - 2321 Value of field 9 (256 bytes)

2322 - 2577 Value of field 10 (256 bytes)

2578 - 2833 Value of field 11 (256 bytes)

2834 - 3089 Value of field 12 (256 bytes)

3090 - 3345 Value of field 13 (256 bytes)

3346 - 3601 Value of field 14 (256 bytes)

3602 - 3857 Value of field 15 (256 bytes)

3858 - 4113 Value of field 16 (256 bytes)

4114 - 4369 Value of field 17 (256 bytes)

4370 - 4625 Value of field 18 (256 bytes)

4626 - 4881 Value of field 19 (256 bytes)

4882 - 5137 Value of field 20 (256 bytes)

5138 - 5393 Value of field 21 (256 bytes)

5394 - 5649 Value of field 22 (256 bytes)

5650 - 5905 Value of field 23 (256 bytes)

5906 - 6161 Value of field 24 (256 bytes)

6162 - 6417 Value of field 25 (256 bytes)

6418 - 6673 Value of field 26 (256 bytes)

6674 - 6929 Value of field 27 (256 bytes)

6930 - 7185 Value of field 28 (256 bytes)

OS/390 indexer 183

Table 11. Layout of the ODZOSSEG and ODZOSDIR NOP record (continued)

Position Description

7186 - 7441 Value of field 29 (256 bytes)

7442 - 7697 Value of field 30 (256 bytes)

7698 - 7953 Value of field 31 (256 bytes)

7954 - 8209 Value of field 32 (256 bytes)

The following example lists typical indexing parameters and values for AFP
reports that use TLE records. Indexing parameters are specified on the Indexer
Information page in the Content Manager OnDemand application.
TRIGGER1=*,1,X’5A’,(TYPE=GROUP) /* AFP x’5A’ */
FIELD1=-0,1,14,(TRIGGER=1,BASE=0)
FIELD2=0,1,24,(TRIGGER=1,BASE=0)
FIELD3=0,1,18,(TRIGGER=1,BASE=0)
INDEX1=X’D796938983A8’,FIELD1,(TYPE=GROUP,BREAK=YES) /* Policy */
INDEX2=X’C39695A38595A3A2’,FIELD2,(TYPE=GROUP,BREAK=NO) /* Contents */
INDEX3=X’C995A2A4998584’,FIELD3,(TYPE=GROUP,BREAK=NO) /* Insured */
INDEXSTYLE=AFP

In the previous example, the TRIGGER record is not used by the OS/390 indexer
and is specified only to meet syntax checking requirements of the graphical
indexer. The only value used from the FIELD records is the length value. The name
fields of the INDEX values must match the Attribute Name field of the TLE
records, and is used to map the index values back to the Application Group data
table columns. The BREAK parameter of the INDEX record is not used.

The following example lists typical indexing parameters and values for AFP
reports using NOP records. Indexing parameters are specified on the Indexer
Information page in the Content Manager OnDemand application.
TRIGGER1=*,1,X’5A’,(TYPE=GROUP) /* AFP x’5A’ */
FIELD1=-0,1,15,(TRIGGER=1,BASE=0) /* Length of data to extract = 15 */
FIELD2=0,1,11,(TRIGGER=1,BASE=0) /* Length of data to extract = 11 */
FIELD3=0,1,8,(TRIGGER=1,BASE=0) /* Length of data to extract = 8 */
FIELD4=0,1,8,(TRIGGER=1,BASE=0) /* Length of data to extract = 8 */
INDEX1=X’F1’,FIELD1,(TYPE=GROUP,BREAK=NO) /* CUST_NAME in NOP Field 1 */
INDEX2=X’F2’,FIELD2,(TYPE=GROUP,BREAK=YES) /* ACCOUNT_NUM in NOP Field 2 */
INDEX3=X’F5’,FIELD3,(TYPE=GROUP,BREAK=NO) /* REPORT_DATE in NOP Field 5 */
INDEX4=X’F6’,FIELD4,(TYPE=GROUP,BREAK=NO) /* POSTING_DATE in NOP Field 6 */
INDEXSTYLE=AFP

In the previous example, the TRIGGER record is not used by the OS/390 indexer
and is specified only to meet syntax checking requirements of the graphical
indexer. The only value used from the FIELD records is the length value. The name
fields of the INDEX values are character representations of numbers which point to
the position within the NOP record where the index value is to be found for each
index. The BREAK parameter of the INDEX record is not used.

Special consideration is needed when dealing with the Posting Date field with the
older style of NOP records.
v Content Manager OnDemand for z/OS V2.1 used NOP record types of

OD390SEG and OD390DIR. The INDEX record for the Posting Date field must
specify a name value of X'F1F7', for example:
INDEX4=X’F1F7’,FIELD4,(TYPE=GROUP,BREAK=NO) /*POSTING_DATE in OD390SEG NOP*/

v Content Manager OnDemand for z/OS V1.1 and R/DARS-ESA used NOP
record types of RDARSSEG and RDARSDIR. The INDEX record for the Posting
Date field must specify a name value of X'F6', for example:

184 Indexing Reference

INDEX4=X’F6’,FIELD4,(TYPE=GROUP,BREAK=NO) /*POSTING_DATE in RDARSSEG NOP*/

INDXEXIT
The Index Exit is provided to allow the report indexes to be modified prior to
insertion into the Application Group Data Table. This exit can be used with any
type of report captured by the OS/390 indexer. The exit is called dynamically
during the capture process. The capture program calls the exit when the indexing
instructions for the application include the INDXEXIT parameter. The report
administrator provides a program name for the Index Exit.

There are no restrictions as to the type of processing that can be performed in an
index exit with the exception that the exit must pass the standard parameter list
back to the capture program. A sample COBOL exit is provided in ARSEXNDX,
along with the COBOL copybook ARSINDBK. A sample C exit is provided in
ARSECNDX along with the C header file ARSINDBH.

Parameters

The following example from the ARSINDBK Cobol Copybook shows the parameters
that are required by ARSEXNDX.
01 WS-HEADER-RECORD.

05 FIRST-FIVE PIC X(5).
05 WS-KEY-IND PIC X(3).
05 WS-FIELDS.
10 WS-FIELD OCCURS 32 TIMES PIC X(256).
05 WS-APPLICATION-NAME PIC X(60).
05 WS-IDX-FOUND-SET PIC X.
88 WS-IDX-FOUND-SET-YES VALUE ’Y’.
88 WS-IDX-FOUND-SET-NO VALUE ’N’.
05 WS-IDX-FOUND-TABLE.

10 WS-F-FIELD OCCURS 32 TIMES.
15 WS-F-FIELD-FOUND PIC X.

88 WS-F-FIELD-FOUND-YES VALUE ’Y’.
88 WS-F-FIELD-FOUND-NO VALUE ’N’.

01 WS-INDEX-NAME-COUNT-ORIGINAL PIC S9(8) COMP.
01 WS-INDEX-NAMES.

05 WS-INDEX-NAME-COUNT-UPDATED PIC S9(8) COMP.
05 WS-INDEX-NAME-TABLE OCCURS 32 TIMES.

10 WS-INDEX-NAME X(250).

FIRST-FIVE
Set by capture program. Control field.

WS-KEY-IND
Set by capture program. Control field.

WS-FIELD
Set by capture program. The value for the 32 Keys extracted from the report
input. The exit can return modified values.

WS-APPLICATION-NAME
Set by capture program. The value of the Application Name for this report.

WS-IDX-FOUND-SET
Set by both capture program and exit. WS-IDX-FOUND-SET-NO is set on by the
capture program prior to calling this exit.

WS-F-FIELD-FOUND
Set by capture program. WS-F-FIELD-YES is set on by the capture program for
index values already found.

OS/390 indexer 185

WS-INDEX-NAME-COUNT-ORIGINAL
Set by capture program. The number of indexes identified by the INDEX
indexing parameters.

WS-INDEX-NAME-COUNT-UPDATED
Set by both capture program and exit. If the exit adds additional index field
names not present in the INDEX indexing parameters, this count must be
updated by the exit to indicate the new total number of indexes.

WS-INDEX-NAME
Set by both capture program and exit. Contains the name field from the INDEX
indexing parameters. The exit can interrogate this array to determine which
position in the WS-FIELD array represents which index value. If the exit adds
additional index field names not present in the INDEX indexing parameters, this
array must be updated to give the field name. This must match the Application
Group field name.

Notes

All parameter fields are set before the Index Exit is called. The exit can alter the
WS-FIELD array.
v WS-IDX-FOUND-SET-NO is set on by the calling program.
v The WS-F-FIELD-FOUND-YES flag is set on prior to this exit being called for all

indexes already found.
v After the Index Exit returns control, if WS-IDX-FOUND-SET-NO is still on, then the

calling routine will act as though the WS-F-FIELD-FOUND-YES flag is on for each
valid index field. This will allow the process to work as it did before this change
being added to V8.4.2, so existing index exits do not need to be modified.

v If the exit turns on the WS-IDX-FOUND-SET-YES FLAG, then the
WS-F-FIELD-FOUND-YES flag must be set on for each index being returned. This is
important for any index fields set by the Index Exit for which values were not
already found.

v WS-INDEX-NAME-COUNT-ORIGINAL and WS-INDEX-NAME-COUNT-UPDATED are both set
before each time the index exit is called. They are set to the number of INDEX
indexing parameters present in the application definition.

v If the exit is adding an index value to the WS-FIELD array for an application
group field for which there is no INDEX indexing parameter, then the
WS-INDEX-NAME-COUNT-UPDATED field must be set to the new total number of
indexes. The name of the index field, as defined in the application group, must
be added to the WS-INDEX-NAME array.

The sample exit routine performs the following: receives the parameter list,
performs report unique index modifications and returns control to the capture
process. All processing is controlled by the MAINLINE section of the exit. Error
messages are written to file INDSTATS.

The sample code performed in paragraph REPORT-UNIQUE-LOGIC is an example
of the kind of processing that may be performed in an index exit. The
REPORT-UNIQUE-LOGIC routine must be customized or removed for the exit to
function properly with your report.

Developing an index exit

The following approach is recommended for developing an index exit:

186 Indexing Reference

1. Create report definition with an index exit name specified in the INDXEXIT
parameter.

2. Create a new member in the Sample library corresponding to the index exit
name.

3. Copy the sample exit into the new member.
4. Modify exit as required.
5. Compile and link the exit.
6. Test.

INPEXIT
The Input Exit is provided to allow additional processing of the report input before
the report is stored. This exit can only be used when the INDEXSTYLE is not set to
AFP and when the ANYEXIT is not specified.

The exit processes two files. The report input file, called OBJINPT in the sample
exit, and an error message file, called INPSTATS.

The sample exit routine performs the following: open the input file, read the input
file, build the page buffer, perform report unique processing, and return control to
the report capture program. All processing is controlled by the MAINLINE section
of the exit. Changes related to file control processing may be required.

Important: Care should be taken when changing the routines that build the page
buffer. Do not alter the size of the INPUT-DATALINE.

The sample code found in paragraph REPORT-UNIQUE-LOGIC is an example of
the kind of processing that can be performed in an input exit.

Important: The REPORT-UNIQUE-LOGIC routine must be customized or removed
for the exit to function properly with your report input.

The exit is called dynamically during the report capture process. The report
capture routine calls the exit when the indexing parameters specify an input exit
name in the INPEXIT parameter. The report administrator provides a program name
for this parameter.

There are no restrictions as to the type of processing that can be performed in an
input exit with the exception that the exit must pass the standard parameter list
back to the report capture program. Values must be supplied for all parameters.

Beginning with Content Manager OnDemand for z/OS, Version 8.4 or later, a line
print file can have a fixed record length greater than 512 or a variable record
length. To support this capability, a new parameter format is provided. The old
parameter format is still supported for backwards compatibility. The parameter
format that is used when an input exit is called is determined as follows:

Table 12. How Content Manager OnDemand determines whether to use the old parameter
format or the new parameter format

InputRecord
Format

InputRecord
Length

INPEXITNEW
parameter value z/OS or AIX

Parameter
format used

Variable all Ignored both New

Fixed 512 or less N or not
specified

z/OS Old

OS/390 indexer 187

Table 12. How Content Manager OnDemand determines whether to use the old parameter
format or the new parameter format (continued)

InputRecord
Format

InputRecord
Length

INPEXITNEW
parameter value z/OS or AIX

Parameter
format used

Fixed 512 or less Ignored AIX New

Fixed More than 512 Y both New

Fixed More than 512 Ignored both New

Old parameter format
A sample exit is provided in ARSEXINP.

Parameters

The following example from the ARSINPBK Cobol Copybook shows the
parameters that are required by ARSEXINP.
01 PAGE-BUFFER.

02 PAGE-BUFFER-LINE OCCURS 256 TIMES.
05 PAGE-BUFFER-CHAR PIC X(512).

01 LINE-COUNT COMP PIC S9(8).
01 RECORD-STATUS PIC X(3).

88 END-OF-FILE VALUE ’EOF ’.
01 ARSEXINP-DDNAME PIC X(8).

PAGE-BUFFER
Set by Exit. One data page of the report input. The buffer dimensions are: 512
characters wide and 256 lines per page. The dimensions must not be changed.

LINE-COUNT
Set by Exit. The number of lines in the Page Buffer.

RECORD-STATUS
Set by Exit. The end of file (EOF) indicator.

ARSEXINP-DDNAME
Set by calling routine. The DD Name of the input file. This is particularly
useful when the load process is initiated by the Spool Capture process, because
the DD Name will be different each time.

New parameter format
A sample COBOL exit is provided in ARSE2INP along with the COBOL copybook
ARSIN2BK. A sample C exit is provided in ARSECINP along with the C header file
ARSZ390H.

Parameters

The following example from the ARSIN2BK Cobol Copybook shows the
parameters that are required by ARSE2INP.
01 PAGE-BUFFER.

02 PAGE-BUFFER-AREA OCCURS 1048320 PIC X.
01 LINE-COUNT COMP PIC S9(8).
01 RECORD-STATUS PIC X(3).

88 END-OF-FILE VALUE ’EOF’.
01 ARSE2INP-DDNAME PIC X(8).
01 ARSE2INP-FILE-NAME PIC X(1023).

01 ARSE2INP-OS-LEVEL-FLAG PIC X.
88 ARSE2INP-OS-LEVEL-ZOS VALUE ’Z’.
88 ARSE2INP-OS-LEVEL-MP VALUE ’M’.

188 Indexing Reference

PAGE-BUFFER
Set by Exit. One data page of the report input. The records are concatenated
into this buffer area. Each record must be preceded by a two byte value
representing the record length. This two byte value does not include the length
of itself.

If the PAGE-BUFFER-AREA is not large enough to hold an entire page,
consider using the ANYSTORE exit instead of the INPUT exit.

LINE-COUNT
Set by Exit. The number of lines in the Page Buffer.

RECORD-STATUS
Set by Exit. The end of file (EOF) indicator.

ARSE2INP-DDNAME
Set by calling routine. The DD Name of the input file. This is particularly
useful when the load process is initiated by the Spool Capture process because
the DD Name will be different each time.

Developing an input exit

The following approach is recommended for developing an input exit:
1. Create report definition with an input exit name specified in the INPEXIT

parameter.
2. Create a new member in the Sample library corresponding to the input exit

name.
3. Copy the sample exit into the new member.
4. Modify the exit as required.
5. Compile and link the exit.
6. Test.

INPEXITNEW
This parameter works with the INPEXIT parameter. If the INPEXIT parameter is
not specified, this parameter is ignored.

Because a line print file can have a variable record length or a fixed record length,
the OS/390 indexer can use one of two parameter lists to call the input exit.

When the input record format is fixed and the input record length is less than or
equal to 512, the old parameter format is used by default. If you want to use the
new parameter format in this situation, specify INPEXITNEW=Y. In all other
situations, the new parameter format will be used when calling the input exit. See
Table 13 for details on when each parameter format is used.

Table 13. Explanation of when the old parameter format and new parameter format are used

InputRecord
Format

InputRecord
Length

INPEXITNEW
parameter value z/OS or AIX

Parameter
format used

Variable all ignored both New

Fixed 512 or less N or not specified z/OS Old

Fixed 512 or less ignored AIX New

Fixed More than 512 Y both New

Fixed More than 512 ignored both New

OS/390 indexer 189

LINEOFFSET
The LINEOFFSET parameter specifies whether to take the carriage control values into
account when determining the number of lines to move up or down from the line
that contains the trigger value.

The FIELD indexing parameter is used to locate index values in the load file. It
points to a TRIGGER parameter that defines a string value in the load file to be used
as a reference point to locate the index value. The FIELD parameter includes a
record value that specifies the offset from the trigger value to the record that
contains the index value. This record (or offset) value counts the number of lines to
move up or down, from the record that contains the trigger value to get to the line
that contains the index value.

Specifying LINEOFFSET=ASREAD indicates that the carriage control is not to be
considered when counting lines. The lines are counted as they appear in the load
file.

Specifying LINEOFFSET=ASPRINTED indicates that the carriage control is to be
considered while counting lines.

The following examples show the first three records of a load file.
1REPORT
-ACCOUNT 777777
0JOHN SMITH

Using ASREAD (the default), the indexing parameters to collect the account number
and name would be as follows:
TRIGGER1=*,2,’REPORT’,(TYPE=GROUP)
FIELD1=1,10,6,(TRIGGER=1,BASE=0)
FIELD2=2,2,10,(TRIGGER=1,BASE=0)

Using ASPRINTED, the indexing parameters to collect the account number and name
would be as follows:
TRIGGER1=*,2,’REPORT’,(TYPE=GROUP)
FIELD1=3,10,6,(TRIGGER=1,BASE=0)
FIELD2=5,2,10,(TRIGGER=1,BASE=0)

The LINEOFFSET parameter is ignored when INDEXSTYLE=AFP is specified or when an
ANYSTORE exit is used.

Syntax
LINEOFFSET= value

Options and values

The values can be:

ASREAD
Carriage controls are not used to calculate the record offsets for the fields. The
offsets are relative to the lines as they are read from the load file. This value is
the default if the LINEOFFSET parameter is not specified or an invalid value is
specified.

ASPRINTED
Carriage controls are used to calculate the record offsets for the fields. The
offsets are relative to the line spacing that occurs when the lines are printed.

190 Indexing Reference

Notes for index usage
Table 14. Supported carriage controls in use by ASPRINTED

Action

ANSI

(Act, then print)

Machine

(Print, then act)

Machine

(Act without
printing)

Overprint + x'01'

Space one line blank x'09'

Space two lines 0 x'11'

Space three lines - x'19'

Skip to channel 1 1 x'8B'

Any carriage control values other than those specified in this table are treated, for
the purposed of determining record offset values, the same as the “Space one line”
action.

Note: When the OS/390 indexer encounters a record in the load file containing a
x'89' carriage control character (skip to channel 1 for “print, then act” support), the
indexer changes the carriage control character to a x'09'. It then inserts a new
record containing only a x'8B' carriage control character.

For purposes of determining the record offset values for both LINEOFFSET=ASREAD
and LINEOFFSET=ASPRINTED, the x'8B' carriage control character is treated as a
counted line. For example, if the load file contained these three lines:
(contains x’8B’ in column 1)
ACCOUNT 777777 (contains x’19’ in column 1)
JOHN SMITH (contains x’11’ in column 1)

Using ASREAD, the indexing parameters to collect the account number and name
would be as follows:
TRIGGER1=*,1,X’8B’,(TYPE=GROUP)
FIELD1=1,10,6,(TRIGGER=1,BASE=0)
FIELD2=2,2,10,(TRIGGER=1,BASE=0)

Using ASPRINTED, the indexing parameters to collect the account number and name
would be as follows:
TRIGGER1=*,1,X’8B’,(TYPE=GROUP)
FIELD1=1,10,6,(TRIGGER=1,BASE=0)
FIELD2=4,2,10,(TRIGGER=1,BASE=0)

MCC2ANSI
All line print reports captured by the OS/390 indexer must include carriage control
characters in column 1 of each line. These carriage control characters can be either
Machine Code (MCC) or ISO/ANSI (ANSI). The MCC2ANSI parameter enables
converting MCC carriage control to ANSI at capture time.

Parameters

When MCC2ANSI=Y is specified
If MCC carriage control characters are detected, they are converted to
ANSI carriage control characters. This is done before performing any
segmentation and indexing actions. Records that use the MCC NOP
carriage control character (x'03') are ignored and not captured when
MCC2ANSI=Y is specified.

OS/390 indexer 191

When MCC2ANSI=N is specified
No conversion of carriage control characters is performed.

The default value is MCC2ANSI=N. If a value other than Y or N is
specified for this parameter, an error message is issued and the load
terminates.

Triggers
Identifies locations and string values required to uniquely identify the beginning of
a group and the locations and string values of fields that are used to define
indexes.

You must define at least one trigger and can define up to 144 triggers.

Syntax
TRIGGERn=record,column,value,(TYPE=type)

Options and values

n The trigger parameter that is identified. When you add a trigger parameter,
use the next available number beginning with 1.

record
The input record where the OS/390 indexer locates the trigger string value. A
record value of * (asterisk) indicates that the OS/390 indexer searches every
input record for the trigger string value. For TRIGGER1 the input record must
be * (asterisk). When a number is specified, the number is relative to the first
line of the current page. The supported range of record numbers is 0 (the first
line of the page) to 255.

column
The beginning column where the OS/390 indexer locates the trigger string
value. The supported range of column numbers is 1 to 32756. If you specify an
* (asterisk) or 0, the OS/390 indexer scans the record from left to right and
searches for the trigger string value. A value of 1 refers to the first byte of the
record, where the carriage control characters reside.

value
The string value that the OS/390 indexer uses to match the input data. It is
recommended that you enter this value as a hexadecimal string.

TYPE=type
The trigger type. The default trigger type is group. TRIGGER1 must be a
group trigger. Valid trigger types are:

GROUP
Triggers that identify the beginning of a group. Triggers are values that
must match the values on a page for that page to be identified as the first
page of a new document. You can also use the INDEXn parameter with
BREAK=YES to identify the start of a new document. This indicates values on
a page that must change to identify that page as the start of a new
document.

FLOAT
Triggers that are used to locate index values that do not necessarily occur
in the same location on each page. FLOAT triggers can use a value of *
(asterisk) or a number for either the record or column values.

192 Indexing Reference

The TYPE=GROUP,RECORDRANGE=(start,end format is not supported by
the OS/390 indexer.

XEROX DJDE Support
When the report being captured contains DJDE records, you must specify the
DJDETRIG, DJDECOL, and DJDECNT indexing parameters . All records identified
as "global DJDE records" are stored as document resources. Refer to each
parameter for further details.

You must select a Data Type of Global DJDE from the View Information tab of the
Application Definition window in the administration client when defining a DJDE
application to Content Manager OnDemand.

Using the OS/390 indexer

Content Manager OnDemand application
You must specify to the ARSLOAD program that the OS/390 indexer process is to
be used to capture a report.

You specify the name of the indexer on the Indexer Information page in the
Content Manager OnDemand application. The name of the OS/390 indexer in the
Content Manager OnDemand application is OS/390.

To specify the indexer:
1. Start the administrative client.
2. Log on to the server.
3. Add an application.
4. Click the Indexer Information tab.
5. On the Indexer Information page, specify OS/390 in the Indexer field.

Large objects and the OS/390 indexer
The OS/390 indexer provides Content Manager OnDemand large object support
for line print and AFP reports. In general, large objects can be used for all line
print and AFP reports but should be considered for most documents that exceed
100 pages in size.

Non-Large Object documents are limited in size by available processor storage. The
entire document is stored in memory during the load process and during the
retrieval process. Excessively large documents can result in high storage
requirements and high paging and should be considered as candidates for Large
Object.

The ARSLOAD program in a z/OS environment
When using the ARSLOAD program to invoke the OS/390 Indexer on the z/OS
platforms, consider the following information.

When using JCL to run the ARSLOAD program to capture reports:
v Specify the -s ddname parameter to indicate the DD statement that points to the

input report file that is being captured.
v Specify the name of a temporary file as the last parameter. The ARSLOAD

program uses the temporary file for work space during the load process.

OS/390 indexer 193

v Specify the -j ddname parameter to provide additional indexing instructions via
a DD Name in the JCL. These parameters will be concatenated to the end of the
parameter list from the application definition. If duplicate parameters are found,
the last one specified is used.

ARSLOAD stores the document being processed in the directory selected for
temporary file use. Analyze the directory to make sure that there is adequate
additional space to hold the largest document that may be captured.

The directory to be used by ARSLOAD for temporary files is determined in the
order:
v -c option in the ARSLOAD parameters
v Environment variable ARS_TMP
v Environment variable TEMP
v Environment variable TMP
v Current working directory if none of the above specified

The following is an example of a parameter list for ARSLOAD. The DD statement
that points to the input report file that is being captured is OBJINPT, the name of
the application group is CHKOPL1 01, and tempname is the name of the file that is
used for temporary work space.
// PARM=(’/-u SYSADMIN -p SYSADMIN -h ARCHIVE -n -v -s OBJINPT
// -g "CHKOPL1 01" tempname’)

194 Indexing Reference

OS/400 indexer

The Content Manager OnDemand OS/400 indexer is the only Content Manager
OnDemand indexer used for IBM i spooled files. The indexer is supported by IBM
i, and cannot be used on any other platform. The OS/400 indexer is called by the
ADDRPTOND command for SCS, SCS-extended, Advanced Function Presentation
(AFP), and Line spooled files. You use the Content Manager OnDemand
administrative client's graphical indexing tool to define the index criteria that the
OS/400 indexer uses to locate and create index data for your spooled files.

The graphical tool can be invoked in one of two ways:
v By clicking the Select Sample Data button within the Report Wizard, or
v Selecting Sample Data and clicking the Modify button on the Indexer

Information panel while creating a Content Manager OnDemand application
definition

Indexing parameters include information that allows Content Manager OnDemand
to identify key items in the print data stream and create index elements pointing to
these items. You can specify the index information that allows Content Manager
OnDemand to segment the data stream into individual items called groups. A
group is a collection of one or more pages. You define the bounds of the collection;
for example, a bank statement, insurance policy, phone bill, or other logical
segment of a report file. A group can also represent a specific number of pages in a
report. For example, you might decide to segment a 10,000 page report into groups
of 100 pages. Content Manager OnDemand creates indexes for each group. Groups
are determined when the value of an index changes (for example, account
number), or when the maximum number of pages for a group is reached.

Index data is made up of an attribute name (for example, Customer_Name) and an
attribute value (for example, Frank Booth), with a defined tag that identifies the
location of the data on the print page. For example, the Account_Number tag with
the pointer 1,21,16 means Content Manager OnDemand can expect to find
Account_Number values starting in column 21 of specific input records. Content
Manager OnDemand collects 16 bytes of information starting at column 21 and
adds it to a list of attribute values found in the input. Content Manager
OnDemand creates an index file when you index report files. The index file
includes index elements that contain the offset and length of a group. Content
Manager OnDemand calculates an index element for every group found in the
input file. Content Manager OnDemand then writes the attribute values extracted
from the input file to the index file.

Content Manager OnDemand uses the OS/400 indexer for SCS, SCS-extended,
AFP, and Line spooled files. See the Report Wizard section in the Introduction of
the IBM Content Manager OnDemand for i: Common Server Administration Guide for
more information on the Report Wizard. See the section on Adding the Application
in the Examples chapter of the IBM Content Manager OnDemand for i: Common
Server Administration Guide for more information on defining an application
without using the Report Wizard.

© Copyright IBM Corp. 1993, 2014 195

OS/400 indexer parameters
Indexing parameters can contain indexing, conversion, and resource collection
parameters, options, and values. For most reports, Content Manager OnDemand
requires three indexing parameters to extract or generate index data:
v TRIGGER Content Manager OnDemand uses triggers to determine where to

locate data. A trigger instructs Content Manager OnDemand to look for certain
information in a specific location in the report file. When Content Manager
OnDemand finds a record in the data stream that contains the information
specified in the trigger, it can begin to look for index information.
– Content Manager OnDemand compares data in the report file with the set of

characters specified in a trigger, byte for byte.
– A maximum of 16 triggers can be specified.

v FIELD The field parameter identifies the location, offset, and length of the data
Content Manager OnDemand uses to create index values.
– Field definitions are based on TRIGGER1 by default, but can be based on any

of 16 TRIGGER parameters.
– A maximum of 128 fields can be defined.
– A field can also specify all or part of the actual index value stored in the

database.
v INDEX The index parameter is where you specify the attribute name, identify

the field or fields on which the index is based, and specify the type of index that
Content Manager OnDemand generates. For the group-level indexes Content
Manager OnDemand stores in the database, you should name the attributes the
same as the application group database field names.
– Content Manager OnDemand can create indexes for a page, group of pages,

and the first and last sorted values on a page or group of pages. Content
Manager OnDemand stores group-level index values in the database. Users
can search for items using group-level indexes. Page-level indexes are stored
with the document (for example, a statement). After retrieving a document
that contains page-level indexes, you can move to a specific page by using the
page-level indexes.

Important: Page-level indexers must already exist in the AFP spooled file
before indexing.

– You can concatenate field parameters to form an index.
– A maximum of 128 index parameters can be specified.

Content Manager OnDemand creates a new group and extracts new index values
when one or more of the index values change, or the GROUPMAXPAGES value is
reached.

196 Indexing Reference

The following indexing parameters can be used to generate index data for the
report shown in Figure 3. The TRIGGER definitions tell the OS/400 indexer how to
identify the beginning of a group in the input. The OS/400 indexer requires one
TRIGGER definition to identify the beginning of a group (statement) in the sample
file. For example:
v TRIGGER1 looks for the string Page 0001 in column 72 of every record.

The trigger uniquely identifies the start of a statement in the report.

The FIELD definitions determine the location of the index values in a statement.
Fields are based on the location of trigger records. For example:
v FIELD1 identifies customer name index values, beginning in column 40 of the

second record following the TRIGGER1 record.
v FIELD2 identifies the statement date index values, beginning in column 56 of the

sixth record following the TRIGGER1 record.
v FIELD3 identifies the account number index values, beginning in column 56 of

the seventh record following the TRIGGER1 record.

An INDEX definition identifies the attribute name of the index field. Indexes are
based on one or more field definitions. For example:
v INDEX1 identifies the attribute name custnam, for values extracted using

FIELD1.
v INDEX2 identifies the attribute name sdate, for values extracted using FIELD2.
v INDEX3 identifies the attribute name acctnum, for values extracted using

FIELD3.

The following table lists the maximum values for certain indexing attributes:

Indexing attribute Maximum value

Maximum number of lines per spooled file page (greater than
printer file maximum due to allowance for overprint lines)

510

Maximum page width (positions per line) 378

Maximum number of triggers per page (for documents not using
multi-key)

16

Maximum number of index values per page (for documents not
using multi-key)

128

Maximum number of fields per page (for documents not using
multi-key)

128

Maximum number of triggers per page (for multi-key documents) 512

Maximum number of index values per page (for multi-key
documents)

1024

Maximum number of fields per page (for multi-key documents) 1024

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9
01 Page 0001
1
2 Jack Straw
3 4 Buxanchange Way
4 Wichitaw KS 99999-9999
5
6 Statement Date: 06/15/07
7 Account Number: 1234-5678-9876-0000
8
9 Balance: $2,984.17

Figure 3. Indexing a report

OS/400 indexer 197

Indexing attribute Maximum value

Maximum number of index values per group (document) (for
multi-key documents)

9999

Maximum size of an AFP resource segment 16,000,000 bytes

Maximum size of any single AFP resource 16,000,000 bytes

Important: For the Maximum page width indexing attribute, when using the
PRTTXTOND command with STMF(*NONE), which directs the output to a
spooled file instead of a stream file, the maximum page width is 372.

Unique indexing parameter reference
To provide the segmentation and indexing instructions, the OS/400 indexer process
uses standard ACIF parameters. The following parameters are unique to the
OS/400 indexer.

CC
The CC parameter is set to YES by default by the graphical indexer when the
OS/400 indexer is specified. If present, the CC parameter should not be changed or
removed.

Syntax
CC=YES

CCTYPE
The CCTYPE parameter is set to A by default by the graphical indexer when the
OS/400 indexer is specified. If present, the CCTYPE parameter should not be
changed or removed.

Syntax
CCTYPE=A

CONVERT
The CONVERT parameter is set to NO by default for SCS, SCS-extended, or LINE
data types by the graphical indexer when the OS/400 indexer is specified. If the
Data Type is AFP, it is set to YES. If present, the CONVERT parameter should not be
changed or removed.

Syntax
CONVERT=NO | YES

Related information

“Handling SCS spooled files that have AFP overlays” on page 223

CPGID
Required

No

Default Value
The default set by the graphical indexer is the code page of the Content

198 Indexing Reference

Manager OnDemand instance into which the Content Manager OnDemand
application definition is being created. However, if you remove the CPGID
parameter from the indexer parameters and then you move to the view
page of the application definition in the Content Manager OnDemand
Administrator client, the code page is set to 850, which is ASCII. This
causes your load to fail, which is by design, since you do not want to load
System i data with code page set to 850.

Data Type
AFP, Line, SCS, SCS-Extended

Identifies the code page of the index data. The CPGID must match the code page
of the input data. For reasons stated in the Default Value section above, the CPGID
parameter should not be removed.

Syntax
CPGID=value

Options and values

The value can be:

850 The default IBM code page if the CPGID parameter is not specified.

code page identifier
Any valid code page. A two to five character identifier of an IBM
registered or user-defined code page.

DOCTYPE
Required

Yes

Default Value
Set by the graphical indexer to match the data type specified on the View
Information page.

Data Type
AFP, Line, SCS, SCS-Extended

Identifies the data type.

Syntax
DOCTYPE=value

Options and values

The value can be:
v AFP
v LINE
v SCS
v SCSEXT

FIELD
Identifies the location of the index data and can provide default and constant
index values.

OS/400 indexer 199

Required
Yes

Default Value
(None)

Data Type
AFP, Line, SCS, SCS-Extended

You must define at least one field. You can define up to 128 fields. The OS/400
indexer supports the following types of fields:
v Trigger field, which is based on the location of a trigger string value.
v Constant field, which allows you to provide the actual index value that is stored

in the database.
v Transaction field, which you can use to index input data that contains one or

more columns of data sorted in ascending sequence (from lowest to highest).
Because it is not always practical to store every index value in the database, the
OS/400 indexer extracts the first and last sorted values in each group. The data
is sorted according to the collating sequence of the code page.

v Mask field, which uses a mask to match data from the field columns.

Trigger FIELD syntax
FIELDn=record,column,length,(TRIGGER=n,BASE={0 |
TRIGGER}[,DEFAULT=X’value]’)

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one). The value must be between 1 and
128.

record
The relative record number from the trigger on which the field is based. This is
the record number where the OS/400 Indexer begins to search for the field.
The supported values include any number from -255 to 255, including 0.

column
The relative column number from the BASE. This is the column number where
the OS/400 Indexer searches for the field. A value of 1 (one) refers to the first
byte in the record. For files containing carriage-control characters, column one
refers to the carriage-control. If you specify BASE=0, the column value can be 1
to 378. If you specify BASE=TRIGGER, the column value can be -378 to 378.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values is 1 to 250. The field can extend outside the record
length, if the column where it begins lies within the record length. In this case,
the OS/400 Indexer adds padding blanks to fill out the field.

TRIGGER=n
Identifies the trigger parameter the OS/400 Indexer uses to locate the field.
This is an optional parameter, but the default is TRIGGER1. Replace n with the
number of a defined TRIGGER parameter.

BASE={0|TRIGGER}
Determines whether the OS/400 Indexer uses the starting column number of
the trigger string value to locate the field data. Choose from 0 (zero) or
TRIGGER. If BASE=0, the OS/400 Indexer adds zero to the field column offset.
If BASE=TRIGGER, the OS/400 Indexer adds the starting column number of

200 Indexing Reference

the trigger string value to the field column offset. You should use BASE=0 if
the field data always starts in a specific column. You should use
BASE=TRIGGER if the field data doesn't always start in a specific column, but
is always offset from the trigger string value a specific number of columns. For
example, a trigger occurs in the second record on a page. The trigger string
value can begin in any column in the record. A field based on this trigger
occurs in the trigger record. In the example, the starting column number of the
field is always 10 bytes from the starting column number of the trigger. Specify
BASE=TRIGGER and a column offset of 10 so that the OS/400 Indexer
correctly locates the field, regardless of the starting column of the trigger string
value.

DEFAULT=X'value'
Determines the default value for the index when the field is not found in the
page group. The default value must be specified as an EBCDIC hexadecimal
string. For example, X'value'.

Example
The following field parameter causes the OS/400 Indexer to locate field values
that begin in column 83 of the same record that contains the TRIGGER1 string
value. The field length is 8 bytes. Specify BASE=0 because the field data
always starts in the same column.
TRIGGER1=*,1,X'F1',(TYPE=GROUP)
FIELD1=0,83,8,(TRIGGER=1,BASE=0)

The following field parameter causes the OS/400 Indexer to locate field values
that begin 10 columns offset from the trigger string value. The trigger string
value can start in any column in any record. Basing the field on TRIGGER2
and specifying BASE=TRIGGER allows the OS/400 Indexer to locate the field
by adding 10 to the starting column offset of the trigger string value.
TRIGGER2=*,*,X'E2A482A396A38193',(TYPE=FLOAT)
FIELD2=0,10,12,(TRIGGER=2,BASE=TRIGGER)

Constant FIELD syntax
A constant field is a field for which you specify the actual index value that is
stored in the database.
FIELDn=constant

It is possible to generate an index value by concatenating or combining the value
that you specify for a constant field with the value that the OS/400 Indexer
extracts from a document by using a trigger field. The OS/400 Indexer allows a
constant field to be concatenated in an index with a field that is based on either a
group trigger or a floating trigger.

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one). The value must be between 1 and
128.

constant
The literal (constant) string value of the field. This is the index value that is
stored in the database. Specify a hexadecimal value using the format
X'constant', where constant is hexadecimal data. The constant value can be 1 to
250 bytes in length. The OS/400 Indexer does not check the actual content of
the supplied data for validity.

OS/400 indexer 201

Examples
The following field parameter causes the OS/400 Indexer to store the same
string of hexadecimal characters in each INDEX3 value it creates.
FIELD3=X'F0F0F0F0F0F0F0F0F0' /* 000000000 */
INDEX3=X'D5D6D6D7',FIELD3,(TYPE=GROUP,BREAK=NO) /* NOOP */

The following field parameters cause the OS/400 Indexer to concatenate a
constant value with the index value extracted from the data. The OS/400
Indexer concatenates the constant value that is specified in the FIELD3
parameter to each index value located using the FIELD4 parameter. The
concatenated string value is stored in the database. In this example, the
account number field in the data is 14 bytes in length. However, the account
number in the database is 19 bytes in length. Use a constant field to
concatenate a constant 5-byte prefix (0000-) to all account numbers extracted
from the data.
FIELD3=X'F0F0F0F060' /* 0000- */
FIELD4=0,66,14
INDEX3=X'818383A36D95A494',FIELD3,FIELD4,(TYPE=GROUP,BREAK=YES) /* acct_num */

Transaction FIELD syntax
FIELDn=*,*,length,(OFFSET=(start1:end1[,...start8:end8]),MASK=’*@#=¬^%’
[,ORDER={BYROW|BYCOL}])

Options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one). The value must be between 1 and
128.

* The record number where the OS/400 Indexer begins searching for the field. A
transaction field must specify an asterisk, meaning the OS/400 Indexer
searches every record in the group.

* The column number where the OS/400 Indexer begins searching for the field.
A transaction field must specify an asterisk. The OFFSET specification
determines the column or columns where the OS/400 Indexer locates the field.

Note: When defining a transaction field, if you enter a value other than an
asterisk, the OS/400 Indexer ignores the value. When you specify the OFFSET
keyword of the FIELD parameter, the OS/400 Indexer always uses the starting
column number from the OFFSET keyword to determine the location of the
field value.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values is 1 to 250. The field can extend outside the record
length, if the column where it begins lies within the record length. In this case,
the OS/400 Indexer adds padding blanks to complete the field.

OFFSET=(start:end)
Determines the location of the field value from the beginning of the record.
The start is the column where the field begins. The end is the last column of
field data. A maximum of eight pairs of beginning and ending offset values are
allowed. Each pair represents one column of data on the report, so if your
report only has one column of sorted data, you have only one pair of start and
end values. If you have more than one pair, separate the pairs with a comma.
When you specify the OFFSET keyword, you must also specify the MASK
keyword. The implied length of an OFFSET must be the same as the number
of characters in the MASK or the OS/400 Indexer will not detect a match.

202 Indexing Reference

MASK='*@#=¬^%'
Determines the pattern of symbols that the OS/400 Indexer matches with data
located in the field columns. When you specify the MASK keyword, you must
also specify the OFFSET keyword. Valid mask symbols include the following
symbols:

Table 15. Mask symbols

Mask symbol Meaning

* Not literal; matches a user-defined mask.
Refer to the USERMASK.

@ Matches alphabetic characters.

Matches numeric characters.

¬ Matches any non-blank characters.

^ Matches any non-blank character.

% Matches the blank character and numeric
characters.

= Matches any character.

The symbols in the mask are assumed to be in the code page that is specified
by the CPGID parameter. The OS/400 indexer translates all characters in the
MASK value except the MASK symbols shown in the table above. The OS/400
indexer then matches the input characters against the MASK value. For
example, the following definitions
CPGID=37
FIELD3=*,*,8,(OFFSET=(10:17),MASK='A####-##',ORDER=BYROW)

cause the OS/400 Indexer to search columns 10 through seventeen for an
uppercase A (a hexadecimal C1) followed by four numeric characters
(hexadecimal F0-F9), a dash (hexadecimal 60), and two numeric characters
(hexadecimal F0-F9).

ORDER={BYROW|BYCOL}
Identifies where the OS/400 Indexer can locate the smallest value and the
largest value of a group of sorted values (sorted in ascending order) arranged
in either rows or columns on the page. The default ORDER is BYROW. For
ORDER=BYROW, the OS/400 Indexer extracts the first value in the first row
and the last value in the last row that match the MASK. Data with a row
orientation may appear as follows:
1 2 3
4 5 6
7 8

For ORDER=BYCOL, the OS/400 Indexer extracts the first value in the first
column and the last value in the last column that match the MASK. Data with
a column orientation may appear as follows:
1 4 7
2 5 8
3 6

Example
The following field parameter causes the OS/400 Indexer to locate a 10
character numeric string that begins in column three of any records in the
group. This format of the FIELD parameter is used to create indexes for the
beginning and ending sorted values of each group.
FIELD4=*,*,10,(OFFSET=(3:12),MASK='##########',ORDER=BYROW)

OS/400 indexer 203

Related information

“Defining transaction fields” on page 217

Mask FIELD syntax
The MASK keyword of the FIELD parameter now supports a field that is based on
a floating trigger. Previously, the MASK keyword could only be used with a
transaction field.

Unlike some of the other indexers for other Content Manager OnDemand
platforms, the OS/400 Indexer allows an INDEX parameter that is based on the field
to include other fields.

Use the following syntax to specify a field with a mask when the field is based on
a floating trigger:
FIELDn=record,column,length,(TRIGGER=n,BASE={0 | TRIGGER},MASK='*@#=¬^%')[,DEFAULT=X’value’]

where:

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

record
The relative record number from the trigger on which the field is based. This is
the record number where the OS/400 Indexer begins to search for the field.
The supported values include any number from -255 to 255, including 0.

column
The relative column number from the BASE (specified with the BASE keyword
of the FIELD parameter). This is the column number where the OS/400 Indexer
begins to search for the field. A value of 1 (one) refers to the first byte in the
record. For files that contain carriage-control characters, column one refers to
the carriage-control. If you specify BASE=0, then the column value can be from
1 to 378. If you specify BASE=TRIGGER, then the column value can be from
-378 to 378. If the specified value exceeds the physical length of the record,
then the OS/400 Indexer reports an error condition and terminates processing.

length
The number of contiguous bytes (characters) that compose the field. The
supported range of values is 1 to 250. The field can extend outside the record
length, if the column where it begins lies within the record length. In this case,
the OS/400 Indexer adds padding blanks to complete the field.

TRIGGER=n
Identifies the trigger parameter that the OS/400 Indexer uses to locate the
field.

BASE={0|TRIGGER}
Determines whether the OS/400 Indexer uses the starting column number of
the trigger string value to locate the field data. Choose from 0 (zero) or
TRIGGER. If you specify BASE=0, then the OS/400 Indexer adds zero to the
field column offset. If you specify BASE=TRIGGER, then the OS/400 Indexer
adds the starting column number of the trigger string value to the field column
offset. You must specify BASE=0 if the field data always starts in a specific
column. You must specify BASE=TRIGGER if the field data doesn't always
start in a specific column, but is always offset from the trigger string value a
specific number of columns. For example, a trigger occurs in the second record
on a page; the trigger string value can begin in any column in the record; a
field based on this trigger occurs in the trigger record; the starting column

204 Indexing Reference

number of the field is always 10 bytes from the starting column number of the
trigger; you would specify BASE=TRIGGER and a of 10 (ten) so that the
OS/400 Indexer correctly locates the field, regardless of the starting column of
the trigger string value.

MASK='*@#=¬^%'
Specifies a pattern of symbols that the OS/400 Indexer uses to match data in
the field columns. If the data matches the MASK, then the OS/400 Indexer
selects the field. You can specify the following symbols in the MASK:

Table 16. Mask symbols

Mask symbol Meaning

* Not literal; matches a user-defined mask.
Refer to the USERMASK.

@ Matches alphabetic characters.

Matches numeric characters.

¬ Matches any non-blank characters.

^ Matches any non-blank character.

% Matches the blank character and numeric
characters.

= Matches any character.

For example, given the following definitions:
TRIGGER2=*,25,'SOURCE',(TYPE=FLOAT)
FIELD2=0,38,4,(TRIGGER=2,BASE=0,MASK='####',DEFAULT=X'F1F0F0F0')

The OS/400 Indexer selects the field only if the data in the field columns
contains numeric characters.

DEFAULT=X'value'
The default value is used if the field is not found. This occurs when the trigger
locating the field is not found. The default value can be from 1 to 250
characters in length.

Attention: The MASK is not applied to the default value.
Related reference:
“Assigning default index values” on page 220

FILEFORMAT
The FILEFORMAT parameter is always RECORD when using the OS/400 indexer,
and if present, must not be changed or removed.

Syntax
FILEFORMAT=RECORD

IMAGEOUT
The IMAGEOUT parameter is set to ASIS by default by the graphical indexer when
the OS/400 indexer is specified. If present, the IMAGEOUT parameter should not be
changed or removed.

Syntax
IMAGEOUT=ASIS

OS/400 indexer 205

ASIS is the only value supported by the OS/400 Indexer is for the IMAGEOUT
parameter.

INDEX
Identifies the index name and the fields on which the index is based. You must
define at least one index parameter.

Required
Yes

Default Value
(None)

Data Type
AFP, Line, SCS, SCS-Extended

Identifies the index name, the field or fields on which the index is based, and the
type of index the OS/400 indexer generates. You can define group indexes for SCS,
AFP, and line data. You must define at lease one index parameter. You can define
up to 128 index parameters. When you define a group index, IBM recommends
that you name the index the same as the application group database field name.

Syntax
INDEXn=name,FIELDnn[,...FIELDnn],TYPE=type)][,(ALLOWMULTIPLEVALUES={NO|YES})]

Options and values

n The index parameter identifier. When you add an index parameter, use the
next available number beginning with 1.

name
Determines the index name associated with the actual index value. For
example, assume INDEX1 is to contain account numbers. The string acct_num
would be a meaningful index name. The index value of INDEX1 would be an
actual account number, for example, 00123456789. The index name can be a
maximum of 250 bytes in length. The index name must be specified as
hexadecimal data. Specify a hexadecimal value using the format X'name',
where name is hexadecimal data, for example, X'95819485'. The creation of the
hexadecimal data is done for you automatically by the graphical indexer.

FIELDnn
The name of the field parameter or parameters the OS/400 indexer uses to
locate the index. A maximum of 128 field parameters can be specified. Separate
field parameter names with a comma. The total length of the contents of all the
specified field parameters cannot exceed 250 bytes. For example, the value of
FIELD1 might be "(888) " and the value of FIELD2 might be "555-1212". If
INDEX1 is defined as
INDEX1 = X'D788969585',FIELD1,FIELD2,(TYPE=GROUP)

then the values of FIELD1 and FIELD2 is concatenated into INDEX1. The total
length of the concatenated string cannot exceed 250 bytes. GROUPRANGE
indexes must name only one transaction field. GROUPRANGE indexes cannot
break a group - you must specify BREAK=NO.

TYPE=type
The type of index the OS/400 indexer generates. The default index type is
GROUP. The following list has valid index types:
v TYPE=GROUP[,BREAK={YES|NO}][,(ALLOWMULTIPLEVALUES= {NO|YES})]

206 Indexing Reference

Create a group index value. The OS/400 indexer creates one index value for
each group. You can specify whether the OS/400 indexer includes or ignores
the index when calculating a group break. When BREAK=YES (the default),
the OS/400 indexer begins a new group when the index value changes. For
most reports, BREAK must always be set to YES. BREAK=NO is useful
when you define two or more indexes and you want the OS/400 indexer to
begin a new group only when a specific index value changes. Specify
BREAK=YES for the index that you want the OS/400 indexer to use to
control the group break. Specify BREAK=NO for the other indexes. A
GROUP index that specifies BREAK=NO can also specify
ALLOWMULTIPLEVALUES=YES if you want the OS/400 indexer to collect
multiple values for this index for each group (document). This concept is
also known as multi-key. The default is NO, which causes the OS/400
indexer to collect only the first occurrence of an index within a given group.
Specify YES if you want multiple values for this index to be collected per
group. An example of the use of this multi-key capability might be for an
invoice that has multiple part numbers that are listed on the detail lines of
the invoice. Without the multi-key capability, the OS/400 indexer would
only collect the first one of the part numbers on the page. Multi-key tells the
OS/400 indexer to continue to collect multiple part numbers before moving
on to the next invoice. See “Defining multi-key indexes” on page 213 for
more information.

v TYPE=GROUPRANGE,BREAK=NO

Create group indexes. The OS/400 indexer creates index values for the first
and last sorted values in each group. The OS/400 indexer creates indexes for
the group by extracting the first and last values that match the MASK of the
transaction field on which the index is based. The OS/400 indexer assumes
that the input values are sorted. You can define one GROUPRANGE index
per report. A GROUPRANGE index must name only one transaction field. A
GROUPRANGE index cannot name a field parameter that is based on a
floating trigger. A GROUPRANGE index cannot break a group. For a
GROUPRANGE index, the OS/400 indexer uses the value of the
GROUPMAXPAGES parameter to determine the number of pages in a group. For
example, you need to index a report that consists of thousands of pages of
sorted transaction data. You define a GROUP index to hold the report date
index values and a GROUPRANGE index to hold the transaction numbers
for each group. Because every page in the report contains the same date, the
GROUP index cannot be used to break the report into groups (and a
GROUPRANGE index cannot be used to break a group.) To break the report
into groups, set the GROUPMAXPAGES parameter to the maximum number of
pages you want in a group (for example, 100). When calculating group
breaks, the OS/400 indexer will use the value of the GROUPMAXPAGES
parameter to determine when to close the current group and begin a new
group.

Examples

Group index
The following index parameter causes the OS/400 indexer to generate
group indexes for date index values. The index type is optional, but
defaults to group. When the index value changes, the OS/400 indexer
closes the current group and begins a new group.
INDEX1='6C6F61645F64617465',FIELD1,(TYPE=GROUP,BREAK=YES)

OS/400 indexer 207

The following index parameters cause the OS/400 indexer to generate
group indexes for customer name and account number index values. The
index type is optional, but defaults to group. The OS/400 indexer closes
the current group and begins a new group only when the customer name
index value changes. (The data is sorted by customer name.) In this
example, a customer may have one or more statements with different
account numbers. The page numbers in each statement begin with the
number one, giving the appearance of unique statements. The goal is to
collect all of a customer's statements in a single group.
INDEX1='95819485',FIELD1,(TYPE=GROUP,BREAK=YES)
INDEX2='818383A46D95A494',FIELD2,(TYPE=GROUP,BREAK=NO)

Grouprange index
The following index parameter causes the OS/400 indexer to generate
grouprange indexes for loan number index values. The OS/400 indexer
extracts the beginning and ending loan numbers in each group of pages. A
grouprange index must be based on a transaction field. Because a
grouprange index cannot be used to break a report into groups of page, the
GROUPMAXPAGES parameter is used to determine the number of pages in each
group. The OS/400 indexer closes the current group and begins a new
group when the number of pages in the group is equal to the value of the
GROUPMAXPAGES parameter.
INDEX2='4C6F616E204E756D626572',FIELD2,(TYPE=GROUPRANGE,BREAK=NO)

GROUPMAXPAGES=100

INDEXOBJ
Determines the level of indexes the OS/400 indexer includes in the index file.

Syntax

Required
No

Default Value
GROUP

Data Type
AFP, Line, SCS, SCS-Extended

INDEXOBJ=value

Options and values

The value can be:

GROUP
The OS/400 indexer includes group-level index entries in the index file.

ALL The OS/400 indexer includes group-level and page-level indexes in the
index file. You must specify INDEXOBJ=ALL for reports that require Large
Object support.

INDEXSTARTBY
Determines the page number by which the graphical indexer must find a group
indexing field.

208 Indexing Reference

Syntax

Required
Yes

Default Value
1

Data Type
AFP, Line, SCS, SCS-Extended

A group indexing field is a field that is based on a group or recordrange trigger.
The graphical indexer issues a warning message if it does not find all group
triggers before the specified page number. The INDEXSTARTBY parameter is set to 1
by default by the graphical indexer when the OS/400 indexer is specified, but can
be changed if necessary by clicking the indexer properties icon while defining
triggers, fields, and indexes in the graphical indexer.

The INDEXSTARTBY parameter is not used by the OS/400 Indexer when locating
triggers and fields.
INDEXSTARTBY=value

Options and values

The value is a number from 1 to 99.

INDEXSTYLE
For definitions migrated from an Content Manager OnDemand Spool File Archive
environment, INDEXSTYLE indicates whether the original Spool File Archive
definition was a DOC, PAGE, or NODX report type. If not specified, DOC is
assumed.

Syntax

Required
No

Default Value
(None)

Data Type
AFP, Line, SCS, SCS-Extended

INDEXSTYLE=value

Options and values

The value can be:
v DOC
v PAGE
v NODX

STARTINDEXINGONPAGE
Indicates the page number on which the OS/400 indexer begins indexing. Any
pages before the starting page are discarded.

OS/400 indexer 209

Syntax

Required
No

Default Value
1

Data Type
Line, SCS, SCS-Extended

STARTINDEXINGONPAGE=value

Options and values

The value is a number from 1 to 99.

STARTTRANSACTIONFIELDSONLINE
Indicates the line number on which the OS/400 indexer begins searching for
transaction fields.

Syntax

Required
No

Default Value
1

Data Type
AFP, Line, SCS, SCS-Extended

STARTTRANSACTIONFIELDSONLINE=value

Options and values

The value is a number from 1 to 510.

STARTTRIGGERSONLINE
Indicates the line number on which the OS/400 indexer begins searching for
triggers.

Syntax

Required
No

Default Value
1

Data Type
AFP, Line, SCS, SCS-Extended

STARTTRIGGERSONLINE=value

Options and values

The value is a number from 1 to 510.

210 Indexing Reference

TRANSLATEPRINTCONTROL
Indicates whether the OS/400 indexer should process carriage control characters
before determining the line number on which to locate triggers, fields, and indexes.

Syntax

Required
No

Default Value
NO

Data Type
Line, SCS, SCS-Extended

The TRANSLATEPRINTCONTROL parameter must be added manually to your indexer
parameters by clicking the keyboard radio button and then modify button in the
Parameters Source are of the Indexer Information page of your Content Manager
OnDemand Application definition.
TRANSLATEPRINTCONTROL=value

Options and values

The value can be:
v YES
v NO

Related information

“Understanding Translate Print Control” on page 224

BREAK setting
A group is a set of pages that logically belong together. For example, all the pages
in a single bank statement could comprise a group. A group is a single document,
or a segment, as it was known in Spool File Archive. A group break is the process
of closing the current group and starting a new group. In Spool File Archive, this
process was known as segmentation. For a specific group index, the BREAK setting
determines whether the OS/400 indexer begins a new document when that index's
value changes.

When you specify BREAK=YES, the OS/400 indexer begins a new group when the
value of the field on which the index is based changes. BREAK=NO is useful when
you define two or more fields and you want the OS/400 indexer to begin a new
group only when the other of the two fields' value changes. Specify BREAK=YES
only for the index that is based on the field that you want the OS/400 indexer to
use to control the group break. Specify BREAK=NO for all the other indexes in the
group.

To expand on the bank statement example, consider storing bank statements. Each
statement begins with a change in account number from the previous statement.
You defined indexes for Account Number, Customer Name, and Statement Date.
Most likely, you want Account Number to be set to BREAK=YES, Customer Name
to BREAK=NO, and Statement Date to BREAK=NO. Doing this ensures that a
group break occurs only when Account Number changes. The corresponding
indexer parameters in the Application definition might look like this:

OS/400 indexer 211

INDEX1=X’C1838396A495A3D5A494828599’,FIELD1,(TYPE=GROUP,BREAK=YES) /* AccountNumber */
INDEX2=X’C3A4A2A396948599D5819485’,FIELD2,(TYPE=GROUP,BREAK=NO) /* CustomerName */
INDEX3=X’E2A381A385948595A3C481A385’,FIELD3,(TYPE=GROUP,BREAK=NO) /* StatementDate */

The Content Manager OnDemand Administrator client's Report Wizard is designed
to simplify the process of defining application groups, applications, and folders.
The Wizard makes the assumption that any change in an index that is defined as
TYPE=GROUP should cause a group break. Thus, it sets all index fields to
BREAK=YES. If the index is based on a float trigger (TYPE=FLOAT), then
BREAK=NO is set by default. Indexes based on float triggers can be changed to
BREAK=YES, if necessary.

Note that if you have selected the Allow Multiple Values option, BREAK is
automatically set to NO and should not be changed.

If you already archived data with all of your indexes set to BREAK=YES, you can
still make this change. Changing some of your indexes from BREAK=YES to
BREAK=NO can be done at any time. As with any change to your indexer
parameters, you should verify that your reports archive correctly after the change.
Any reports already archived do not need to be rearchived; however, the change
will only affect reports that are archived after the change is made.

Controlling maximum number of pages per group
You might want to set a maximum number of pages for each group that is
indexed. Content Manager OnDemand can use the value of the
GROUPMAXPAGES indexer parameter to determine the number of pages in a
group. For example, you need to index a report consisting of thousands of pages of
detail. If your BREAK=YES criteria do not result in small enough groups of pages
(or segments) of the report, you can use GROUPMAXPAGES=100, for example, to
force Content Manager OnDemand to close the current group and begin a new
group for any group that reaches 100 pages. In other words, if the
GROUPMAXPAGES value is reached before the value of a group index changes,
Content Manager OnDemand forces the creation of a new group. If you do not
specify a value for the GROUPMAXPAGES parameter, Content Manager
OnDemand does not terminate the current group and begin a new group until the
value of one of the fields named by an INDEX with BREAK=YES changes.

Using Group triggers versus Float triggers
When trying to decide whether to use a Group trigger or a Float trigger, consider
the following information.

Use Group triggers when:
The trigger is always found on the same page as trigger 1.

The trigger is always found in the same row or range of rows relative to
trigger 1.

The trigger is found more than once, but you only want to use the first
occurrence.

Use Float triggers when:
The trigger may be found on the same page or on a different page as
trigger 1.

The trigger is found more than once and you want to use all occurrences.

The index will be defined as multi-key.

212 Indexing Reference

Defining multi-key indexes
Multi-key indexes can be used when an index value occurs multiple times within a
single document. For example, invoices might have invoice number, customer
number, and customer name defined as the first three index fields, each occurring
once within a given invoice. Then you might also want to define item number as a
multi-key index, since there might be multiple item numbers within one invoice.
With multi-key support, an end-user could search by item number to find any
invoice for a given item number, no matter where that item number appeared in
the list of invoiced items. Without the multi-key capability, only the first item
number on the page would be indexed.

To enable multi-key indexing, the keyword ALLOWMULTIPLEVALUES=YES must
be added to each INDEX statement that is to have multiple values captured per
document. For example:
INDEX2=X’97969596’,FIELD2,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)

The keyword would be added to the Content Manager OnDemand Application
definition. Go to the Indexer Information tab, then click on Keyboard and then
Modify to edit the Application's Indexer Parameters. Keyword
ALLOWMULTIPLEVALUES is only valid when BREAK=NO. Also note that unlike
the Content Manager OnDemand Spool File Archive multi-key rule, defining an
index as multi-key does not require all subsequent index fields to also be defined
as multi-key. In a Common Server environment, as is shown in the example, you
can define an index as multi-key and then define another one below it that is not
multi-key. However, a field used for a multi-key index must be found on or below
the row containing the float trigger used to locate that field.

Multi-key index example
The following example demonstrates how to define a multi-key index by using the
Report Wizard and the graphical indexer. The sample report to be archived is an
AFP invoice. The following pieces of information should be used as indexes:
v Customer Number
v Invoice Number
v Invoice Date
v Item Number (this will be the multi-key index)
v Total Due

As a general rule, you should define triggers and fields from top left to bottom
right of the report. This has the added benefit of making your indexer parameters
easier to understand.

The following example shows a page from a sample report with a multi-key index.

OS/400 indexer 213

1. First start the Content Manager OnDemand administrative client and log on
to your instance's server.

2. Click the Report Wizard toolbar button. Then select the data type; for the
example, select AFP. Then select the sample input file. The graphical indexer
should now display the spooled file.
The sample report contains AFP data, and only the text is displayed by the
graphical indexer, not the AFP resources (such as special fonts, bar codes,
graphics, and overlays).

3. Define the first trigger. Select the / (forward slash) character in the ship date
as Trigger1. This trigger will be used to locate the Customer Number, Invoice
Number, and Ship Date.

4. Define the second trigger. Select the . (period) character in the price as
Trigger2. This trigger must be defined as a float trigger and will be used to
locate the Item Numbers.

5. Define the third trigger. Select the / (forward slash) character in the payment
due date as Trigger3. This trigger will be used to locate the Total Due.

6. After the triggers are defined, define the fields and indexes. When using the
Report Wizard, the fields and indexes are defined in one step. If using the
graphical indexer from within an application definition rather than the Report
Wizard, the fields and indexes are defined in separate steps.
The first field and index are for the customer number. The customer number
is located by using Trigger1. On the Database Field Attributes page, the
customer number field is defined as a string data type.
The second field and index are for the invoice number. The invoice number is
located by using Trigger1. On the Database Field Attributes page, invoice
number is defined as a string data type.

214 Indexing Reference

The third field and index are for the invoice date. The invoice date is located
by using Trigger1. On the Database Field Attributes page, invoice date is
defined as a date data type, and selected as our segment field.
The fourth field and index are for the item number. The item number is
located by using Trigger2. On the Database Field Attributes page, item
number is defined as a string data type.
The Mask parameter is used to specify a pattern that the field data must
match in order to be used as an index. In the example, a field must consist of
eight numeric characters (each # represents one numeric character). This could
be useful if the trigger (a period) could be present in row that did not contain
an item number.
After defining all of the fields, you must go back and mark the item number
index as multi-key (as described below).
The fifth field and index are for the total due. The total due is located by
using Trigger3. On the Database Field Attributes page, total due is defined as
a string data type.
That completes defining the fields and the indexes.

7. Now you must go back and specify the item number, which is Index4, as the
multi-key. Click on the Toggle select Trigger, Index, Field Parameters toolbar
button.
The administrative client opens the Select dialog box.

8. Click on Index 4, and then click on the Properties button to open the Update
an Index dialog box.

9. Click on the Allow Multiple Values check box, and click OK to save the item
number index as a multi-key index.

10. Close the Select dialog box.
11. To verify how the system will index the document, click on the Toggle

between Display and Add Parameters toolbar button.
The defined triggers will be highlighted in red. The defined fields will be
highlighted in blue.

12. You can now close the graphical indexer window and complete the process of
using the Report Wizard to define the application group, application, and
folder.

The following example shows the indexer parameters that were generated for the
example report.
TRIGGER1=*,55,X’61’,(TYPE=GROUP) /* / */
TRIGGER2=*,64,X’4B’,(TYPE=FLOAT) /* . */
TRIGGER3=*,31,X’61’,(TYPE=FLOAT) /* / */
FIELD1=0,15,6,(TRIGGER=1,BASE=0)
FIELD2=0,33,6,(TRIGGER=1,BASE=0)
FIELD3=0,50,8,(TRIGGER=1,BASE=0)
FIELD4=0,19,8,(TRIGGER=2,BASE=0,MASK=’########’)
FIELD5=0,69,12,(TRIGGER=3,BASE=0)
INDEX1=X’83A4A2A39596’,FIELD1,(TYPE=GROUP,BREAK=YES) /* custno */
INDEX2=X’8995A59596’,FIELD2,(TYPE=GROUP,BREAK=YES) /* invno */
INDEX3=X’8995A58481A385’,FIELD3,(TYPE=GROUP,BREAK=YES) /* invdate */
INDEX4=X’89A3859495A494’,FIELD4,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)/* itemnum */
INDEX5=X’A396A3819384A485’,FIELD5,(TYPE=GROUP,BREAK=NO) /* totaldue*/

After loading the example report, you can start the Content Manager OnDemand
Client, open the new folder, and search for documents.

OS/400 indexer 215

Using system date or job run date as the value of a date field
If you need to create a date field in a Content Manager OnDemand application
definition for a report that has no date printed on any of its pages, you can define
the date field to use the system date at the time the report is loaded into Content
Manager OnDemand or the run date of the job that loads the report.

Using the system date as the date value

If you wish to use the system date captured at the time the report is loaded into
Content Manager OnDemand, do not specify a field or index in the Indexer
Parameters, and simply enter 't' which indicates the use of today’s date for the
Default Value of the date field on the Load Information tab of the Content
Manager OnDemand application definition. This method will use the system date,
not the job date, to determine the date value. This method works correctly even if
you are using the output queue monitor, and continues to work correctly even if
the monitor runs past midnight when the system date changes.

Note that simply using 't' as the DEFAULT= value for a date field is not allowed,
such as:
FIELD1=0,95,8,(TRIGGER=1,BASE=0,DEFAULT=X’A3’) /* t */

Using the job run date as the date value

If you are unable to simply use the system date for the date value, but instead
need to set the date to a specific, “hard-coded” date (such as setting an annual
report’s date to January 1, no matter when it is actually loaded into Content
Manager OnDemand), you can use the _*RUNDATE*_ special value on the FIELDx
indexer parameter. For example, instead of using a FIELD1 definition like this
which specifies a particular location of the date on the printed page of the report,
FIELD1=0,95,8,(TRIGGER=1,BASE=0)

you could use the hex equivalent of _*RUNDATE*_ for the field definition
FIELD1=X’6D5CD9E4D5C4C1E3C55C6D’ /* _*RUNDATE*_ */

which causes the OS/400 Indexer to use the job’s run date instead.

To define your date field, you can either select Keyboard and then Modify from
the Indexer Information page of the Content Manager OnDemand application
definition and enter the FIELDx= indexer parameter manually, or you can use the
graphical indexer and create it using the Add a Field panel.

You must also update the date field to use the %Y-%m-%d date format on the
Load Information page of the Content Manager OnDemand application definition.
The _*RUNDATE*_ special value returns the date in this format.

You must also add an index field. An example might look like this, to correspond
to the FIELD1 shown earlier:
INDEX1=X’D9C4C1E3C5’,FIELD1,(TYPE=GROUP,BREAK=NO) /* RDATE */

To define your date index, you can either select Keyboard and then Modify from
the Indexer Information page of the Content Manager OnDemand application
definition and enter the INDEXx= indexer parameter manually as shown above, or
you can use the graphical indexer and create it using the Add an Index panel.

216 Indexing Reference

When you are ready to load the report into Content Manager OnDemand, change
your job’s run date to the date you wish to have associated with the report, using
the Date parameter of the Change Job command, for example CHGJOB DATE(010108)
for January 1, 2008. Then, simply run the ADDRPTOND command interactively
using the ADDRPTOND SBMJOB(*NO) command so that the interactive job’s run date is
used.

You can also use the Content Manager OnDemand output queue monitor to
achieve the same results. First, start the monitor job using the STRMONOND
command. If you need the date to be different than the current date, change the
job date of the monitor job to the date you require. Then move the spooled files to
the monitored output queue for processing. Only the spooled files with Content
Manager OnDemand application definitions that use the _*RUNDATE*_ special value
will use the monitor job’s run date. Application definitions that explicitly define a
date field from the print page will continue to extract the date from the report.

Note that the job date of the output queue monitor job does not automatically
change at midnight. If you need the job date to change at midnight, you must use
the CHGJOB command to explicitly set the new date, or end the monitor job
before midnight and then restart it again after midnight to set the new date.
Remember that the ending of the monitor could be done for you automatically if
you specify an end time (on the Monitor Properties page of the IBM Content
Manager OnDemand component of IBM Navigator for i, or the ENDTIME
parameter of the STRMONOND command) when you start the monitor.

Defining transaction fields
A transaction report contains pages of records with one or more columns of sorted
data. For example, each page of a general ledger report contains up to 80
transaction records. Each record contains a unique value, such as a transaction
number. The records in the report are sorted on the transaction number.

Rather than storing every transaction number in the database (perhaps hundreds of
thousands of rows), you can break the report into groups of pages (say, 100 pages
in a group), extract the beginning and ending transaction number for each group
of pages, and store the values in the database. Then, to retrieve the group of the
report that contains a specific transaction number, a user specifies a transaction
number. Content Manager OnDemand compares the transaction number with the
beginning and ending values stored in the database and retrieves the group that
matches the query.

To define a transaction report that contains one or more columns of sorted data as
described in the example, a transaction field is used. A transaction field allows
Content Manager OnDemand to index a group of pages using the first index value
on the first page and the last index value on the last page.

The easiest method of specifying a transaction field is to use the Report Wizard
and the graphical indexer.

The indexer parameter for the transaction field will look similar to the following:
FIELD1=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYCOL)

The indexer parameter for the index created from the transaction field will look
similar to the following:
INDEX1=X’D3968195’,FIELD1,(TYPE=GROUPRANGE,BREAK=NO)

OS/400 indexer 217

These indexer parameters would be added by the Report Wizard to the Content
Manager OnDemand Application definition. To see them, go to the Indexer
Information tab, then click on Keyboard and then Modify to view the Application's
Indexer Parameters.

Transaction report example
The following example demonstrates how to define a transaction report using the
Report Wizard and the graphical indexer.

The sample report that we are archiving is a Loan Delinquency Report. Each page
of the loan delinquency report contains loan records. Each record contains a unique
value, the loan number. The records in the report are sorted on the loan number.
We want to use the following pieces of information as indexes:
v Report Date
v Starting Page Number
v Loan Number (this will be the transaction field)

As a general rule you should define triggers and fields from top left to bottom
right of the report. This has the added benefit of making your indexer parameters
easier to understand.

The following example shows a sample page of the report.
REPORT D33313001 ONDEMAND NATIONAL BANK DATE 01-15-00
BANK 001 TIME 16:03:46
FROM 01/01/99 MODE 9
TO 12/31/99 LOAN DELINQUENCY REPORT PAGE 0001

LOAN CUSTOMER LOAN DELINQUENT DELINQUENT DELINQUENT
NUMBER NAME AMOUNT 30 DAYS 60 DAYS 90 DAYS

0100000000 AARON, ROBERT $10000000.00 $ 50.00 $ 50.00 $.00
0100000001 ABBOTT, DAVID $ 11000.00 $ 100.00 $ 200.00 $.00
0100000002 ABBOTT, DAVID $ 12000.00 $ 140.00 $.00 $.00
0100000003 ABBOTT, DAVID $ 13000.00 $ 150.00 $.00 $.00
0100000005 ROBINS, STEVEN $ 500.00 $ 50.00 $.00 $.00
0100000006 ARNOLD, SAMUEL $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0100000007 PETERS, PAUL $ 650.00 $ 50.00 $.00 $.00
0100000008 ROBERTS, ABRAHAM $ 9000.00 $ 120.00 $.00 $.00
0100000009 SMITH, RANDOLPH $ 8000.00 $ 115.00 $.00 $.00
0100000010 KLINE, PETER $ 8500.00 $ 110.00 $.00 $.00

To begin, first start the Content Manager OnDemand administrative client and log
on to your instance's server. Next, click the Report Wizard toolbar button. Then
select the data type; for the example, select SCS. Then select the sample input file.
The graphical indexer should now display the spooled file.

Define the first trigger. Select the word REPORT for Trigger1. This trigger will be
used to determine the start of the document, and to locate the Report Date and
Starting Page Number fields.

Trigger1 is the only trigger required. Next, define fields and indexes. When using
the report wizard, the fields and indexes are defined in one step. If using the
graphical indexer within the application definition rather than the Report Wizard,
the fields and indexes are defined in separate steps.

The first field and index are for the report date. The report date is located by using
Trigger1. On the Database Field Attributes page, the report date is defined as a
date data type and is selected as the segment field.

218 Indexing Reference

The second field and index are for the starting page number. The starting page
number is located by using Trigger1. On the Database Field Attributes page, the
starting page number is defined as an integer data type.

After defining all of the fields, you must change the starting page number field so
that a new document group is not created each time the page number changes.

The third field and index are for the loan number. The loan number is located by
using a mask. The Mask parameter is used to specify a pattern that the transaction
field data must match in order to be used as an index. In the example, the field
must consist of ten numeric characters (each # represents a numeric character). A
transaction field does not use a trigger to locate the data, it uses the mask to define
how the data must be structured, and uses any data on that page that matches that
mask.

The Database Field Attributes page has specific parameters to support a transaction
field. The end user of the sample report will see the folder field names. The
database field names are used internally to Content Manager OnDemand and are
not seen by end users.

The end user will enter search criteria (the loan number) into the field that is
identified by the Query Folder Field. The document list will show two loan
numbers. These are the starting and ending loan numbers of the group of the
report that contains the loan number that was searched for.

The loan number is defined as a string data type.

Now you must go back and specify that the starting page number, which is
Index2, should not start a new document group when the value changes. Click the
Toggle select Trigger, Index, Field Parameters toolbar button.

The administrative client opens the Select dialog box.

Click on Index 2. Then click on the Properties button to open the Update an Index
dialog box.

Under Break, select the No option. Click the OK button to save the starting page
number index as a Break=No index. A change in the starting page number will no
longer cause a new document group to be created.

Close the Select dialog box.

To verify how the system will index the document, click on the Toggle between
Display and Add Parameters toolbar button.

The defined triggers will be highlighted in red. The defined fields will be
highlighted in blue. The defined transactions fields will be highlighted in green.

You can now close the graphical indexer window and complete the process of
using the Report Wizard to define the application group, application, and folder.

The following example shows the indexer parameters that were generated for the
example report.
TRIGGER1=*,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */
FIELD1=0,83,8,(TRIGGER=1,BASE=0)
FIELD2=3,87,4,(TRIGGER=1,BASE=0)

OS/400 indexer 219

FIELD3=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)
INDEX1=X’998481A385’,FIELD1,(TYPE=GROUP,BREAK=YES) /* rdate */
INDEX2=X’A297818785’,FIELD2,(TYPE=GROUP,BREAK=NO) /* spage */
INDEX3=X’D396819540D5A494828599’,FIELD3,(TYPE=GROUPRANGE,BREAK=NO) /* Loan Number */

After archiving the example report, you can start the Content Manager OnDemand
client, open the new folder, and search for documents.

Assigning default index values
You can create a Content Manager OnDemand application definition with an index
field that does not always exist on the print page. If a value is not found for that
field during indexing (if the field location does not exist on the particular print
page), then the DEFAULT keyword is used to determine the default value to use.
The DEFAULT keyword can be placed on the FIELD indexer parameter line of the
indexer parameters for a particular application definition.

If the field location does not exist on the particular print page, and a default value
is not specified, blanks will used. For string fields, this will allow the load to
complete successfully. For date, decimal, and integer fields, this will result in the
load failing.

The DEFAULT keyword can be specified in one of two ways. The first method
allows you to specify an actual value (given in alphanumeric or hex format). The
second method allows you to use the default value that you have specified on the
Load Information tab of the Content Manager OnDemand application definition or
to use index propagation (described below).

Examples of the first method:
DEFAULT=’your_Value’

(such as DEFAULT=’ABC’) or
DEFAULT=x’your_Hex’

(such as DEFAULT=x’C1C2C3’)

Examples of the second method:
DEFAULT=’_*USELOADDEFAULTORPROPAGATION*_’

or
DEFAULT=x’6D5CE4E2C5D3D6C1C4C4C5C6C1E4D3E3D6D9D7D9D6D7C1C7C1E3C9D6D55C6D’

(In this second case, the hex value specified is the hexadecimal representation of
the character string _*USELOADDEFAULTORPROPAGATION*_.)

The second method (using _*USELOADDEFAULTORPROPAGATION*_ or its
hexadecimal representation) allows the load process to assign the default value
from the Load Information tab of the application definition or for propagation to
occur. To have the load process assign a default from the Load Information tab,
you must specify one by using the Content Manager OnDemand Administrator
Client. If you have not specified a default, propagation occurs. Propagation is the
process of carrying a value over from its previously found value. This can be
useful but can also have unintended results. For example, if the field was a
customer number, the value for customer number is carried from the previous

220 Indexing Reference

document if one was not found for the current document. This might not be what
you intend to happen. Exercise caution when using this second method, as
propagation can occur.

Important: With propagation, the loading of the spooled file will fail if an actual
field value is not found on the print page for the first document in the spooled file,
since there would be nothing to propagate into that field.
Additionally, _*USELOADDEFAULTORPROPAGATION*_ cannot be used on a
FIELD defined with a mask, such as MASK=##/##/##.

To further understand the use of _*USELOADDEFAULTORPROPAGATION*_,
consider the following sample report. Notice that a value for the Code field does
not appear on every printed page.
10/04/2006 Code: K

Account Number: 123456798
Invoice Number: 876544-11

10/04/2006
Account Number: 123456987
Invoice Number: 876545-08

The indexer parameters might look something like this:
TRIGGER1=*,42,X’61’,(TYPE=GROUP) /* / */
TRIGGER2=*,60,X’C39684857A’,(TYPE=FLOAT) /* Code: */
FIELD1=0,40,10,(TRIGGER=1,BASE=0)
FIELD2=1,66,9,(TRIGGER=1,BASE=0)
FIELD3=2,66,9,(TRIGGER=1,BASE=0)
FIELD4=0,66,1,(TRIGGER=2,BASE=0,
DEFAULT=X’6D5CE4E2C5D3D6C1C4C4C5C6C1E4D3E3D6D9D7D9D6D7C1C7C1E3C9D6D55C6D’)
/* _*USELOADDEFAULTORPROPAGATION*_ */

INDEX1=X’A2A381A385948595A36D8481A385’,FIELD1,(TYPE=GROUP,BREAK=YES) /* statement_date */
INDEX2=X’81838396A495A36D95A494828599’,FIELD2,(TYPE=GROUP,BREAK=YES) /* account_number */
INDEX3=X’8995A5968983856D95A494828599’,FIELD3,(TYPE=GROUP,BREAK=YES) /* invoice_number */
INDEX4=X’83968485’,FIELD4,(TYPE=GROUP,BREAK=NO) /* code */

If you need the value of 'K' found for the first account number/invoice number to
be propagated to the second account number/invoice number, you would NOT
specify a default for the Code field on the Load Information page of the Content
Manager OnDemand application definition. The use of
*USELOADDEFAULTORPROPAGATION* without a default specified on the
Load Information page of the application causes propagation to occur. If, instead,
you need to specify a different default value (such as 'D') to be used when the field
value is not found on the page, your indexer parameters would look exactly the
same as shown above, but you would specify the 'D' for Default Value on the Load
Information page to cause Content Manager OnDemand to assign a 'D' to the Code
field for the second account number/invoice number.

Defining text search fields

Important: This section details the standard text search function, not the full text
search option that is available for purchase and provides a higher level of
functioning.

The text search function is used to search for documents that contain a specified
word or phrase that is not already defined as an index field for the documents.
Initially, the specified index field values are used for the document search. Then,
any document that matches the index fields criteria is searched for the specified
text search word or phrase. For example, if the other index fields are date and
account number, only documents that match the specified date and account

OS/400 indexer 221

number are searched for the specified text search word or phrase. Then, if a
document contains the specified word or phrase, the document is added to the
document list.
1. You can define only one text search field per folder.
2. The only valid search operator for a text search field is EQUAL.
3. Wildcards and pattern matching are not supported in a text search field.
4. The case of the specified word or phrase is ignored. For example, the phrase

customer xyz matches customer xyz, Customer Xyz, and CUSTOMER XYZ.

The text search function is performed entirely on the IBM i server. Any
performance impact will depend on the size and number of documents that are
searched and on the performance of the system under the pre-existing workload.
To limit the number of documents that are searched, users should specify criteria
for some or all of the other index fields.

To create a text search field folder definition:
1. Create the application group, application, and folder by using the Report

Wizard. (The Report Wizard does not include a provision for creating a text
search field. However, doing so can be accomplished in just a few steps outside
the Report Wizard.)

2. Copy the folder.
3. On the Field Definition tab, add a field named Full Text Search and select Text

Search for the field type. Click the Add button to add the field.
4. Click OK to update the folder.

After archiving some documents into the application group, you can try the text
search function.

You may want to set a number of options within the Content Manager OnDemand
Windows client to enhance the use of text search:
v From the Options menu, select the Show Search String option. This option

causes the text search string that you enter to be highlighted within the
document after it is opened.

v If the Autoview option is set to either First Document or Single Document, the
document automatically displays with the text search string highlighted. Single
Document will cause the document to automatically display if only one
document meets the search criteria. First Document always causes the first
document in the document list to automatically display, not matter how many
documents meet the search criteria.

When you are ready to try your text search field, open the folder that contains the
text search field and perform a text search. The text search string can be one or
more words. Open one of the documents from the document list. The text search
string should be highlighted in the document. You can use the Find Next toolbar
button to find the next occurrence of the string in the document. Note that you can
still perform standard searches with the folder; you do not have to specify a text
search every time that you search for documents.

To use the text search function with AFP or SCS-Extended documents, you must
have the Portable Application Solutions Environment (PASE; a product option of
IBM i) installed. If PASE is not installed, you will receive message 161 in the
Content Manager OnDemand system log when attempting to perform a text search
on AFP or SCS-Extended documents. To use the text search function with SCS or
Line documents, you do not need PASE.

222 Indexing Reference

Handling SCS spooled files that have AFP overlays
The preferred method of handling SCS spooled files that have an AFP overlay
named in their associated printer file is to simply change the DEVTYPE parameter
of the printer file used to create the original spooled file to *AFPDS. This will
cause IBM i to put the data into spool as *AFPDS, which is the most efficient way
for Content Manager OnDemand to capture (load) this type of spooled data.
However, making this change will require the original, production spooled file to
be printed on an AFPDS printer. In most cases, if you really are printing it with an
overlay, then this should not be a problem. However, if you are printing it on a
line printer with preprinted forms, this approach will not work.

If, for some reason you cannot change the original printer file's DEVTYPE
parameter to *AFPDS, Content Manager OnDemand can do the conversion to AFP
automatically, allowing the spooled file to be viewed and printed with fidelity.
(This method is more time-consuming than letting IBM i do it using the DEVTYPE
parameter of the printer file.) To enable this conversion, simply specify both the
data type and the DOCTYPE indexer parameter in the Content Manager
OnDemand Application definition as AFP rather than SCS. When Content Manager
OnDemand encounters an *SCS spooled file that has an overlay, and the
Application definition and DOCTYPE indexer parameter both specify AFP as the
data type, Content Manager OnDemand will convert the *SCS data to *AFPDS and
store that newly created *AFPDS spooled file. Reprints out of Content Manager
OnDemand will require an AFP-capable printer, but that should be expected due to
the overlay. If you specify a data type of AFP in your Content Manager
OnDemand Application definitions for any other type of non-AFP spooled file, the
loading of the data will fail.

Using a mask when defining application fields
A mask specifies the pattern of symbols that the indexing program matches with
data located for a particular field.

With the OS/400 indexer, a mask can be used with either a trigger-based field or a
transaction field. If the data matches the mask, then the indexer selects the field. If
the data does not match the mask, then the field is treated as if the trigger or
transaction field was not found.

You can specify the following symbols in the mask:

@ Matches alphabetic characters

Matches numeric characters

= Matches any character

¬ Matches any non-blank character

∧ Matches any non-blank character

% Matches the blank character and numeric characters

For example, a mask of ####.## would cause the indexer to select the field only if
the data in the field (from left to right) contains four numeric characters, followed
by a decimal point, followed by two numeric characters.

An example of the indexer parameter syntax for a field with a mask is as follows:
FIELD4=0,-24,7,(TRIGGER=3),BASE=TRIGGER,MASK=’####.##’)

OS/400 indexer 223

Using Tag Logical Elements (TLEs)
Using Tag Logical Elements (TLEs) to identify index data requires no special check
boxes or other special setup. The Content Manager OnDemand graphical indexer
(which is invoked by the Content Manager OnDemand Administrator Client when
defining an application) automatically displays TLE data at the top of each print
page before displaying the data itself, allowing you to use the TLE data just as you
use the print data itself to extract index information (such as a customer number or
invoice number).

An example of the data you might see in the Content Manager OnDemand
Administrator Client's graphical indexer when you are working with TLEs in an
AFPDS spooled file is shown below. The four lines near the top, immediately
following the *GROUP_START line, represent the TLE information. The AFP
datastream text must be encoded in EBCDIC and not ASCII. This is also true of
TLEs.
*GROUP_START 113928
Invoice Number 113928
Invoice Date 06/15/07
Customer Number 44332
Invoice Total $ 2,859.36

ABC COMPANY
101 Plagioclase Blvd.
Deva Station VA 55564

528 555-1234

SHIP DATE 04/07/73
Dewey Cheatham & Howe
P.O. Box 47899
Ridiculous TN 79832

CUSTOMER NUMBER 44332

PURCHASE ORDER NO. - C3050279

17 IGUANAS 3.23 0.11 77.34
93 SHOE HORNS 18.95 13.13 127.83
55 RUNCIBLE SPOONS 43.43 9.23 239.01
55 HATRACKS 97.00 43.83 4,721.64
93 THELMIN WIRES 0.54 2.32 14.12
09 TOOTHPICKS 53.00 19.91 102.43

5282.37

Understanding Translate Print Control
The need for the OS/400 Indexer to interpret printer carriage control characters in
the input data stream arises from the fact that some data can be very difficult to
index if the number of lines of data varies greatly from document to document.

This often occurs with names and addresses, some of which may have one or two
lines for the name and then one or two lines for the street address. Proper trigger
values can be impossible to find, making indexing impossible. However, the
solution is simple, since printer carriage control characters (such as a 0 (zero) for
double space and a – (dash) for triple space) often cause the data to print
consistently on the same lines from document to document, even if the data does
not occur consistently on the same lines within the input.

224 Indexing Reference

Translate print control (TRANSLATEPRINTCONTROL=YES or NO) enables the
indexing of reports in these circumstances. When translate print control is set to
yes, the OS/400 Indexer takes the input data for a page and rather than process it
line by line, it reads the page buffer and creates a secondary view of the page. This
secondary view of the page has each line of data placed as it would be on the
printed page, after having interpreted (or translated) the carriage control
characters.

The following table is a short example of what the raw and translated page buffers
look like. The first column of the data field is the printer carriage control character.

Table 17. Raw and translated page buffers

Raw buffer Translated buffer

Line Data
1 1
2 0
3 Bill Smith
4 0 123 First St.
5 0 Somewhere, NC 28105
6 22334455

Line Data
1 1
2 0
3
4 Bill Smith
5 0 123 First St.
6
7 0 Somewhere, NC 28105
8
9 22334455

Line Data
1 1
2 0
3 John Smith
4 456 Second Ave.
5 Appt 5C
6 0 Somewhere, NC 28105
7 23456677

Line Data
1 1
2 0
3
4 John Smith
5 456 Second Ave.
6 Appt 5C
7 0 Somewhere, NC 28105
8
9 23456677

Note that the TRANSLATEPRINTCONTROL parameter must be added manually
to your indexer parameters by clicking the Keyboard radio button and then the
Modify button in the Parameters Source area of the Indexer Information page of
your Content Manager OnDemand Application definition.

OS/400 indexer 225

226 Indexing Reference

PDF indexer

You can use the PDF indexer to extract index data from and generate index data
about Adobe PDF files that you want to store in Content Manager OnDemand.

The index data can enhance your ability to store, retrieve, and view documents
with Content Manager OnDemand. The PDF indexer supports PDF Version 1.2 or
later input and output data streams. For more information about the PDF data
stream, see the Portable Document Format Reference Manual, published by Adobe
Systems Incorporated. Adobe also provides online information with the Acrobat
Exchange and Acrobat Distiller products, including online guides for Adobe
Capture, PDFWriter, Distiller, and Exchange.

Restriction: The PDF indexer is not supported on Linux for System z platforms.

You process and store PDF documents on the server using standard Content
Manager OnDemand functions. To process a document, you must define a Content
Manager OnDemand application and application group. As part of the application,
you must define the indexing parameters used by the PDF indexer to process input
files.

You can automate the indexing and loading of data in Content Manager
OnDemand for Multiplatforms by configuring and running the ARSLOAD
program as a daemon (UNIX servers) or service (Windows servers).

In Content Manager OnDemand for i, you can automate the indexing and loading
of data by using special parameters of the ADDRPTOND (using *STMF for the
INPUT parameter) or STRMONOND (using *DIR for the TYPE parameter)
commands or the ARSLOAD API program. See the API Reference appendix of the
IBM Content Manager OnDemand for i: Common Server Administration Guide for more
information on the ARSLOAD API program and its parameters.

After you index and store input files in Content Manager OnDemand, you can use
one of the Content Manager OnDemand client programs to view the PDF
document or documents created during the indexing and loading process. You can
also print pages of the PDF document you are viewing from the Content Manager
OnDemand client program. The client programs use Adobe Acrobat to view PDF
documents.

The following illustration shows the process of indexing and loading PDF input
files.

© Copyright IBM Corp. 1993, 2014 227

PostScript
Data

Application

Application
Group

Acrobat
Distiller

PDF Data

OnDemand
Indexer and
Loader

Database

Storage
Volumes

Index
Data

Indexed
Groups

Resources

The PDF indexer processes PDF input files. A PDF file is a distilled version of a
PostScript file, adding structure and efficiency. A PDF file can be created by
Acrobat Distiller or a special printer driver program called a PDFWriter. You can
automate the distilling process by configuring and running the Distiller daemon
(UNIX servers) or Acrobat Distiller (Windows servers). On IBM i, PDF stream files
can be created by using IBM Transform Services for i, or by using InfoPrint Server.
Content Manager OnDemand for i does not support processing PDF spooled files.
See the online documentation provided with Acrobat Distiller for more information
about preparing input data for the Distiller.

The ARSLOAD program retrieves processing information from application and
application group definitions that are stored in the database. The application
definition identifies the type of input data, the indexing program used to index the
input files, the indexing parameters, and other information about the input data.
The application group identifies the database and storage management
characteristics of the data. You can use the administrative client to create the
application and the indexing parameters.

When the ARSLOAD program processes a PDF input file and the application
Indexer Information tab specifies PDF as the indexer, it automatically calls the PDF
indexer to process the input file. The PDF indexer processes the PDF input file
with indexing parameters that determine the location and attributes of the index
data. The PDF indexer extracts index data from the PDF file and generates an
index file and an output file. The output file contains groups of indexed pages. A
group of indexed pages can represent the entire input file or, more typically, one or
more pages from the input file. If the input file contains logical groups of pages,
such as statements or policies, the PDF indexer can create an indexed group for
each statement or policy in the input file. That way, users can retrieve a specific
statement or set of statements, rather than the entire file. The PDF indexer can

228 Indexing Reference

optionally extract embedded resources from the PDF input files and store them in
a resource file. The resource file is loaded into Content Manager OnDemand at the
same time as the output file. After indexing the data, Content Manager OnDemand
stores the index data in the database and the indexed groups and resources on
storage volumes.

You can automate the data indexing and loading process by configuring and
running the ARSLOAD program to run as a daemon (UNIX servers) or service
(Windows servers). On IBM i you can automate the process by using the
STRMONOND *DIR command (recommended), or by running the ARSLOAD
program as a daemon.

How Content Manager OnDemand processes index information
Content Manager OnDemand processes index information to help it complete
several different types of tasks: loading data to the database, creating applications,
creating application groups, and searching for reports in folders.

Every item stored in Content Manager OnDemand is indexed with one or more
group-level indexes. Groups are determined when the value of an index changes
(for example, account number). When you load a PDF file into Content Manager
OnDemand, the ARSLOAD program invokes the PDF indexer to process the
indexing parameters and create the index data. The ARSLOAD program then loads
the index data into the database, storing the group-level attribute values that the
PDF indexing program extracted from the data into their corresponding database
fields. The following illustration shows the index creation and data loading
process.

Report Indexer

Application
Definitions

Index
Data

Application
Group
Definitions

Index
Attribute
Names

Database
Field
Names

Indexed
Groups

Loader Database

You typically create an application for each report that you plan to store in Content
Manager OnDemand. When you create an application, you define the indexing
parameters that the indexing program uses to process the report and create the
index data that is loaded into the database. For example, an INDEX parameter
includes an attribute name and identifies the FIELD parameter that the indexing
program uses to locate the attribute value in the input data. When you create an
application, you must assign the application to an application group. The attribute
name you specify on an INDEX parameter should be the same as the name of the
application group database field into which you want Content Manager
OnDemand to store the index values.

You define database fields when you create an application group. Content Manager
OnDemand creates a column in the application group table for each database field
that you define. When you index a report, you create index data that contains
index field names and index values extracted from the report. Content Manager
OnDemand stores the index data into the database fields.

PDF indexer 229

To search for reports stored in Content Manager OnDemand, the user opens a
folder. The search fields that appear when the user opens the folder are mapped to
database fields in an application group (which, in turn, represent index attribute
names). The user constructs a query by entering values in one or more search
fields. Content Manager OnDemand searches the database for items that contain
the values (index attribute values) that match the search values entered by the
user. Each item contains group-level index information. Content Manager
OnDemand lists the items that match the query. When the user selects an item for
viewing, the Content Manager OnDemand client program retrieves the selected
item from cache storage or archive storage.

Processing PDF input files with the graphical indexer
If you plan to use the report wizard or the graphical indexer to process PDF input
files, then you must first install Adobe Acrobat on the PC from which you plan to
run the administrative client.

This section describes how to use the graphical indexer to create indexing
information for a PDF input file.

Important: Content Manager OnDemand provides the ARSPDF32.API file to enable
PDF viewing from the client. If you install the client after you install Adobe
Acrobat, then the installation program will copy the API file to the Acrobat plug-in
directory. If you install the client before you install Adobe Acrobat, then you must
copy the API file to the Acrobat plug-in directory. Also, if you upgrade to a new
version of Acrobat, then you must copy the API file to the new Acrobat plug-in
directory. The default location of the API file is C:\Program Files
(x86)\IBM\OnDemand Clients\V9.5\PDF. The default Acrobat plug-in directory is
C:\Program Files (x86)\Adobe\Acrobat x.y\Acrobat\plug_ins, where x.y is the
version of Acrobat, for example, 10.0 or 11.0.

You can define indexing information in a visual environment. You begin by
opening a sample input file with the graphical indexer.

Restriction: For IBM i users: The PDF Indexer can process only stream files when
running on IBM i. PDF spooled files are not supported.

You can run the graphical indexer from the report wizard or by choosing the
sample data option from the Indexer Information tab of the application. After you
open an input file in the graphical indexer, you define triggers, fields, and indexes.
The PDF indexer uses the triggers, fields, and indexes to locate the beginning of a
document in the input data and extract index values from the input data. Once
you have defined the triggers, fields, and indexes, you can save them in the
application so that Content Manager OnDemand can use them later on to process
the input files that you load into the system.

You define a trigger, field, or index by drawing a box around a text string with the
mouse and then specifying properties. For example, to define a trigger that
identifies the beginning of a document, you could draw a box around the text
string Account Number on the first page of a statement in the input file. Then, on
the Add a Trigger dialog box, you would accept the default values provided, such
as the location of the text string on the page. When processing an input file, the
PDF indexer attempts to locate the specified string in the specified location. When
a match occurs, the PDF indexer knows that it has found the beginning of a
document. The fields and indexes are based on the location of the trigger.

230 Indexing Reference

The PDF file that you open with the graphical indexer should contain a
representative sample of the type of input data that you plan to load into the
system. For example, the sample input file must contain at least one document. A
good sample should contain several documents so that you can verify the location
of the triggers, fields, and indexes on more than one document. The sample input
file must contain the information that you need to identify the beginning of a
document in the input file. The sample input file should also contain the
information that you need to define the indexes. When you load an input file into
the system, the PDF indexer will use the indexing information that you create to
locate and extract index values for each document in the input file.

The following example describes how to use the graphical indexer from the report
wizard to create indexing information for an input file. The indexing information
consists of a trigger that uniquely identifies the beginning of a document in the
input file and the fields and indexes for each document.
1. To begin, start the administrative client.
2. Log on to a server.
3. Start the report wizard by clicking the Report Wizard button on the toolbar.

The report wizard opens the Sample Data dialog box.
4. Click Select Sample Data to open the Open dialog box.

Restriction: For IBM i users: The PDF Indexer can process only stream files
when running on IBM i. PDF spooled files are not supported.

5. Type the name or full path name of a file in the space provided or use the
Look in or Browse commands to locate a file.

6. Click Open. The graphical indexer opens the input file in the report window.
7. Press F1 at any time for assistance with using the graphical indexer.
8. Define a trigger.

v Find a text string that uniquely identifies the beginning of a document. For
example, Account Number, Invoice Number, Customer Name, and so forth.

v Using the mouse, draw a box around the text string. Start just outside of
the upper left corner of the string. Click and hold mouse button one. Drag
the mouse towards the lower right corner of the string. As you drag the
mouse, the graphical indexer uses a dotted line to draw a box. When you
have enclosed the text string completely inside of a box, release the mouse
button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Trigger button on the toolbar to open the Add a Trigger
dialog box. Verify the attributes of the trigger. For example, the text string
that you selected in the report window should be displayed under Value;
for Trigger1, the Pages to Search should be set to Every Page. Click Help for
assistance with the other options and values that you can specify.

v Click OK to define the trigger.
v To verify that the trigger uniquely identifies the beginning of a document,

first put the report window in display mode. Then click the Select tool to
open the Select dialog box. Under Triggers, select the trigger. The graphical
indexer highlights the text string in the current document. Select the trigger
again. The graphical indexer should highlight the text string on the first
page of the next document. Use the Select dialog box to move forward to
the first page of each document and return to the first document in the
input file.

v Put the report window in add mode.
9. Define a field and an index.

PDF indexer 231

v Find a text string that can be used to identify the location of the field. The
text string should contain a sample index value. For example, if you want
to extract account number values from the input file, then find where the
account number is printed on the page.

v Using the mouse, draw a box around the text string. Start just outside of
the upper left corner of the string. Click and hold mouse button one. Drag
the mouse towards the lower right corner of the string. As you drag the
mouse, the graphical indexer uses a dotted line to draw a box. When you
have enclosed the text string completely inside of a box, release the mouse
button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Field button on the toolbar to open the Add a Field
dialog box.

v On the Field Information page, verify the attributes of the index field. For
example, the text string that you selected in the report window should be
displayed under Reference String; the Trigger should identify the trigger on
which the field is based. Click Help for assistance with the options and
values that you can specify.

v On the Database Field Attributes page, verify the attributes of the database
field. In the Database Field Name space, enter the name of the application
group field into which you want Content Manager OnDemand to store the
index value. In the Folder Field Name space, enter the name of the folder
field that will appear on the client search screen. Click Help for assistance
with the other options and values that you can specify.

v Click OK to define the field and index.
v To verify the locations of the fields, first put the report window in display

mode. The fields should have a blue box drawn around them. Next, click
the Select tool to open the Select dialog box. Under Fields, click Field 1. The
graphical indexer highlights the text string in the current document. Select
Field 1 again. The graphical indexer should move to the next document and
highlight the text string. Use the Select dialog box to move forward to the
each document and display the field. Then return to the first document in
the input file.

v Put the report window in add mode.
10. Click the Create Indexer Parameters and Fields Summary toolbar button. Use

the Create Indexer Parameters and Fields Summary dialog box to create and
view a summary of the indexing parameters and field values.

11. When you have finished defining all of the triggers, fields, and indexes, close
the report window.

12. Click Yes to save the changes to the indexer parameters.
13. On the Sample Data window, click Next to continue with the report wizard.

Indexing input data
Indexing parameters include information that allow the PDF indexer to identify
key items in the print data stream, tag these items, and create index elements
pointing to the tagged items.

Attention: If you are using Content Manager OnDemand for i and you prefer
creating your own PDF indexing parameters manually rather than using the
graphical PDF indexer, you can use the instructions to do so.

Content Manager OnDemand uses the tag and index data for efficient, structured
search and retrieval. You specify the index information that allows the PDF indexer

232 Indexing Reference

to segment the data stream into individual items, called groups. A group is a
collection of one or more pages, such as a bank statement, insurance policy, phone
bill, or other logical segment of a report. The PDF indexer creates indexes for each
group when the value of an index changes (for example, account number).

A tag is made up of an attribute name, for example, Customer Name, and an
attribute value, for example, Earl Hawkins. Tags also include information that tell
the PDF indexer where to locate the attribute value on a page. For example, a tag
used to collect customer name index values provides the PDF indexer with the
starting and ending position on the page where the customer name index values
appear. The PDF indexer generates index data and stores it in a generic index file.
Related reference:
“Generic indexer” on page 269

Coordinate system
The location of the text strings the PDF indexer uses to determine the beginning of
a group and index values are described as x and y pairs in a coordinate system
imposed on the page.

For each text string, you identify its upper left and lower right position on the
page. The upper left corner and lower right corner form a string box. The string
box is the smallest rectangle that completely encloses the text string. The origin is
in the upper left hand corner of the page. The x coordinate increases to the right
and y increases down the page. You also identify the page on which the text string
appears. For example, the text string Customer Name, that starts 4 inches to the
right and 1 inch down and ends 5.5 inches to the right and 1.5 inches down on the
first page in the input file can be located as follows:
ul(4,1),lr(5.5,1.5),1,’Customer Name’

The ARSPDUMP command is used to identify the locations of text strings on the
page.

Remember: The ARSPDUMP command is not supported on z/OS.

Indexing parameters
Processing parameters can contain index and conversion parameters, options, and
values. For most reports, the PDF indexer requires at least three indexing
parameters to generate index data.

TRIGGER
The PDF indexer uses triggers to determine where to locate data. A trigger
instructs the PDF indexer to look for certain information in a specific location
on a page. When the PDF indexer finds the text string in the input file that
contains the information specified in the trigger, it can begin to look for index
information.

The PDF indexer supports the following types of triggers:
v GROUP TRIGGERS

The PDF indexer compares words in the input file with the text string
specified in a trigger. The location of the trigger string value must be
identified using the x,y coordinate system and page offsets.
A maximum of 16 triggers (group or float) can be specified.
Group triggers are used in conjunction. For example, all the group triggers
must match before the PDF indexer can begin to locate index information.

PDF indexer 233

The group triggers and the fields based on them are used to define the
extent of the groups.
The indexer must find all the group triggers at least once within the
document or it will stop processing and issue an error message.

v FLOAT TRIGGERS
Float triggers are used to locate fields which might occur more than once
within a group, or might not occur at all. The PDF indexer compares words
in the input file with the text string specified in a trigger. The location of the
trigger string value must be identified using the x,y coordinate system and
page offsets.
A maximum of 16 triggers (group or float) can be specified.
The float trigger must match before the PDF indexer can begin to locate
index information. The fields based on floating triggers do not define the
extent of the groups.
If a floating trigger is not found, the indexer continues processing with no
error.
The following rules apply when using floating triggers:
1. Trigger1 must be a group trigger.
2. Fields based on floating trigger must contain a default value.
3. Fields based on floating triggers cannot be combined with any other field

in an index.
4. At least one index must contain a field (or fields) based on a group

trigger.

FIELD
The field parameter specifies the location of the data that the PDF indexer uses
to create index values.
v Field definitions are based on TRIGGER1 by default, but can be based on

any of 16 TRIGGER parameters.
v The location of the field must be identified using the x,y coordinate system

and page offsets.
v A maximum of 128 fields can be defined.
v A field parameter can also specify all or part of the actual index value stored

in the database.

INDEX
The index parameter is where you specify the attribute name and identify the
field or fields on which the index is based. You should name the attribute the
same as the application group database field name.
v The PDF indexer creates indexes for a group of one or more pages.
v You can concatenate field parameters to form an index, unless any of the

fields was based on a floating trigger. Fields based on floating triggers
cannot be combined with any other field in an index.

v A maximum of 128 index parameters can be specified.

The PDF indexer creates a new group and extracts new index values when one
or more of the index values change, unless the index contains a field based on
a floating trigger. Fields based on floating triggers cannot be used to create a
new group.

The following example depicts a portion of a page from a sample input file. The
text strings that determine the beginning of a group and the index values are
enclosed in rectangles.

234 Indexing Reference

Page 001

08/31/2003Statement Date:

0000-3727-1644-0099Account Number:

$1,096.54Balance:

John Smyth

123 Ubik Way North

Meadow Ridge WV 99999-0000

0.
25

0.
75

0.
25

0.
75

0.
25

0.
25

0.
50

0.
25

3.
25

0.75 0.25 1.00 0.75 0.50

3.25

TRIGGER parameters tell the PDF indexer how to identify the beginning of a
group in the input. The PDF indexer requires one TRIGGER parameter to identify
the beginning of a group (statement) in the sample file. FIELD parameters
determine the location of index values in a statement. Fields are based on the
location of trigger records. INDEX parameters identify the attribute names of the
index fields. Indexes are based on one or more field parameters. The following
parameters could be used to index the report:
v Define a trigger to search each page in the input data for the text string that

identifies the start of a group (statement):
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 001’

v Define fields to identify the location of index data. For the sample report, you
might define four fields:
– FIELD1 identifies the location of customer name index values.

FIELD1=ul(1,1),lr(2,1.25),0

– FIELD2 identifies the location of statement date index values.
FIELD2=ul(2,2),lr(2.75,2.25),0

– FIELD3 identifies the location of account number index values.
FIELD3=ul(2,2.25),lr(3.25,2.5),0

– FIELD4 identifies the location of the balance index values.
FIELD4=ul(2,3),lr(2.75,3.25),0

v Define indexes to identify the attribute name for an index value and the field
parameter used to locate the index value.

PDF indexer 235

– INDEX1 identifies the customer name, for values extracted using FIELD1.
INDEX1=’cust_name’,FIELD1

– INDEX2 identifies the statement date, for values extracted using FIELD2.
INDEX2=’sdate’,FIELD2

– INDEX3 identifies the account number, for values extracted using FIELD3.
INDEX3=’acct_num’,FIELD3

– INDEX4 identifies the balance, for values extracted using FIELD4.
INDEX4=’balance’,FIELD4

Indexing with metadata indexes
An Adobe PDF document can contain metadata, which is general information such
as title and author that applies to the entire document.

You typically create the document’s metadata when the document is created and
can modify the metadata at any time. For more information on metadata, see the
Adobe PDF Reference and Adobe Extensions to the PDF Specification and Adobe
PDF References.

When INDEXMODE=METADATA is specified, the PDF indexer extracts fields from
the Document Information Dictionary that correspond to the following metadata
keywords, if they exist, and places their values into the .ind file:
v Title
v Author
v Subject
v Creator
v Producer
v CreationDate
v ModDate
v Trapped

The metadata keywords are the group field names within the .ind file and can be
mapped to the application group fields in the application. You can opt not to map
any group field names. Because the metadata keywords apply to the entire
document, you can index the document only as one group. If TRIGGER, FIELD, or
INDEX parameters are specified, they are ignored. Metadata indexing cannot be
combined with indexing using a TRIGGER. If the document contains none of these
metadata fields, the PDF indexer issues the following error message and stops
processing:
ARS4940 Index not found by page page number

where page number is the number specified in the INDEXSTARTBY parameter.

The PDF indexer converts dates that are specified in the PDF format of
(D:YYYYMMDDHHmmSSOHH'mm) to a format of YYYYMMDDHHmmSS. The
index values CreationDate and ModDate contain the date formatted with the local
time. If the time zone information is specified in the PDF date (the OHH'mm
section) the PDF indexer creates another index value named CreationDateTZ or
ModDateTZ which contains the date formatted with the time adjusted to Universal
Time. For more information on Adobe date formats, see Adobe PDF Reference and
Adobe Extensions to the PDF Specification and Adobe PDF References.

The only parameter required for metadata indexing is:

236 Indexing Reference

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://acroeng.adobe.com/wp/?page_id=321
http://acroeng.adobe.com/wp/?page_id=321
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://acroeng.adobe.com/wp/?page_id=321

indexmode=metadata

Here is an example of an index file created by Metadata indexing:
COMMENT:
COMMENT: Generic Index File Format
COMMENT:
COMMENT:
COMMENT:Code Page of the Index Data
CODEPAGE:1208
COMMENT:Index Field(s)
GROUP_FIELD_NAME:Title
GROUP_FIELD_VALUE:Administrator’s Guide
GROUP_FIELD_NAME:Author
GROUP_FIELD_VALUE:IBM
GROUP_FIELD_NAME:Creator
GROUP_FIELD_VALUE:XPP
GROUP_FIELD_NAME:Producer
GROUP_FIELD_VALUE:IBM
GROUP_FIELD_NAME:CreationDate
GROUP_FIELD_VALUE:20090408173745
GROUP_FIELD_NAME:CreationDateTZ
GROUP_FIELD_VALUE:20090408233745
GROUP_FIELD_NAME:ModDate
GROUP_FIELD_VALUE:20090408173745
GROUP_FIELD_NAME:ModDateTZ
GROUP_FIELD_VALUE:20090408233745
COMMENT:Index Offsets and Length
GROUP_OFFSET:0
GROUP_LENGTH:748641
GROUP_PAGES:387
GROUP_FILENAME:\pdf\pdfoutput\admin.pdf
COMMENT:
COMMENT:
COMMENT:
COMMENT:End Generic Indexing File

Indexing with internal indexes
PDF internal indexes are contained inside the PDF document, similar to the way
that TLEs are contained inside an AFP document. These indexes are not part of the
viewable page, but they can be extracted by the PDF Indexer and placed into the
index file.

You typically create the document’s metadata when the document is created and
can modify the metadata at any time. For more information on metadata, see the
Adobe PDF Reference.

Extracting the internal indexes can give better performance during loading than
searching for and extracting the indexes from the pages of a PDF document.

PDF internal indexes must be created by the PDF provider when the document is
created, in the same way that TLEs must be created in an AFP document at
creation time.

The internal indexes are contained within the Page-Piece Dictionary, which is an
optional structure of PDF document architecture. See the Adobe PDF Reference 1.7,
section 14.5 for a technical description of the Page-Piece Dictionary. Each page of a
PDF document may contain a Page-Piece dictionary.

In order for the PDF Indexer to be able to extract the indexes, the Page-Piece
Dictionary must be named IBM-ODIndexes. This name is case-sensitive.

PDF indexer 237

http://acroeng.adobe.com/wp/?page_id=321

The first group begins with the page that contains the first Page-Piece dictionary.
Pages before the first occurrence are discarded. When any of the index values in
the Page-Piece Dictionary changes, a new group is started.

It is not necessary for every page to contain a Page-Piece dictionary. If a page does
not contain one, that page is associated with the previous group.

There are PDF generators that you can use to create a Page-Piece dictionary using
a graphical interface. The following is an example of how a Page-Piece Dictionary
would appear inside a PDF document. The first index has an index name of
"DocId" and the value is "AAA". The Last Modified date is required by the PDF
architecture.
/PieceInfo <</IBM-ODIndexes <</Private

<</
DocId(AAA)

/
BankNumber(0000000001)

/
AcctNumber(00000000000111111111)

/
NoticeType(W)

/
StmtDate(20120507)

>>
/

LastModified(D:20120619000000Z)
>>

>>

Use the following indexing parameters to extract internal indexes. No other
parameters are necessary.
INDEXSTARTBY=1
RESTYPE=all
INDEXMODE=INTERNAL

The default number of indexes supported is 32. For more indexes, specify
INDEXMODE=INTERNAL,n where n is the number of indexes. To conserve memory, use
the minimum number required. For example, for the Page-Piece dictionary shown
above, use INDEXMODE=INTERNAL,5.

The PDF Indexer can extract indexes using TRIGGER, FIELD and INDEX
parameters, or it can extract indexes from the Page-Piece dictionary with the
INDEXMODE=INTERNAL parameter, but it cannot use both methods in the same file.

The INDEXSTARTBY parameter does apply to internal indexes.

The PDF Indexer supports up to 128 internal indexes.

Using Regular Expressions
A regular expression is a pattern which is used to match characters in a string.

There are many excellent online resources which explain the syntax rules of regular
expressions. The following are examples of some of the most common:

A character string, for example “Account” will look for the characters "Account".
By default searches are case sensitive.
v [A-Z] Look for one uppercase letter.

238 Indexing Reference

v [A-Z]{3} Look for three consecutive uppercase letters.
v [0-9]{5} Look for five consecutive digits.
v [0-9]+ Look for one or more digits.
v [^a-z] Look for everything except lower case a to z.
v \s (Lower case s) Look for one whitespace character (space, tab, etc).
v \S (Upper case S) Look for any character not whitespace.

The PDF indexer can use a regular expression in the TRIGGER and FIELD parameter.
In the TRIGGER, the regular expression specifies the pattern for which to search; in
the FIELD, the regular expression is applied to the characters which have been
extracted from the field in a way similar to using a mask.

Here is an example:
TRIGGER1=UL(1.00,3.89),LR(2.52,4.17),*,REGEX=’PAGE 1’
TRIGGER2=UL(1.02,4.60),LR(2.11,4.95),0,REGEX=’[0-9]{5} [a-z]{4}’
FIELD1=UL(1.44,0.00),LR(2.75,0.30),0,(TRIGGER=2,BASE=TRIGGER,
REGEX=’[A-Z]+ [A-Z] [A-Z]+’)
INDEX1=’Name’,FIELD1,(TYPE=GROUP)

In this example TRIGGER1 uses a regular expression specified as an ordinary text
string. TRIGGER2 uses a regular expression which specifies a pattern of five digits,
followed by a space, followed by four lowercase letters. The text "12345 acct"
would match the pattern.

FIELD1 uses a regular expression, which specifies one or more uppercase letters,
followed by a space, followed by a single uppercase letter, followed by a space,
followed by one or more uppercase letters. The characters "MARY R SMITH", "W
A DOE", or "LARRY G W" would match this regular expression.

Using a regular expression on the TRIGGER parameter

On the TRIGGER parameter use the regular expression instead of a value. A
regular expression can be used on both a group trigger and a floating trigger.

The maximum length of the regular expression is 254 characters.

In order to find the text which matches the regular expression, the PDF indexer
creates a string containing all the text within the trigger bounding box. Each word
in the string is separated by one space. It then applies the regular expression to the
string.

The maximum string length to which the regular expression can be applied is 2000
characters. If the text within the bounding box is longer, the PDF indexer ends
with the error message ARS4948 “Regular expression buffer exceeded.”

Once the regular expression matches text in the text string, the PDF indexer looks
for the next trigger, or, if all the group triggers have been found, it collects the
fields.

Using a regular expression on the FIELD parameter
On the FIELD parameter use the regular expression instead of a mask. A mask and
a regular expression cannot both be specified on the same FIELD parameter. The
regular expression can be specified on a field based on either a group trigger or a
floating trigger.

PDF indexer 239

The maximum length of the regular expression is 2000 characters.

In order to find the text which matches the regular expression, the PDF Indexer
creates a string containing all the text within the field bounding box. Each word in
the string is separated by one space. It then applies the regular expression to the
string. Any text that matches the regular expression is extracted for the field.

Considerations
v Performance using a regular expression may not be as fast as using a value.
v If the regular expression is invalid, the PDF indexer will fail with error message

ARS4950 “Invalid regular expression.”

Using Default Values

If the regular expression does not match any text in the field, the default value
specified on the FIELD parameter is used. If no default value is specified, the PDF
Indexer ends with error message APK4915 “Field x not found on page y.” Default
values are required for fields based on floating triggers.

The load process uses the default value in the Application when a floating trigger
is not found within a group. Since the trigger is not found, there is no field for that
group.

Examples

Using a regular expression for a trigger:
TRIGGER1=UL(1.00,3.89),LR(2.52,4.17),*,REGEX=’P[A-Z]{3} ’

This regular expression will match text that begins with the letter 'P' and is
followed by three uppercase letters followed by a space, for example, "PAGE ".

Using a regular expression to extract a date from a field in the form of "July 4,
1956":
FIELD1=UL(0.54,0.40),LR(1.64,0.67),0,(TRIGGER=1,BASE=0,
REGEX=’[A-Z][a-z]+ [0-9]+, [0-9]{4}’,DEFAULT=’January 1, 1970’)
INDEX1=’RDate’,FIELD1

How to create indexing parameters
There are two parts to creating indexing parameters. First, process sample input
data to determine the x,y coordinates of the text strings the PDF indexer uses to
identify groups and locate index data. Then, create the indexing parameters using
the administrative client.

Content Manager OnDemand provides the ARSPDUMP command to help you
determine the location of trigger and field string values in the input data. The
ARSPDUMP command processes one or more pages of sample report data and
generates an output file. The output file contains one record for each text string on
a page. Each record contains the x,y coordinates for a box imposed over the text
string (upper left, lower right).

The process works as follows:
v Obtain a printed copy of the sample report.
v Identify the string values that you want to use to locate triggers and fields

240 Indexing Reference

v Identify the number of the page where each string value appears. The number is
the sheet number, not the page identifier. The sheet number is the order of the
page as it appears in the file, beginning with the number 1 (one), for the first
page in the file. A page identifier is user-defined information that identifies each
page (for example, iv, 5, and 17-3).

v Process one or more pages of the report with the ARSPDUMP command.
v In the output file, locate the records that contain the string values and make a

note of the x,y coordinates.
v Create TRIGGER and FIELD parameters using the x,y coordinates, page number,

and string value.

Indexing parameters are part of the Content Manager OnDemand application. The
administrative client provides an edit window you can use to maintain indexing
parameters for the application.

Remember: The ARSPDUMP command is not supported on z/OS.

PDF fonts and output file size
The fonts that are used in a PDF document are one of the factors that determines
the indexing’s output file size.

The base 14 Type 1 fonts

For every PDF data stream, there exists a core set of fonts that are ensured to be
available to the Acrobat program. Because they are available on the system, they
are not embedded in the document. Therefore, documents that are created with
these fonts are more compact. These fonts are known as the base 14 fonts:
v Courier
v Courier-Bold
v Courier-BoldOblique
v Courier-Oblique
v Helvetica
v Helvetica-Bold
v Helvetica-BoldOblique
v Helvetica-Oblique
v Times-Roman
v Times-Bold
v Times-Italic
v Times-BoldItalic
v Symbol
v ZapfDingbats

Fonts that are not members of the base 14 fonts might be embedded in the
document, or they might be stored in a font directory. Images and bar code fonts
are also embedded in the document.

The PDF Indexer collects resources such as fonts and images, removes them from
the document, and places them in a resource file. The number of embedded fonts
in the document directly affects the size of the resource file.

PDF indexer 241

You should use only the base 14 fonts when you create PDF documents. Because
these fonts are not embedded in the document, documents that are created with
these fonts are smaller, and the resource file is also smaller.

PDF Resource Collection
The PDF reports that you store in Content Manager OnDemand might contain
embedded resources such as fonts and images.

When the report is indexed, it is usually broken up into smaller pieces, and the
resources are placed into each new report. Because each new report contains its
own resources, the size of the indexed reports can become much larger than the
original PDF reports.

In order to decrease the size of the indexed reports, the PDF indexer can optionally
extract these resources from the PDF reports and place them in a resource file.
Content Manager OnDemand loads the resource file at the same time as it loads
the indexed report files. When a report is retrieved for viewing or printing, the
resources are reinserted into the report, and then the report is sent to the client.

A PDF report might contain no resources if it uses only the fourteen standard fonts
that are listed in the Adobe PDF reference. These fonts are guaranteed to be
available on the client, therefore, they are not embedded in the report.

The resources that the PDF indexer collects are based on the value of the RESTYPE
parameter. The following table lists values for this parameter.

Table 18. Available values for the RESTYPE parameter

RESTYPE Meaning Why

NONE Do not collect resources. Report does not contain
resources, or the resources
are small.

ALL Collect fonts and images. To save space that is used to
store the reports.

FONT Collect fonts only. To save space that is used to
store the reports. Report
contains fonts only.

IMAGE Collect images only. To save space that is used to
store the reports. Report
contains images only.

FONT, IMAGE Collect fonts and images. To save space that is used to
store the reports.

There is no resource exit for the PDF indexer.

PDF indexing system requirements
The requirements for running Content Manager OnDemand are published on the
IBM support site.
Related information:

Content Manager OnDemand for Multiplatforms Version 9.5 requirements

Content Manager OnDemand for z/OS Version 9.5 requirements

Content Manager OnDemand for i Version 7.2 requirements

242 Indexing Reference

http://www.ibm.com/support/docview.wss?uid=swg27043162
http://www.ibm.com/support/docview.wss?uid=swg27043163
http://www.ibm.com/support/docview.wss?uid=swg27041914

Specifying the location of Adobe fonts
If a font is referenced in an input file but not embedded in the file or is not one of
the 14 base fonts, and the PDF indexer cannot locate the font, the indexing will
fail. If you purchase additional fonts and install them on the system, the additional
fonts can be found at indexing time by specifying the location with the FONTLIB
parameter.

IBM i only: If you installed fonts for use with the PDF indexer, you should verify
the location of the fonts. Fonts can be located in any directory, but you must
specify the directory using the FONTLIB parameter. For example:
FONTLIB=/QIBM/ProdData/OnDemand/Adobe/Resource/CMap

PDF indexing limitations
You can use the PDF indexer to generate index data for PostScript and PDF files
that are created by user-defined programs.

Remember:

v The PDF indexer can process input files that are up to 4 GB in size.
v The PDF indexer supports DBCS languages. However, IBM does not provide any

DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer
supports all DBCS fonts, except encrypted Japanese fonts.

v Input data delimited with PostScript Passthrough markers cannot be indexed
v The Adobe Toolkit does not validate link destinations or bookmarks to other

pages in a document or to other documents. Links or bookmarks may or may
not resolve correctly, depending on how you segment your documents.

v Multiplatform users: To print PDF documents from the Content Manager
OnDemand server, you must use the Content Manager OnDemand server print
function. The server print function requires Infoprint or another application to
convert the PDF into a data stream suitable for printing.

v IBM i users: Server printing of PDF documents is not supported on IBM i.
Instead, you must print from the client.

v If a font is referenced in an input file but not embedded in the file or is not one
of the 14 base fonts, and the PDF indexer cannot locate the font, the indexing
will fail.

v The PDF indexer does not support documents containing Digital Signatures, or
that are password protected.

The PDF Indexer was tested using documents containing up to 100,000 pages.
However, there are many factors that affect the number of pages that can be
successfully indexed and stored on your system. Those factors include:
v the system resources available such as CPU, memory, and disk.
v the size the PDF input file.
v the type and number of resources such as fonts and images used in the PDF

input file.

If your PDF file does not store successfully, consider:
v splitting the file into a number of separate, smaller files.
v reducing the number of different fonts used.
v changing the type of fonts used.
v reducing the number or size of the images included in the file.

PDF indexer 243

Input data requirements
The PDF indexer processes PDF input data.

Multiplatform input data requirements

PostScript data generated by applications must be processed by Acrobat Distiller
before you run the PDF indexer.

The online documentation provided with Acrobat Distiller describes methods you
can use to generate PDF data.

You can use several methods to provide the PDF indexer with access to input data,
including FTP and NFS. If you use a file transfer method to copy PDF data to the
Content Manager OnDemand server, you must transfer the files in binary format.

If you plan to automate the data indexing and loading process on the Content
Manager OnDemand server by using the ARSLOAD program, the input file name
must identify the application group and application to load. Use the following
convention to name your input files:
MVS.JOBNAME.DATASET.FORM.YYDDD.HHMMSST.PDF

Important: The .PDF file name extension is required to initiate a load process.

Unless you specify otherwise, the ARSLOAD program uses the FORM part of the file
name to identify the application group to load. However, you can use the -G
parameter to specify a different part of the file name (MVS, JOBNAME, or
DATASET) to identify the application group to load.

If the application group contains more than one application, you must identify the
application to load; otherwise the load will fail. You can run the ARSLOAD
program with the -A parameter to specify the part of the input file name (MVS,
JOBNAME, DATASET, or FORM) that identifies the application.

The case of the identifier PDF is ignored. Application group and application names
are case sensitive and may include special characters such as the blank character.

IBM i input data requirements

The PDF Indexer processes PDF input data. The Content Manager OnDemand
directory monitor (started with the STRMONOND command with *DIR specified
for the Type parameter) and the ADDRPTOND command are the two most
common ways to invoke the PDF Indexer to index and load PDF data into Content
Manager OnDemand on IBM i. You can also use the ARSLOAD API.

The PDF Indexer generates the index data and then adds the index information to
the database and loads the input data on to the storage media defined for the
particular Content Manager OnDemand application group to which the data
belongs.

If you plan to automate the data indexing and loading process on the Content
Manager OnDemand server, either the input file name, specific parameters on the
command used to load the data, or a monitor user exit program must identify the
application group and application to load. The PDF file name extension is required
to initiate a load process. The case (uppercase or lowercase) of the extension (.pdf)
is ignored. Application group and application names are case sensitive. Application

244 Indexing Reference

group and application names may include special characters such as the blank
character when using ADDRPTOND or ARSLOAD with a specific application
group and application name provided. However, STRMONOND and ARSLOAD
when using the MVS naming convention (-A and -G parameters) do not support
archiving PDF files that have spaces in the file name. See the IBM Content Manager
OnDemand for i: Common Server Administration Guide for more information about
using the STRMONOND and ADDRPTOND commands and the ARSLOAD API to
load data into Content Manager OnDemand.

National language support for indexed PDF documents
The PDF indexer supports DBCS languages. However, IBM does not provide any
DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer supports
all DBCS fonts, except encrypted Japanese fonts.

See “Specifying the location of Adobe fonts” on page 243 if you plan to use DBCS
font files.

Data values that you specify on TRIGGER and FIELD parameters (either as plain
text or in hexadecimal) must be encoded in UTF-8. These data values include
trigger values, field default and constant values, and index names.

On Windows environments, set the system locale in the Region and Language
dialogue.

Attention: Plain text in the IBM i environment is UTF-8.

For more information about NLS in Content Manager OnDemand, see the IBM
Content Manager OnDemand for Multiplatforms: Installation and Configuration Guide or
IBM Content Manager OnDemand for i: Common Server Planning and Installation
Guide.

PDF indexer parameters
This parameter reference assumes that multiplatform users will use the ARSLOAD
program to process your input files. If you are using IBM Content Manager
OnDemand for i, this reference assumes you will use the STRMONOND
command, ADDRPTOND command, or ARSLOAD API to process your input
files.

When you use these methods to process input files, the PDF indexer ignores any
values that you may provide for the INDEXDD, INPUTDD, MSGDD, OUTPUTDD,
and PARMDD parameters (and RESOBJDD for IBM i users).

If you run the ARSPDOCI program or API from the command prompt or call it
from a user-defined program, then you must provide values for the INPUTDD,
OUTPUTDD, and PARMDD parameters and verify that the default values for the
INDEXDD, RESOBJDD, and MSGDD parameters are correct. The ARSPDOCI
program is not supported on z/OS.

If you must include spaces in a value for an option of a PDF Indexer parameter,
enclose the entire value in quotation marks.

BOOKMARKS
Indicates whether to copy the bookmarks from the original document to the new
documents.

PDF indexer 245

The default value is YES, which means that all the bookmarks from the original
document are copied to each new document that is created by the IBM Content
Manager OnDemand PDF indexer. Many of these bookmarks might no longer be
valid. If the original document contains many bookmarks, you can reduce the size
of the new documents by not copying the bookmarks.

Required?
No

Default Value
YES

Syntax

BOOKMARKS=[YES | NO]

Options and values

The value can be:

YES
The bookmarks are copied to each new document that is created by the PDF
indexer. This is the default value.

NO The bookmarks are not copied to new documents.

COORDINATES
Identifies the metrics used for x,y coordinates in the FIELD and TRIGGER
parameters.

Required?
No

Default Value
IN

Syntax

COORDINATES=metric

Options and values

The metric can be:

IN The coordinate metrics are specified in inches (the default).

CM The coordinate metrics are specified in centimeters.

MM The coordinate metrics are specified in millimeters.

FIELD
Identifies the location of index data and can provide default and constant index
values. You must define at least one field.

You can define up to 128 fields. You can define two types of fields: a trigger field,
which is based on the location of a trigger string value and a constant field, which
provides the actual index value that is stored in the database.

Required?
Yes

246 Indexing Reference

Default Value
<none>

Trigger field syntax

FIELDn=ul(x,y),lr(x,y),page[,(TRIGGER=n,BASE={0 | TRIGGER},
MASK='field_mask'|REGEX='regular_expression',DEFAULT='value')]

Trigger field options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

ul(x,y)
The coordinates for the upper left corner of the field string box. The field
string box is the smallest rectangle that completely encloses the field string
value (one or more words on the page). The PDF indexer must find the field
string value inside the field string box. The supported range of values is 0
(zero) to 45, page width and length, in inches.

lr(x,y)
The coordinates for the lower right corner of the field string box. The field
string box is the smallest rectangle that completely encloses the field string
value (one or more words on the page). The PDF indexer must find the field
string value inside the field string box. The supported range of values is 0
(zero) to 45, page width and length, in inches.

page
The sheet number where the PDF indexer begins searching for the field,
relative to a trigger or 0 (zero) for the same page as the trigger. If you specify
BASE=0, the page value can be –16 to 16. If you specify BASE=TRIGGER, the
page value must be 0 (zero), which is relative to the sheet number where the
trigger string value is located.

TRIGGER=n
Identifies the trigger parameter used to locate the field. This is an optional
keyword, but the default is TRIGGER1. Replace n with the number of a
defined TRIGGER parameter.

BASE={0|TRIGGER}
Determines whether the PDF indexer uses the upper left coordinates of the
trigger string box to locate the field. Choose from 0 (zero) or TRIGGER. If
BASE=0, the PDF indexer adds zero to the field string box coordinates. If
BASE=TRIGGER, the PDF indexer adds the upper left coordinates of the
location of the trigger string box to the coordinates provided for the field
string box. This is an optional keyword, but the default is BASE=0.

You should use BASE=0 if the field data always starts in a specific area on the
page. You should use BASE=TRIGGER if the field is not always located in the
same area on every page, but is always located a specific distance from a
trigger. This capability is useful when the number of lines on a page varies,
causing the location of field values to change. For example, given the following
parameters:
TRIGGER2=ul(4,4),lr(5,8),1,’Total’
FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

The trigger string value can be found in a one by four inch rectangle. The PDF
indexer always locates the field in a one inch box, one inch to the right of the
location of the trigger string value. If the PDF indexer finds the trigger string

PDF indexer 247

value in location ul(4,4),lr(5,5), it attempts to find the field in location
ul(5,4),lr(6,5). If the PDF indexer finds the trigger string value in location
ul(4,6),lr(5,7), it attempts to find the field in location ul(5,6),lr(6,7).

Important: A field that is based on the location of a trigger (BASE=TRIGGER)
can be defined at any location on the page that contains the trigger. Previously,
a field that was based on the location of a trigger had to be defined to the
right and below the upper left point of the trigger. With this change, the x or y
values can be negative, as long as the resulting absolute field coordinates of
the field string rectangle are still in the range of 0 <= x <= 45 and 0 <= y <=
45. The ul(x,y) and lr(x,y) coordinates of the FIELD parameter are relative
offsets from the ul(x,y) coordinates of the trigger. For example, suppose the
field string rectangle is located at ul(1,1), lr(2,2) which is an absolute
location on the page. If the trigger string rectangle is located at ul(5,5),
lr(7,7), then the field coordinates would be ul(-4,-4), lr(-3,-3).

MASK='field_mask'
The pattern of symbols that the PDF indexer matches to data located in the
field. When you define a field that includes a mask, an INDEX parameter based
on the field cannot reference any other fields. A mask and a regular expression
cannot both be specified on the same FIELD parameter. Valid mask symbols can
include:

@ Matches alphabetic characters. For example:
MASK=’@@@@@@@@@@@@@@@’

Causes the PDF indexer to match a 15-character alphabetic field, such
as a name.

Matches numeric characters. For example:
MASK=’##########’

Causes the PDF indexer to match a 10-character numeric field, such as
an account number.

¬ Matches any non-blank character.

^ Matches any non-blank character.

% Matches the blank character and numeric characters.

= Matches any character.

Important: The string that you specify for the mask can contain any character.
For example, given the following definitions:
FIELD2=UL(0.46,3.47),LR(0.82,7.46),0,(TRIGGER=2,BASE=0,MASK=’@000-####-#’)

The IBM Content Manager OnDemand PDF indexer selects the field only if the
data in the field contains an eleven-character string comprised of (in order) any
letter, three zeros, a dash character, any four numbers, a dash character, and
any number.

REGEX='regular_expression'
The regular expression that the IBM Content Manager OnDemand PDF indexer
matches to data located in the field. Either MASK or REGEX can be specified, but
not both. The maximum length of the regular expression is 2000 characters. For
more information see “Using Regular Expressions” on page 238.

248 Indexing Reference

Note: The string that you specify for the regular expression can be any valid
regular expression. For example, given the following definition:
FIELD2=UL(0.46,3.47),LR(0.82,7.46),0,(TRIGGER=2,BASE=0,

REGEX='[A-Z][0]{3}-[0-9]{4}-[0-9]')

The PDF indexer selects the field only if the data in the field contains an
eleven-character string comprised of (in order) any uppercase letter, three
zeros, a dash character, any four numbers, a dash character, and any number.

DEFAULT='value'
Defines the default index value, when there are no words within the
coordinates provided for the field string box, or if a mask or regular expression
does not match any characters within the bounding box. A field that is based
on a floating trigger must contain a default value. You can specify the default
value in hexadecimal.

Attention: If you specify the value in hexadecimal, it must be specified in
UTF-8.

For example, assume that an application program generates statements that
contain an audit field. The contents of the field can be PASSED or FAILED.
However, if a statement has not been audited, the application program does
not generate a value. In that case, there are no words within the field string
box. To store a default value in the database for unaudited records, define the
field as follows:
FIELD3=ul(8,1),lr(8.5,1.25),1,(DEFAULT=’NOT AUDITED’)

The PDF indexer assigns the index associated with FIELD3 the value NOT
AUDITED, if the field string box is blank.

Trigger field examples

The following field parameter causes the PDF indexer to locate the field at the
coordinates provided for the field string box. The field is based on TRIGGER1 and
located on the same page as TRIGGER1. Specify BASE=0 because the field string
box always appears in a specific location on the page.
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’
FIELD1=ul(1,1),lr(3.25,1.25),0,(TRIGGER=1,BASE=0)

Hexadecimal default value:
TRIGGER1 = ul(4.5,1.25),lr(5.75,1.5), *,’ACCOUNT’
FIELD1 = ul(6.6,1.25),lr(7.1,1.25),0,(default=x’30313233’)
INDEX1 = ’Account’,FIELD1,(TYPE=GROUP)

Field based on a floating trigger:
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,’Bill Summary’
TRIGGER2=UL(1.82,7.56),LR(3.40,7.85),*,’Account Number’,(TYPE=FLOAT)
FIELD1=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=2,BASE=0,DEFAULT=’N/A’)
FIELD2=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
INDEX1=’acctnum’,FIELD1,(TYPE=GROUP)
INDEX2=’name’,FIELD2,(TYPE=GROUP)

Constant field syntax

FIELDn='constant'

PDF indexer 249

Constant field options and values

n The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

'constant'
The literal (constant) string value of the field. This is the index value stored in
the database. The constant value can be 1 (one) to 2000 characters in length.
The PDF indexer does not validate the type or content of the constant. You can
specify the constant value in hexadecimal.

Constant field examples

The following field parameter causes the PDF indexer to store the same text string
in each INDEX1 value it creates.
FIELD1=’000000000’
INDEX1=’acct’,FIELD1

The following field parameters cause the PDF indexer to concatenate a constant
value with the index value extracted from the data. The PDF indexer concatenates
the constant value specified in the FIELD1 parameter to each index value located
using the FIELD2 parameter. The concatenated string value is stored in the
database. In this example, the account number field in the data is 14 characters in
length. However, the account number in the database is 19 characters in length.
Use a constant field to concatenate a constant five character prefix (0000–) to all
account numbers extracted from the data.
FIELD1=’0000-’
FIELD2=ul(2,2),lr(2.5,2.25),0,(TRIGGER=1,BASE=0)
INDEX1=’acct_num’,FIELD1,FIELD2

Hexadecimal constant field:
FIELD1 = X’4D524830303252’
FIELD2 = ul(6.6,1.25), lr(7.1,1.25),0,(default=x’30313233’)
INDEX1 = ’Account’,FIELD1,FIELD2,(TYPE=GROUP)

You can combine a hexadecimal value and a value that is extracted from the
document in an index:
FIELD1 = X’4D524830303252’
FIELD2 = ul(6.0,1.4), lr(7.2,1.75),0
INDEX1 = ’Account’,FIELD1,FIELD2,(TYPE=GROUP)

Using a regular expression to extract a date from a field in the form of "July 4,
1956":
FIELD1=UL(0.54,0.40),LR(1.64,0.67),0,(TRIGGER=1,BASE=0,
REGEX=’[A-Z][a-z]+ [0-9]+, [0-9]{4}’,DEFAULT=’January 1, 1970’)
INDEX1=’RDate’,FIELD1

Related parameters
v “INDEX” on page 251
v “TRIGGER” on page 259

FONTLIB
Identifies the directory or directories in which fonts are stored. Specify any valid
path. The PDF indexer searches for fonts in the order that the paths are listed. If a
font is referenced in an input file but not embedded in the file, the PDF indexer
attempts to locate the font in the directory or directories listed on the FONTLIB
parameter.

250 Indexing Reference

If the customer purchases additional fonts and installs them on the system, the
additional fonts can be found at indexing time by specifying the location with the
FONTLIB parameter.

Required?
No

Syntax

FONTLIB=pathlist

Options and values

The pathlist is a colon-separated string of one or more valid path names. For
example:
FONTLIB=/usr/lpp/Acrobat9/Fonts:/opt/IBM/ondemand/V9.5/fontlib

or
FONTLIB=/QIBM/ProdData/OnDemand/Adobe/Fonts

The PDF indexer searches the paths in the order in which they are specified.
Delimit path names in UNIX and IBM i with the colon (:) character. Delimit path
names in Windows with the semicolon (;) character.

A maximum of 6 paths can be specified.

INDEX
Identifies the index name and the field or fields on which the index is based. You
must specify at least one index parameter.

You can specify up to 128 index parameters. When you create index parameters,
you should name the index the same as the application group database field name.

Required?
Yes

Default Value
<none>

Remember: Running the ARSPDOCI program is not supported on z/OS.

Syntax

INDEXn='name',FIELDn[,...FIELDn][,(TYPE=GROUP)]

Options and values

n The index parameter identifier. When adding an index parameter, use the next
available number, beginning with 1 (one).

'name'
Determines the index name associated with the actual index value. For
example, assume INDEX1 is to contain account numbers. The string acct_num
would be a meaningful index name. The index value of INDEX1 would be an
actual account number, for example, 000123456789.

The index name is a string from 1 to 250 bytes in length. You should name the
index the same as the application group database field name.

PDF indexer 251

You can specify the index name in hexadecimal. If you specify the value in
hexadecimal, it must be specified in UTF-8.
The name used in the INDEX parameter must match the Load ID Name value
provided on the Load Information tab for the application group database field
name.

FIELDnn

The name of the field parameter or parameters that the PDF indexer uses to
locate the index. You can specify a maximum of 128 field parameters. Separate
the field parameter names with a comma. If the index contains a field which is
based on a floating trigger, it must be the only field in the index.

When the index value is constructed, the total length of all the concatenated
index values cannot exceed 2000 characters.

TYPE=GROUP
PDF indexer supports group-level indexes only. This parameter is optional.

Examples

The following index parameter causes the PDF indexer to create group-level
indexes for date index values (the PDF indexer supports group-level indexes only).

When the index value changes, the PDF indexer closes the current group and
begins a new group.
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,’Bill Summary’
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
INDEX1=’report_date’,FIELD1

The following index parameters cause the PDF indexer to create group-level
indexes for customer name and account number index values. The PDF indexer
closes the current group and begins a new group when either the customer name
or the account number index value changes.
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,’Bill Summary’
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
FIELD2=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=1,BASE=0)
INDEX1=’name’,FIELD1
INDEX2=’acct_num’,FIELD2

The following index parameters cause the PDF indexer to create group-level
indexes for customer name and balance index values. The PDF indexer closes the
current group and begins a new group only when the customer name index value
changes.
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,’Bill Summary’
TRIGGER2=UL(3.13,3.27),LR(5.59,4.32),*,’Total Balance’,(TYPE=FLOAT)
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
FIELD2=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=2,BASE=TRIGGER,DEFAULT=’N/A’))
INDEX1=’name’,FIELD1
INDEX2=’balance’,FIELD2

Related parameters

“FIELD” on page 246

INDEXDD
Specifies the name or the full path name of the index object file. The PDF indexer
writes indexing information to the index object file. If you specify the file name

252 Indexing Reference

without a path, the PDF indexer puts the index object file in the current directory.
If you do not specify the INDEXDD parameter, the PDF indexer writes indexing
information to the file INDEX.

Required?
No

Note: When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you may specify for the INDEXDD parameter.
If you process input files by any other method, for example, by running
the ARSPDOCI program from the command line, verify the value of the
INDEXDD parameter. Running the ARSPDOCI program is not supported on
z/OS.

Default Value
INDEX

Syntax

INDEXDD=filename

Options and values

The filename is a valid filename or full path name.

Remember:

1. Filenames and path names are case sensitive in UNIX environments, but not in
Windows or IBM i.

2. If you specify the file name without a path, the PDF indexer writes the index
object file to the current directory.

INDEXMODE
Determines whether the PDF Indexer uses metadata or internal indexes instead of
triggers, fields, and indexes. If not specified, the PDF indexer uses theTRIGGER,
FIELD, and INDEX parameters to perform the indexing.

Required?
No

Default Value
<none>

If INDEXMODE is specified along with TRIGGER, FIELD, or INDEX parameters, they
are ignored.

Syntax

INDEXMODE=mode[,n]

Options and values

The mode variable can be any of the following values:

METADATA
Use metadata indexes to perform indexing.

PDF indexer 253

INTERNAL
Use internal indexes. If INTERNAL is specified, n refers to the maximum number
of indexes in a group. The default is 32.

Examples

The following parameters cause the IBM Content Manager OnDemand to extract
metadata indexes and create a resource file. No other parameters are required.
RESTYPE=ALL
INDEXMODE=METADATA

The following parameters cause the IBM Content Manager OnDemand to extract
internal indexes and create a resource file. No other parameters are required.
RESTYPE=ALL
INDEXMODE=INTERNAL,3

INDEXSTARTBY
Determines the page number by which the PDF indexer must locate the first group
(document) within the input file.

The first group is identified when all of the group triggers and the fields based on
them are found. Fields based on floating triggers are ignored when determining
the INDEXSTARTBY page. For example, with the following parameters:
TRIGGER1=ul(4.72,1.28),lr(5.36,1.45),*,’ACCOUNT’

TRIGGER2=ul(6.11,1.43),lr(6.79,1.59),1,’SUMMARY’
INDEX1=’Account’,FIELD1,FIELD2
FIELD1=ul(6.11,1.29).lr(6.63,1.45),2
FIELD2=ul(6.69,1.29),lr(7.04,1.45),2
INDEX2=’Total’,FIELD3
FIELD3=ul(6.11,1.43),lr(6.79,1.59),2
INDEXSTARTBY=3

The word ACCOUNT must be found on a page in the location described by
TRIGGER1. The word SUMMARY must be found on a page following the page on
which ACCOUNT was found, in the location specified by TRIGGER2. In addition,
there must be one or more words found for fields FIELD1, FIELD2, and FIELD3 in
the locations specified by FIELD1, FIELD2, and FIELD3 which are located on a
page that is two pages after the page on which TRIGGER1 was found.

In the example, the first group in the file must start on either page one, page two,
or page three. If TRIGGER1 is found on page one, then TRIGGER2 must be found
on page two and FIELD1, FIELD2, and FIELD3 must be found on page three.

The PDF indexer stops processing if it does not locate the first group by the
specified page number. This parameter is optional, but the default is that the PDF
indexer must locate the first group on the first page of the input file. This
parameter is helpful if the input file contains header pages. For example, if the
input file contains two header pages, you can specify a page number one greater
than the number of header pages (INDEXSTARTBY=3) so that the PDF indexer will
stop processing only if it does not locate the first group by the third page in the
input data.

Important: When you use INDEXSTARTBY to skip header pages, the PDF indexer
does not copy the non-indexed pages to the output file. For example, if you specify
INDEXSTARTBY=3 and the indexer finds the first index on page three, then it
skips pages one and two. Page three is the first page in the output file.

254 Indexing Reference

However, if a field based on a floating trigger is collected from a page which
occurs before the first group, PDF indexer includes the page where the field was
found, and the pages between where the field was found and the start of the first
group as part of the first group. The field will be part of the first group in the
Search Results .

Required?
No

Default Value
1

Syntax

INDEXSTARTBY=value

Options and values

The value is the page number by which the PDF indexer must locate the first group
(document) in the input file.

INPUTDD
Specifies the name or the full path name of the PDF input file that the PDF indexer
will process.

Required?
No

Note: When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you may supply for the INPUTDD
parameter. If you process input files with the ARSPDOCI program, then
you must specify a value for the INPUTDD parameter.

Running the ARSPDOCI program is not supported on z/OS.

Default Value
<none>

Syntax

INPUTDD=name

Options and values

The name is the file name or full path name of the input file. On UNIX servers, file
and path names are case sensitive. If you specify the file name without a path, the
PDF indexer searches the current directory for the specified file.

MSGDD
Specifies the name or the full path name of the file to which the PDF indexer
writes error messages. If you do not specify the MSGDD parameter, the PDF indexer
writes messages to standard error (UNIX and IBM i) or the console (Windows).

Required?
No

PDF indexer 255

Note: When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you may supply for the MSGDD parameter. If
you process input files with ARSPDOCI, then verify the value of the MSGDD
parameter.

The ARSPDOCI program is not supported on z/OS.

Default Value
stderr (UNIX and IBM i)

console (Windows)

Syntax

MSGDD=name

Options and values

The name is the file name or full path name of the file to which the PDF indexer
writes messages. On UNIX servers, file and path names are case sensitive. If you
specify the file name without a path, the PDF indexer writes the error file to the
current directory.

OUTPUTDD
Specifies the name or the full path name of the output file.

Required?
No

Note: When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you may supply for the OUTPUTDD parameter.
If you process input files with ARSPDOCI, then you must specify a value
for the OUTPUTDD parameter.

The ARSPDOCI program is not supported on z/OS.

Default Value
<none>

Syntax

OUTPUTDD=name

Options and values

The name is the file name or full path name of the output file. On UNIX servers,
file and path names are case sensitive. If you specify the file name without a path,
the PDF indexer writes the output file to the current directory.

PARMDD
Specifies the name or the full path name of the file that contains the indexing
parameters that are used to process the input data.

Required?
No

256 Indexing Reference

Note: When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you may supply for the PARMDD parameter. If
you process input files with ARSPDOCI, then you must specify a value for
the PARMDD parameter.

Default Value
<none>

Syntax

PARMDD=name

Options and values

The name is the file name or full path name of the file that contains the indexing
parameters. On UNIX servers, file and path names are case sensitive. If you specify
the file name without a path, the PDF indexer searches for the file in the current
directory.

REMOVERES
Indicates whether or not to remove unused resources before the indexer collects
resources and creates the indexes.

The input file is examined and a new copy is saved in the Content Manager
OnDemand temporary directory. This new copy is then used for processing, and
the original input file is not changed. You can change the location of the temporary
directory by specifying the PDF parameter TEMPDIR. Ensure that the temporary
directory has enough space to hold the file. If a file contains many unused
resources, you can greatly reduce the size of the resource file and speed up the
indexing process by using this parameter. If a file does not contain any unused
resources, then do not specify this parameter. You can use this parameter without
resource collection.

Tip: Because this parameter rewrites the input file, it can be used to repair minor
syntax errors in the PDF.

Required?
No

Default Value
NO

Syntax

REMOVERES=value

Options and values

The value can be one of the following:

YES
The unused resources are removed before the indexer collects resources (if
requested) and creates the indexes.

NO The unused resources are not removed before the indexer collects resources (if
requested) and creates the indexes.

PDF indexer 257

RESOBJDD
Specifies the name or the full path name of the resource object file.

The PDF indexer collects resources to the resource object file. If you specify the file
name without a path, the PDF indexer puts the resource object file in the current
directory. Use the RESOBJDD parameter in conjunction with the RESTYPE parameter
for the PDF indexer to collect resources.

Required?
No

When you process input files with the ARSLOAD program, the
STRMONOND command, or the ADDRPTOND command, the PDF
indexer ignores any value that you might supply for the RESOBJDD
parameter. If you process input files with the ARSPDOCI program and
want to collect resources, then you must specify a value for the RESOBJDD
parameter.

Running the ARSPDOCI program is not supported on z/OS.

Default Value
<none>

Syntax

RESOBJDD=filename

Options and values

The filename is a valid file name or full path name.

Important:

1. File names and path names are case-sensitive on AIX, Solaris, and Linux, but
are not case-sensitive on Windows or IBM i.

2. If the PDF file does not contain resources, no RESOBJDD file is produced.

RESTYPE
Determines the types of PDF print resources that the PDF indexer should collect
and include in the resource group file.

Required?
No

Default Value
All (when creating a new application)

Syntax

RESTYPE={ NONE | ALL | [FONT] [,IMAGE] }

Options and values

NONE
No resource file is created.

ALL
All fonts and images are collected in the resource file.

258 Indexing Reference

FONT
Fonts are collected in the resource file.

IMAGE
Images are collected in the resource file.

TEMPDIR
Specifies the name of the directory that the PDF indexer uses for temporary work
space.

Required?
No

Default Value
/arstmp (UNIX and IBM i)

C:\TEMP (Windows)

Syntax

TEMPDIR=directory

Options and values

The directory is a valid directory name.

TRACEDD
See “Trace facility” on page 266.

Related parameters

“FIELD” on page 246

TRIGGER
Identifies locations and string values required to uniquely identify the beginning of
a group and the locations and string values of fields used to define indexes. You
must define at least one trigger and can define up to 16 triggers.

Required?
Yes

Default Value
<none>

Syntax

TRIGGERn=ul(x,y),lr(x,y),page,'value'|REGEX='regular _expression',[,(TYPE =
{GROUP | FLOAT})]

Options and values

n The trigger parameter identifier. When adding a trigger parameter, use the next
available number beginning with 1 (one) to 16 (sixteen).

ul(x,y)
The coordinates for the upper left corner of the trigger string box. The trigger
string box is the smallest rectangle that completely encloses the trigger string
value (one or more words on the page). The PDF indexer must find the trigger

PDF indexer 259

string value inside the trigger string box. The supported range of values is 0
(zero) to 45, page width and length, in inches.

lr(x,y)
The coordinates for the lower right corner of the trigger string box. The trigger
string box is the smallest rectangle that completely encloses the trigger string
value (one or more words on the page). The PDF indexer must find the trigger
string value inside the trigger string box. The supported range of values are 0
(zero) to 45, page width and length, in inches.

page
The page number in the input file on which the trigger string value must be
located.
v For TRIGGER1, the page value must be an asterisk (*), to specify that the

trigger string value can be located on any page in the input file. The PDF
indexer begins searching on the first page in the input file. The PDF indexer
continues searching until the trigger string value is located, the
INDEXSTARTBY value is reached, or the last page of the input file is
searched, whichever occurs first. If the PDF indexer reaches the
INDEXSTARTBY value or the last page and the trigger string value is not
found, then an error occurs and indexing stops.

v For all other group triggers, the page value can be 0 (zero) to 16, relative to
TRIGGER1. For example, the page value 0 (zero) means that the trigger is
located on the same page as TRIGGER1; the value 1 (one) means that the
trigger is located on the page after the page that contains TRIGGER1; and so
forth. For TRIGGER2 through TRIGGER16, the trigger string value can be a
maximum of 16 pages from TRIGGER1.

v For Float Triggers, the page value must be an asterisk (*), to specify that the
trigger string value can be located on any page in the input file. The PDF
indexer begins searching on the first page in the input file. If the trigger is
not found, this situation is not considered an error.

'value'
The actual string value the PDF indexer uses to match the input data. The
string value is case sensitive. The value is one or more words that can be
found on a page. If the trigger is represented by a double byte or Unicode font
in the document, enter the trigger string in hexadecimal. You can use
hexadecimal and non-hexadecimal triggers together. See the examples for a
hexadecimal trigger example. You can specify either a value or a regular
expression, but not both. If you specify the value in hexadecimal, it must be
specified in UTF-8.

REGEX='regular_expression'
The regular expression the PDF indexer uses to match the input data. Either
'value' or REGEX can be specified, but not both. The maximum length of the
regular expression is 254 characters.

TYPE
The default trigger type is GROUP. TRIGGER1 must be a group trigger. Valid
trigger types are the following:

GROUP
Triggers that identify the beginning of a group. Group triggers, and the
fields based on them, define the extent of a group.

FLOAT
Triggers that identify field data that might not occur in the same location
on each page, the same page in each group, or in each group. The PDF
indexer searches within the trigger string box for every occurrence of the

260 Indexing Reference

trigger. When it is found, any fields based on it will be collected. If a field
is not found, the default value defined for the field will be used. Fields
based on floating triggers cannot define the extent of a group.

Remember:

1. Trigger1 must be a group trigger.
2. Fields based on floating trigger must contain a default value.
3. Fields based on floating triggers cannot be combined with any other field

in an index.
4. At least one index must contain a field (or fields) based on a group trigger.

TRIGGER1 example

The following TRIGGER1 parameter causes the PDF indexer to search the specified
location on every page of the input data for the specified string.

You must define TRIGGER1 and the page value for TRIGGER1 must be an
asterisk.
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’

Group triggers example

The following trigger parameter causes the PDF indexer to attempt to match the
string value Account Number within the coordinates provided for the trigger string
box. The trigger can be found on the same page as TRIGGER1.
TRIGGER2=ul(1,2.25),lr(2,2.5),0,’Account Number’

The following trigger parameter causes the PDF indexer to attempt to match the
string value Total within the coordinates provided for the trigger string box. In
this example, a one by four inch trigger string box is defined, because the vertical
position of the trigger on the page may vary. For example, assume that the page
contains account numbers and balances with a total for all of the accounts listed.
There can be one or more accounts listed. The location of the total varies,
depending on the number of accounts listed. The field parameter is based on the
trigger so that the PDF indexer can locate the field regardless of the actual location
of the trigger string value. The field is a one inch box that always begins one inch
to the right of the trigger. After locating the trigger string value, the PDF indexer
adds the upper left coordinates of the trigger string box to the coordinates
provided for the field. The trigger can be found on the page following TRIGGER1.
TRIGGER2=ul(4,4),lr(5,8),1,’Total’
FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

Float trigger example

The following trigger parameter causes the PDF indexer to attempt to match the
string value Total Balance within the coordinates provided for the trigger string
box.

The field is on the same page as the trigger.
TRIGGER2=UL(0.57,0.71),LR(0.89,2.40),*,’Total Balance’,(TYPE=FLOAT)
FIELD2=UL(1.06,1.77),LR(3.29,2.06),0,(TRIGGER=2,BASE=0,DEFAULT=’N/A’)
INDEX2=’Balance’,FIELD2,(TYPE=GROUP)

PDF indexer 261

Hexadecimal trigger example

The following example shows how to code a trigger that represents two
side-by-side UTF-8 characters in a document. In this example, each UTF-8 character
consists of three bytes. Do not code the index name in hexadecimal.
TRIGGER1=UL(1.54,5.40),LR(1.79,5.53),*,X’E6AC8AE79B8A’
FIELD1=UL(2.29,3.86),LR(3.34,4.04),0,(TRIGGER=1,BASE=0)
INDEX1=’emp_name’,FIELD1,(TYPE=GROUP)

This example shows how to code a trigger that represents two side-by-side UTF-8
characters in a document.

In this example, hexadecimal and non-hexadecimal triggers are used together:
TRIGGER1=UL(6.49,1.72),LR(6.89,1.93),*,X’E8BD8920E7A7BB’
TRIGGER2=UL(7.02,2.34),LR(7.53,2.60),0,’Page 1’

Regular expression example

The following trigger parameter causes the PDF indexer to attempt to match,
within the coordinates provided for the trigger string box, a string that begins with
an uppercase 'A', followed by 6 lower case letters, followed by a space, followed
by an uppercase 'N', followed by 5 lower case letters. Therefore, the regular
expression could match the string 'Account Number'. The trigger can be found on
the same page as TRIGGER1.
TRIGGER2=ul(1,2.25),lr(2,2.5),0,REGEX=’A[a-z]{6} N[a-z]{5}',(TYPE=GROUP)

PDF indexer messages
The PDF indexer creates a message list at the end of each indexing run.

A return code of 0 (zero) means that processing completed without any errors.

The PDF indexer detects a number of error conditions that can be logically
grouped into several categories:

Informational
When the PDF indexer processes a file, it issues informational messages
that allow the user to determine if the correct processing parameters have
been specified. These messages can assist in providing an audit trail.

Warning
The PDF indexer issues a warning message and a return code of 4 (four)
when the fidelity of the document may be in question.

Error

The PDF indexer issues an error message and return code of 1 (one) and
terminates processing the current input file. Most error conditions detected
by the PDF indexer fall into this category. The exact method of termination
may vary. For certain severe errors, the PDF indexer may fail with a
segment fault. This is generally the case when some system service fails. In
other cases, the PDF indexer terminates with the appropriate error
messages written either to standard error or to a file. When the PDF
indexer is invoked by the ARSLOAD program, error messages are
automatically written to the system log. If you run the ARSPDOCI
command, you can specify the name or the full path name of the file to
hold the processing messages by using the MSGDD parameter.

262 Indexing Reference

On IBM i platforms, the ADDRPTOND and STRMONOND commands
also write error messages to the system log. The messages are also written
to the log of any job running the ARSLOAD, ADDRPTOND, or
STRMONOND commands.

Remember: The ARSPDOCI command is not supported on z/OS.

Adobe Toolkit

If the Adobe libraries fail to initialize, the PDF indexer issues an error
message with a PDF library return code of 16 and stops processing the
current input file.

Internal Error
The PDF indexer issues an error message and return code of 1 (one) and
terminates processing the current input file.

See IBM Content Manager OnDemand: Messages and Codes for a list of the messages
that can be generated by the PDF indexer and the explanations of the messages
and actions that you can take to respond to the messages. The messages that are
generated by the PDF indexer are listed in the Common Server section of the
messages publication.

ARSPDOCI program
The ARSPDOCI can be used to index a PDF file. The ARSLOAD program
automatically calls the ARSPDOCI program if the input data type is PDF and the
indexer is PDF.

The ARSPDOCI program uses the identified locations of text strings on a page of a
PDF document to produce a text index file as well as a byte offset indexed PDF
document. You can use the ARSPDUMP program to list the locations of text strings
in a document.

Restriction: The ARSPDUMP and ARSPDOCI programs are not supported on
z/OS.

If you need to index a PDF file and you do not want to use the ARSLOAD
program to process the file, then you can run the ARSPDOCI program from the
command line or call it from a user-defined program.

The ARSPDOCI program requires two input files: a PDF document and a
parameter file.

If a font is referenced in an input file but not embedded in the file or is not one of
the 14 base fonts, and the PDF indexer cannot locate the font, the indexing will
fail. If the customer purchases additional fonts and installs them on the system, the
additional fonts can be found at indexing time by specifying the location with the
FONTLIB parameter.

Syntax

The following syntax should be used only when you run the ARSPDOCI program
from the command line or call it from a user-defined program.

�� ARSPDOCI
BOOKMARKS= value COORDINATES= metric

�

PDF indexer 263

� FIELD n = spec
FONTLIB= pathList

INDEX n = spec �

�
INDEXDD= fileName INDEXSTARTBY= pageNumber

INPUTDD= fileName �

�
MSGDD= fileName

OUTPUTDD= fileName PARMDD= fileName �

�
RESOBJDD= fileName RESTYPE= { NONE | ALL | [FONT] [,IMAGE] }

�

�
TEMPDIR= fileSystem

TRIGGER n = spec ��

Parameters

Refer to the parameter reference for details about the parameters that you can
specify when you run the ARSPDOCI program from the command line or a
user-defined program.

Files

/opt/IBM/ondemand/V9.5/bin/arspdoci
The AIX or Solaris executable program.

/opt/ibm/ondemand/V9.5/bin/arspdoci
The Linux executable program.

C:\Program Files\IBM\OnDemand\V9.5\bin\arspdoci.exe
The Windows executable program.

/QIBM/ProdData/OnDemand/bin/arspdoci
The IBM i executable program.

Attention: On IBM i platforms, you must set the LIBPATH environment variable
to a value of /QIBM/ProdData/OnDemand/bin before running the ARSPDOCI
command. To set the LIBPATH you can:
v run the following command on the qshell command line:

export LIBPATH=/QIBM/ProdData/OnDemand/

v run the following command on the IBM i command line:
ADDENVVAR ENVVAR(LIBPATH) VALUE(’/QIBM/ProdData/OnDemand/bin’)
bin

ARSPDUMP program
The ARSPDUMP program can be used to identify the locations of text strings on a
page in a PDF file. The output of the ARSPDUMP program contains a list of the
text strings on the page and the coordinates for each string.

If a font is referenced in a PDF file, but not embedded, then the ARSPDUMP
program attempts to find the font using information provided with the -F
parameter. If the ARSPDUMP program does not find the font, it may not be able to
display the text strings in the output.

264 Indexing Reference

You can use the information that is generated by the ARSPDUMP program to
create the parameter file that is used by the ARSPDOCI program to index PDF
files.

Syntax

�� ARSPDUMP -f inputFile
-F fontFile -o outputFile

�

� -p sheetNumber
-t tempDir

��

Parameters

-f inputFile
The file name or full path name of the PDF file to process. On UNIX servers,
file and path names are case sensitive.

-F fontDir
Identifies directories in which fonts are stored. Specify any valid path. On
UNIX and IBM i servers, use the color (:) character to separate path names. On
Windows servers, use the semicolon (;) character to separate path names. The
ARSPDUMP program searches the paths in the order in which they are
specified.

-o outputFile
The file name or full path name of the file into which the ARSPDUMP
program writes output messages. On UNIX servers, file and path names are
case sensitive. If you do not specify this flag and name a file, then the
ARSPDUMP program writes output to stdout (UNIX and IBM i) or the console
(Windows).

-p pagenumber
The number of the page in the PDF file that you want the ARSPDUMP
program to process. This is the page that contains the text strings that you
want to use to define triggers and fields.

-t tempDir
Identifies the directory that the ARSPDUMP program uses for temporary work
space. Specify any valid directory name. If you do not specify this flag and
name a directory, then the ARSPDUMP program uses the /arstmp directory
(UNIX and IBM i servers) or the C:\TMP directory (Windows servers) for
temporary work space.

Examples
v The following example shows how to invoke the ARSPDUMP program (for IBM

i, within QSHELL) to print the strings and locations of text found on page
number one of sample.pdf to sample.out:
arspdump -f sample.pdf -o sample.out -p 1

v The following example shows how to invoke the ARSPDUMP program (for IBM
i, within QSHELL) to print the strings and locations of text found on page
number three of sample.pdf to sample.out:
arspdump -f sample.pdf -o sample.out -p 3

Content Manager OnDemand for i users: See the Content Manager OnDemand for i:
Common Server Administration Guide for more information about running
ARSPDUMP using QSHELL.

PDF indexer 265

Files

/opt/IBM/ondemand/V9.5/bin/arspdump
The AIX or Solaris executable program.

/opt/ibm/ondemand/V9.5/bin/arspdump
The Linux executable program.

C:\Program Files\IBM\OnDemand\V9.5\bin\arspdump.exe
The Windows executable program.

/QIBM/ProdData/OnDemand/bin/arspdump
The IBM i executable program.

Attention: On IBM i platforms, you must set the LIBPATH environment variable
to a value of /QIBM/ProdData/OnDemand/bin before running the ARSPDUMP
command. To set the LIBPATH you can:
v run the following command on the qshell command line:

export LIBPATH=/QIBM/ProdData/OnDemand/

v run the following command on the IBM i command line:
ADDENVVAR ENVVAR(LIBPATH) VALUE(’/QIBM/ProdData/OnDemand/bin’)
bin

Trace facility
The tracing capability for the PDF indexer provides assistance to users attempting
to debug problems, such as when the system fails during the indexing and loading
of PDF documents.

To trace or debug a problem with the PDF indexer, the following is required:
v The parameter file, which specifies the fields, triggers, indexes and other

indexing information
v The PDF input file to process
v The trace parameters tracedd and tracelevel

The parameter file and PDF input file can be processed by running the PDF
indexer from the command line. For example:
arspdoci parmdd=filen.parms inputdd=filen.pdf outputdd=filen.out indexdd=filen.ind
tracedd=filen.trace tracelevel=PDF=15

Where:
v arspdoci is the name of the command-line version of the PDF indexer program.
v parmdd= specifies the name of the input file that contains the indexing

parameters.
v inputdd= specifies the name of the PDF input file to process.
v outputdd= specifies the name of the output file that contains the indexed PDF

documents created by the PDF indexer.
v indexdd= specifies the name of the output file that contains the index

information that will be loaded into the database.
v tracedd= specifies the name of the output file that contains the trace

information.
v tracelevel= specifies the amount of detail to be included in the trace.

After running the PDF indexer with the trace, the output file specified by the
tracedd= parameter will contain detailed information about the processing that

266 Indexing Reference

took place and where the PDF indexer is failing during the process. The output file
must be formatted by the arstfmt command to create a readable trace file. For
example:
arstfmt -i filen.trace -o filen.trace.output

Remember: The ARSPDOCI command is not supported on z/OS.

PDF indexer 267

268 Indexing Reference

Generic indexer

You can use the Generic indexer to specify index data for any type of input file
that you want to store in the system, although you typically use a format-specific
indexer, if one is available.

Content Manager OnDemand includes the following format-specific indexers:
v For Advanced Function Printing (AFP) data and line data, use AFP Conversion

and Indexing Facility (ACIF).
v For PDF data, use the PDF indexer.
v For IBM i spooled files, use the OS/400 indexer.

Reports produced using Crystal Report are a good example of input files that you
might index with the Generic indexer, since these reports are saved in a
proprietary format.

Content Manager OnDemand provides the Generic indexer to allow you to specify
indexing information for input data that you cannot or do not want to index with
the ACIF, PDF, or OS/400 indexer. The Generic indexer is not an indexing
program, but refers to a parameter file format.

For example, suppose that you want to load files into the system that were created
with a word processor. The files can be stored in Content Manager OnDemand in
the same format in which they were created. The files can be retrieved from
Content Manager OnDemand and viewed with the word processor. However,
because the files do not contain AFP data, line data, or PDF data, you cannot index
them with the other indexers that are supported by Content Manager OnDemand.
You can specify index information about the files in a format that is used by the
Generic indexer and load the index data and files into the system. Users can then
search for and retrieve the files by using one of the Content Manager OnDemand
client programs.

To use the Generic indexer, you must specify all of the index data for each input
file or document that you want to store in and retrieve from the system. You
specify the index data in a parameter file. The parameter file contains the index
fields, index values, and information about the input files or documents that you
want to process. The Generic indexer retrieves the index data from the parameter
file and generates the index information that is loaded into the database. Content
Manager OnDemand creates one index record for each input file (or document)
that you specify in the parameter file. The index record contains the index values
that uniquely identify a file or document in Content Manager OnDemand.

The generic indexer supports group-level indexes. Group indexes are stored in the
database and used to search for documents. You must specify one set of group
indexes for each file or document that you want to process with the Generic
indexer.
Related concepts:
“Indexing input data” on page 232

© Copyright IBM Corp. 1993, 2014 269

Loading data
You can use the ARSLOAD program to load data into Content Manager
OnDemand. If you are using Content Manager OnDemand for i, you can load data
using ARSLOAD, or you can use the STRMONOND or ADDRPTOND
commands.

Loading data by using the ARSLOAD program

If the input data needs to be indexed, ARSLOAD will call the appropriate indexing
program (based on the type of input data or, for the Generic indexer, the presence
of a valid parameter file). For example, ARSLOAD can invoke the Generic indexer
to process the parameter file and generate the index data. ARSLOAD can then add
the index information to the database and load the input files or documents
specified in the parameter file on to storage volumes.

There are two ways to run ARSLOAD, and an additional method on z/OS as well:

Daemon mode
The ARSLOAD program runs as a daemon (UNIX, z/OS and IBM i
servers) or service (Windows servers) to periodically check a specified
directory for input files to process. When running ARSLOAD in daemon
mode, a dummy file with the file type extension of .ARD is required to
initiate a load process. In addition, the Generic indexer parameter file
(.IND) must be located in the specified directory. The GROUP_FILENAME:
parameter in the .IND file specifies the full path name of the actual input
file to be processed.

Manual mode
ARSLOAD is run from the command line (qshell on IBM i or OMVS on
z/OS systems) to process a specific file. When running ARSLOAD in
manual mode, specify only the name of the file to process. ARSLOAD adds
the .IND file name extension to the name that you specify. For example, if
you specify arsload ... po3510, where po3510 is the name of the input
file, ARSLOAD processes the po3510.ind Generic indexer parameter file.
The GROUP_FILENAME: parameter in the Generic indexer parameter file
specifies the full path name of the actual input file to be processed.

Batch mode (z/OS only)
On z/OS, JCL can be used to start the ARSLOAD program in a UNIX
System Services environment. The parameters for the ARSLOAD program
are provided by using the PARM keyword on the EXEC statement. See the
ARSLOAD command section of the Administration Guide for more
information.

After successfully loading the data, the system deletes the input file that is
specified on the GROUP_FILENAME: parameter if the file name extension is .OUT, and
for daemon mode processing, the rest of the input file name is the same as the
.ARD file name. The system also deletes the .IND file (the Generic indexer
parameter file) and the .ARD file (the dummy file that is used to initiate a load
process when ARSLOAD is running in daemon mode).

The following shows an example of file names in daemon processing mode:
MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD
MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.IND
MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.OUT

270 Indexing Reference

The MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD file is the dummy file that
triggers a load process in daemon mode. The
MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.IND file is the Generic indexer
parameter file, and contains a GROUP_FILENAME: parameter that specifies the
input file to process: MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.OUT. After
successfully loading the data, the system deletes all three files.

Loading data by using the STRMONOND or ADDRPTOND
commands

There are two ways to run the STRMONOND command:
v STRMONOND with TYPE(*DIR) parameter specified. The STRMONOND

command runs as a monitor to periodically check a specified directory for input
files to process. When running the STRMONOND command with TYPE(*DIR),
the Generic indexer parameter file (.IND) is required to initiate a load process.
The GROUP_FILENAME: parameter in the .IND file specifies the full path name of
the actual input file to be processed.

v STRMONOND with TYPE(*DIR2) parameter specified. The STRMONOND
command runs as a monitor to periodically check a specified directory for input
files to process. When running the STRMONOND command with TYPE(*DIR2),
a dummy file with the file type extension of .ARD is required to initiate a load
process. In addition, the Generic indexer parameter file (.IND) must be located in
the specified directory. The GROUP_FILENAME: parameter in the .IND file specifies
the full path name of the actual input file to be processed. This is similar to
running the ARSLOAD program in daemon mode.

There is one way to run the ADDRPTOND command:
v ADDRPTOND. The ADDRPTOND command is run from the command line to

process a specific file. When running the ADDRPTOND command, you specify
INPUT(*STMF) and provide the name of the .IND file to process in the Stream
file (STMF) parameter (omitting the .IND file extension). The ADDRPTOND
command adds the .IND file name extension to the name that you specify. For
example, if you specify STMF(po3510), where po3510 is the name of the input
file, the ADDRPTOND command looks for and processes the po3510.ind
Generic indexer parameter file. The GROUP_FILENAME: parameter in the Generic
indexer parameter file specifies the full path name of the actual input file to be
processed. This is similar to running the ARSLOAD program in manual mode.

When the data is successfully loaded, both STRMONOND and ADDRPTOND
can optionally delete the input file that is specified on the GROUP_FILENAME:
parameter if the Delete processed file (DLTSPLF) or Delete input (DLTINPUT)
parameters are set to *YES. For the input file to be deleted, the input file must be
located in the same directory as the file that triggered the loading of the data, and
the file extension must be .OUT. The system also deletes the .IND file (the Generic
indexer parameter file) and the .ARD file (the dummy file that is used to initiate a
load process in some cases) if the DLTSPLF or DLTINPUT parameter is set to *YES.

Example of file names for STRMONOND TYPE(*DIR):
po3510.IND
po3510.OUT

The po3510.IND file is the input file that triggers a load process for STRMONOND
TYPE(*DIR). The po3510.IND file is the Generic indexer parameter file, and contains
a GROUP_FILENAME: parameter that specifies the input po3510.OUT file to process.
When the data is successfully loaded, the system deletes both files.

Generic indexer 271

Example of file names for STRMONOND TYPE(*DIR2):
po3510.ARD
po3510.ARD.IND
po3510.ARD.OUT

The po3510.ARD file is the dummy file that triggers a load process for
STRMONOND TYPE(*DIR2). The po3510.ARD.IND file is the Generic indexer
parameter file, and contains a GROUP_FILENAME: parameter that specifies the input
file to process, which is po3510.ARD.OUT. When the data is successfully loaded, the
system deletes all three files.

IBM i systems: If you plan to automate the data indexing and loading process on
the Content Manager OnDemand server, either the input file name, specific
parameters on the command used to load the data, or a monitor user exit program
must identify the application group and application to load. The .IND file name
extension (for STRMONOND *DIR processing) or the .ARD file name extension
(for STRMONOND *DIR2 or ARSLOAD daemon processing) is required to initiate
a load process. The case (uppercase or lowercase) of the extension (.ARD or .IND)
is ignored. Application group and application names are case sensitive. Application
group and application names might include special characters such as the blank
character when using ADDRPTOND or ARSLOAD with a specific application
group and application name provided. However, STRMONOND and ARSLOAD
when using the MVS naming convention (-A and -G parameters) do not support
archiving files that have spaces in the file name. See the IBM Content Manager
OnDemand for i: Common Server Administration Guide for more information about
using the STRMONOND and ADDRPTOND commands and the ARSLOAD API to
load data into Content Manager OnDemand.

Processing AFP data
You can specify a parameter file for input files that contain AFP resources and
documents and process them with the Generic indexer.

However, when you specify the parameter file:
v The starting location (byte offset) of the first AFP document in the input file

should always be 0 (zero), even though the actual starting location is not zero
when AFP resources are contained in the input. AFP resources are always
located at the beginning of an input file. The actual starting location of the first
document in the input file is zero plus the number of bytes that comprise the
resources. However, to process AFP documents with the generic indexer, you do
not need to calculate the number of bytes taken by the resources.

v The starting locations of the other documents in the input file should be
calculated using the length of and offset from the previous document in the
input file. For example:

Table 19. How the starting locations of the other documents in the input file should be
calculated

AFP structured field Physical file offset/length

Generic index file
GROUP_OFFSET/
GROUP_LENGTH

Begin Resource Group/End
Resource Group

0 / 282

Begin Document 1/End
Document 1

282 / 6223 0 / 6223

272 Indexing Reference

Table 19. How the starting locations of the other documents in the input file should be
calculated (continued)

AFP structured field Physical file offset/length

Generic index file
GROUP_OFFSET/
GROUP_LENGTH

Begin Document 2/End
Document 2

6505 / 6267 6223 / 6267

Begin Document 3/End
Document 3

12772 / 6588 12490 / 6588

Begin Document 4/End
Document 4

19360 / 5876 19078 / 5876

Begin Document 5/End
Document 5

25236 / 5895 24954 / 5895

Begin Document 6/End
Document 6

31131 / 5943 30849 / 5943

The Generic indexer determines where the AFP resources end in the file and
process the documents using the offsets and lengths that you provide, relative to
where the resources end.

Generic indexer parameters
The Generic indexer requires one or more input files that you want to load into the
system and a parameter file that contains the indexing information for the input
files. To use the Generic indexer, you must create a parameter file that contains the
indexing information for the input files.

There are three types of statements that you can specify in a parameter file:
v Comments. You can place a comment line anywhere in the parameter file.
v Code page. You must specify a code page line at the beginning of the parameter

file, before you define any groups.
v Groups. A group represents a document that you want to index. Each group

contains the application group field names and their index values, the location
of the document in the input file, the number of bytes (characters) that make up
the document, and the name of the input file that contains the document.

Important:

v The parameter names in the parameter file are case sensitive and must appear in
upper case. For example, GROUP_FIELD_NAME:account is valid, while
group_field_name:account is not.

v When loading data using the Generic indexer, the locale must be set
appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is
specified, set the locale environment variable to ja_JP or some other locale that
correctly identifies upper and lower case characters in code page 954.

CODEPAGE:
Specifies the code page of the input data. You must specify one and only one code
page.

The CODEPAGE: line must appear before you specify any of the groups.

Generic indexer 273

Important: When loading data using the Generic indexer, the locale must be set
appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is
specified, set the locale environment variable to ja_JP or some other locale that
correctly identifies upper and lower case characters in code page 954. On
Windows, set the system locale in the Region and Language dialogue.

Syntax

CODEPAGE:cpgid

Options and values

The character string CODEPAGE: identifies the line as specifying the code page of the
input data.

The string cpgid can be any valid code page, a three to five character identifier of
an IBM-registered or user-defined code page. The CODEPAGE: parameter is required.

Example

The following illustrates how to specify a code page of 819 for the input data:
CODEPAGE:819

COMMENT:
Specifies a comment line. You can place comment lines anywhere in the parameter
file.

Syntax

COMMENT: text on a single line

Options and values

The character string COMMENT: identifies the line as containing a comment.
Everything after the colon character to the end of the line is ignored.

Example

The following are examples of comment lines:
COMMENT:
COMMENT: this is a comment

GROUP_FIELD_NAME:
Specifies the name of an application group field. Each group that you specify in
the parameter file must contain one GROUP_FIELD_NAME: line for each application
group field.

The application group is where you store a file or document in Content Manager
OnDemand. You specify the name of the application group to the ARSLOAD
program. Content Manager OnDemand supports up to 128 fields per application
group. If the field names that you specify are different than the application group
field names, then you must map the field names that you specify to the application
group field names on the Load Information page for the application.

274 Indexing Reference

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for each
application group field. For example, if the application group contains two fields,
then each group that you specify in the parameter file must contain two pairs of
GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The following is an example of a
group with two application group fields:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_FIELD_NAME:applgrpFieldName

Options and values

The character string GROUP_FIELD_NAME: identifies the line as containing the name
of an application group field.

The string applgrpFieldName specifies the name of an application group field.
Content Manager OnDemand ignores the case of application group field names.

Example

The following shows examples of application group field names:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_NAME:studentID
GROUP_FIELD_NAME:account#

GROUP_FIELD_VALUE:
Specifies an index value for an application group field. Each group that you
specify in the parameter file must contain one GROUP_FIELD_VALUE: line for each
application group field.

The application group is where you store a file or document in Content Manager
OnDemand. You specify the name of the application group to the ARSLOAD
program. Content Manager OnDemand supports up to 128 fields per application
group. The GROUP_FIELD_VALUE: line must follow the GROUP_FIELD_NAME: line for
which you are specifying the index value.

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for each
application group field. For example, if the application group contains two fields,
then each group that you specify in the parameter file must contain two pairs of
GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The following is an example of a
group with two application group fields:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Generic indexer 275

Syntax

GROUP_FIELD_VALUE:value

Options and values

The character string GROUP_FIELD_VALUE: identifies the line as containing an index
value for an application group field. The string value specifies the actual index
value for the field.

Example

The following shows examples of index values:
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_VALUE:0012345678
GROUP_FIELD_VALUE:0000-1111-2222-3333

GROUP_FILENAME:
The file name or full path name of the input file. If you do not specify a path, the
Generic indexer searches the current directory for the specified file; however, you
should always specify the full path name of the input file.

Remember: The system does not delete the source files that are specified on the
GROUP_FILENAME: parameters in the generic index file. The system only deletes
IND, OUT, and RES files.

On UNIX servers, file and path names are case sensitive.

Each group that you specify in the parameter file must contain one
GROUP_FILENAME: line. The GROUP_FILENAME: line must follow the
GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a group. The
following is an example of a group:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/tmp/statements.out

If the GROUP_FILENAME: line does not contain a value (blank), the Generic indexer
uses the value of the GROUP_FILENAME: line from the previous group to process the
current group. In the following example, the input data for the second and third
groups is retrieved from the input file that is specified for the first group:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:8124

GROUP_FILENAME:/tmp/statements.out
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:06/30/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:8124
GROUP LENGTH:8124

GROUP_FILENAME:
GROUP_FIELD_NAME:rdate

276 Indexing Reference

GROUP_FIELD_VALUE:07/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:16248
GROUP_LENGTH:8124

GROUP_FILENAME:

If the first GROUP_FILENAME line in the parameter file is blank, you must specify the
name of the input file when you run the ARSLOAD command.

The group lines must appear after the CODEPAGE: line.

After successfully loading the data, the system deletes the input file that is
specified on the GROUP_FILENAME: parameter if the file name extension is .OUT,
and for daemon mode processing, the rest of the input file name is the same as the
.ARD file name. The system also deletes the .IND file (the Generic indexer
parameter file) and the .ARD file (the dummy file that is used to initiate a load
process when the ARSLOAD program is running in daemon mode).

Syntax

GROUP_FILENAME:fileName

Options and values

The character string GROUP_FILENAME: identifies the line as containing the input file
to process.

The string fileName specifies the full path name of the input file. You should
always specify the full path name of the input file to process. For example:
GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out

Examples

The following are valid file name lines:
GROUP_FILENAME:/tmp/statements
GROUP_FILENAME:D:\ARSTMP\statements
GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out
GROUP_FILENAME:

GROUP_LENGTH:
Specifies the number of contiguous bytes (characters) that comprise the document
to be indexed. Specify 0 (zero) to indicate the entire input file or the remainder of
the input file.

Each group that you specify in the parameter file must contain one GROUP_LENGTH:
line. The GROUP_LENGTH: line must follow the GROUP_FIELD_NAME: and
GROUP_FIELD_VALUE: lines that comprise a group. For example:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0

The group lines must appear after the CODEPAGE: line.

Generic indexer 277

Syntax

GROUP_LENGTH:value

Options and values

The character string GROUP_LENGTH: identifies the line as containing the byte count
of the data to be indexed.

The string value specifies the actual byte count. The default value is 0 (zero), for
the entire (or remainder) of the file.

Example

The following illustrates how to specify length values:
GROUP_LENGTH:0
GROUP_LENGTH:8124

GROUP_OFFSET:
Specifies the starting location (byte offset) into the input file of the data to be
indexed.

Specify 0 (zero) for the first byte (the beginning) of the file. Each group that you
specify in the parameter file must contain one GROUP_OFFSET: line. The
GROUP_OFFSET: line must follow the GROUP_FIELD_NAME: and GROUP_FIELD_VALUE:
lines that comprise a group. For example:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_OFFSET:value

Options and values

The character string GROUP_OFFSET: identifies the line as containing the byte offset
(location) of the data to be indexed.

The string value specifies the actual byte offset. Specify 0 (zero), to indicate the
beginning of the file.

Examples

The following illustrates offset values for three documents from the same input
file. The documents are 8 KB in length.
GROUP_OFFSET:0
GROUP_OFFSET:8124
GROUP_OFFSET:16248

278 Indexing Reference

Parameter file examples
The following example shows how to specify indexing information for three
groups (documents). Each document will be indexed using two fields. The input
data for each document is contained in a different input file.

COMMENT:
COMMENT: Generic indexer Example 1
COMMENT: Different input file for each document
COMMENT:
COMMENT: Specify code page of the index data
CODEPAGE:819
COMMENT: Document #1
COMMENT: Index field #1

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:07/13/99

COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

COMMENT: document data starts at beginning of file
GROUP_OFFSET:0

COMMENT: document data goes to end of file
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement7.out

COMMENT: Document #2
COMMENT: Index field #1

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:08/13/99

COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement8.out

COMMENT: Document #3
COMMENT: Index field #1

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:09/13/99

COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement9.out

COMMENT:
COMMENT: End Generic indexer Example 1

The following example shows how to specify indexing information for three
groups (documents). Each document will be indexed using two fields. The input
data for all of the documents is contained in the same input file.

COMMENT:
COMMENT: Generic indexer Example 2
COMMENT: One input file contains all documents
COMMENT:
COMMENT: Specify code page of the index data
CODEPAGE:819
COMMENT: Document #1

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:07/13/99
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

COMMENT: first document starts at beginning of file (byte 0)
GROUP_OFFSET:0

COMMENT: document length 8124 bytes
GROUP_LENGTH:8124
GROUP_FILENAME:/arstmp/accounting.student information.loan.out

Generic indexer 279

COMMENT: Document #2
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:08/13/99
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

COMMENT: second document starts at byte 8124
GROUP_OFFSET:8124

COMMENT: document length 8124 bytes
GROUP_LENGTH:8124

COMMENT: use prior GROUP_FILENAME:
GROUP_FILENAME:

COMMENT: Document #3
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:09/13/99
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

COMMENT: third document starts at byte 16248
GROUP_OFFSET:16248

COMMENT: document length 8124 bytes
GROUP_LENGTH:8124

COMMENT: use prior GROUP_FILENAME:
GROUP_FILENAME:

COMMENT:
COMMENT: End Generic indexer Example 2

280 Indexing Reference

XML indexer reference

IBM Content Manager OnDemand provides the XML indexer to allow you to index
and archive your XML documents. All of your XML data can now be indexed and
archived in Content Manager OnDemand.

Because XML data can contain any kind of information using an endless number
of tags, you must indicate to the XML indexer what documents within your data
you would like stored along with the index values for each document. This is
accomplished by transforming your XML input into an intermediate format. Tools
like XSLT and XQuery can be used get your data ready for indexing.

XSLT XSLT (Extensible Stylesheet Language Transformations) is a language for
transforming XML documents into other XML documents, or even plain
text. During the transformation, the original document is not changed;
rather, a new document is created based on the content of an existing one.
The basic processing paradigm is pattern matching. The XSLT style sheet
defines what patterns to process and how to process them for output.
While there are many processor implementations of XSLT, Saxon and Xalan
are two of the more popular open source versions.

XQuery

XQuery is a query and functional programming language. XQuery can be
used to query and transform customer XML data into the format defined
by IBM Content Manager OnDemand for XML indexing.

The XML indexer will validate the structure and content of your input file using
the XML indexer schema file, odxmlidx.xsd.

Important: After preparing your XML data for indexing, your input file must
follow the constraints and structure defined in the schema file or the indexing risks
errors.

.xsd schema file
The following .xsd file is an example of the odxmlidx.xsd schema file that is
included with the program product. You transform your XML data to the format in
this schema file so the XML indexer can ingest it.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="odidx">
<xs:complexType>

<xs:choice>
<xs:element name="oddoc" minOccurs="1"

maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element name="oddataref">
<xs:complexType>

<xs:attribute name="file"
type="xs:string"
use="required"/>

<xs:attribute name="offset"
type="xs:nonNegativeInteger"

© Copyright IBM Corp. 1993, 2014 281

use="required"/>
<xs:attribute name="length"

type="xs:nonNegativeInteger"
use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="odxmldata">
<xs:complexType>

<xs:sequence>
<xs:any minOccurs="0"

processContents="skip"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
<xs:element name="odindex"

minOccurs="1"
maxOccurs="128">

<xs:complexType>
<xs:attribute name="field"

type="xs:string"
use="required"/>

<xs:attribute name="value"
type="xs:string"
use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

Resources
While XML files are readable, there are several technologies which make the
viewing of XML data more user friendly. Cascading Style Sheets (CSS) and
Extensible Stylesheet Languages (XSL) are two such technologies.

With both CSS and XSL, files containing the layout or formatting that is to be
applied to the XML are specified. Multiple CSS or XSL files can be defined for each
XML document. These files are considered resources within Content Manager
OnDemand and can be archived as resources. These resources are specified in your
XML data using the <?xml-stylesheet> processing instruction. The location of the
resource file is specified using the href attribute of the xml-stylesheet processing
instruction. In order for your resources to be collected and archived, they must be
of the type file:. Only top level file: type style sheets will be collected and
archived as a resource for the documents contained in the input file.

Most style sheets will contain references to other files (for example: an image for a
corporate logo) and these embedded references will not be archived. To
accommodate the archiving of these referenced files and any other supporting files,
the XML indexer will allow you to specify the resource file to be used for the load.
For XML documents, this file must be a zip file archive.

282 Indexing Reference

Invocation
The XML indexer is a single pass process which means that no intermediate files
are produced.

To run the XML indexer, run the ARSLOAD program with all of the default options
and specify xml file for the input source. The -X option can be used to specify an
indexer other than the one specified by the application.

XML indexer reference 283

284 Indexing Reference

Notices

This information was developed for products and services offered in the U.S.A.

This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1993, 2014 285

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

286 Indexing Reference

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

Notices 287

http://www.ibm.com/legal/copytrade.shtml

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

288 Indexing Reference

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index

Special characters
.xsd file 281

A
accessibility ix
accessing reports 119
account number field

defining 122
account number index

defining 124
ACIF

ACIF input record exit 84
AFP resources 7, 23, 33, 34, 54, 55,

56, 59, 61, 63, 64, 66, 76
apka2e input record exit 84
BREAKYES parameter 15
CC parameter 15
CCTYPE parameter 16
CHARS parameter 17
CONVERT parameter 18
CONVERT requirement 18
CPGID parameter 19
DCFPAGENAMES parameter 19
default index value 24
description 5
EBCDIC data 9
examples 109
exit 84
exit, index 86
exit, input file 81
exit, output record 88
exit, resource retrieval 91
exit, user programming 80
exits 96
extended options 20
EXTENSIONS parameter 20
FDEFLIB parameter 23
FIELD parameter 24
fields 24, 113, 114, 122, 134
FILEFORMAT (Multiplatform)

parameter 31
FILEFORMAT (z/OS platforms)

parameter 32
FONTLIB parameter 33
FORMDEF parameter 34
group indexes 36, 38
group-level indexes 8
GROUPMAXPAGES parameter 36
GROUPNAME parameter 37
IMAGEOUT parameter 37
index exits 86
INDEX parameter 38
index, exit 81
INDEXDD parameter 41
Indexer Information page 112
indexes 38, 115, 123, 136
indexing 81
INDEXOBJ parameter 42
INDEXOBJ requirement 42

ACIF (continued)
INDEXSTARTBY parameter 43
INDXEXIT parameter

(Multiplatform) 44
INDXEXIT parameter (z/OS

platforms) 45
INPEXIT parameter

(Multiplatform) 45
INPEXIT parameter (z/OS

platforms) 46
input exits 81
input file, exit 81
input record exits 84
input, user exit 80
INPUTDD parameter

(Multiplatform) 46
INPUTDD parameter (z/OS

platforms) 47
INSERTIMM parameter 47
introduction 3
Invoke Medium Map structured

field 155
invoking program to index input

file 148
JCL statement defined 145
large object support 42
line data 5
LINECNT parameter 48
load information 116
mask 78
MCF2REF parameter 50
message file 145
messages 80
MSGDD parameter

(Multiplatform) 50
MSGDD parameter (z/OS

platforms) 51
NEWPAGE parameter 51
non-zero return codes 94
OUTCCSID parameter 52
OUTEXIT parameter

(Multiplatform) 52
OUTEXIT parameter (z/OS

platforms) 53
output file format 108
output record exits 88
OUTPUTDD parameter

(Multiplatform) 53
OUTPUTDD parameter (z/OS

platforms) 54
OVLYLIB parameter

(Multiplatform) 54
OVLYLIB parameter (z/OS

platforms) 55
page indexes 18, 38, 42
page-level indexes 3
page-level indexes not stored in

database 8
PAGEDEF parameter 56
pagerange indexes 38
parameter file 145

ACIF (continued)
parameter reference 13
parameters syntax 147
parameters to use 143
parameters, z/OS 147
PARMDD parameter

(Multiplatform) 58
PARMDD parameter (z/OS

platforms) 58
PDEFLIB parameter 59
print file attributes 94
PRMODE parameter 60
program requirements 145
PSEGLIB parameter 61
reference 3
requirements 3, 145
RESEXIT parameter 63
RESFILE parameter 63
RESLIB parameter 64
RESOBJDD parameter

(Multiplatform) 65
RESOBJDD parameter (z/OS

platforms) 66
resource provided with ACIF 91
resource retrieval 91
resources 23, 33, 34, 54, 55, 56, 59, 61,

63, 64, 66, 76
RESTYPE parameter 66
return code, non-zero 94
specifying triggers 10
syntax rules, z/OS 147
TLE structured fields 141
TRACE parameter 69
TRACEDD parameter

(Multiplatform) 69
TRACEDD parameter (z/OS

platforms) 70
transaction fields 113
TRC parameter 70
TRIGGER parameter 71
triggers 71, 121, 131
UNIQUEBNGS parameter 76
user exit input 80
user exit provided with ACIF 80
user exit search order 94
user exit, print file attributes 94
user programming exit 80
USERLIB parameter 76
USERMASK parameter 78
USERPATH parameter 79
using 145
z/OS JCL statement 145
z/OS requirements 145

ACIF indexer
regular expressions 157

ACIF parameters
INDEXSTARTBY 176

adding an application
last step 145

ADDRPTOND command 270

© Copyright IBM Corp. 1993, 2014 289

Adobe font requirements
PDF indexer 243

Adobe PDF documents 227
AFP 182

ARSACIF
programs 156

concatenation 156
converting line data to 5
example of converting line data

to 117, 127
example of indexing 141
fonts 33, 66
form definitions 23, 34
generic indexer, processing with 272
IMM structured fields 47
indexing with the generic

indexer 272
MCF2 structured fields 50
overlays 54, 55
page definitions 56, 59
page segments 61
parameters to use 143
processing with the generic

indexer 272
programs

ARSACIF 156
resources 23, 33, 34, 54, 55, 56, 59, 61,

63, 64, 66, 76
Set Coded Font Local structured

fields 60
SOSI 60
user-defined resources 76

AFP Application Programming Interface
Tag Logical Element 98

AFP resources
collecting 7
description 7

AFPDS
converting to AFP data 5
placing TLEs in named groups 150
printing 151
transferring 153

AFPDS (AFP data stream)
description 6
object support 6
resource support 6

ANSI carriage controls 152
ANYEXIT parameter

OS/390 indexer 164
Anystore Batch Capture Exit

OS/390 indexer 164
applications

adding 116, 127
defining 111, 130

archiving, ACIF
indexing considerations 155

ARSLOAD program 270
specifying parameters for the OS/390

indexer 193
ARSPDOCI

error messages 262
FIELD parameter 246
FONTLIB parameter 251
INDEX parameter 251
INDEXDD parameter 253
INPUTDD parameter 255
messages 262

ARSPDOCI (continued)
MSGDD parameter 255
OUTPUTDD parameter 256
reference 245, 263
TEMPDIR parameter 259

ARSPDUMP program
reference 264

attribute names
mapping to database field names 144

attributes
print file 94

B
BCOCA value 66
Begin Document Index structured field

defined 103
Begin Document structured field

defined 106
Begin Named Group structured field

defined 107
Begin Page structured field

defined 108
Begin Resource Group structured field

described 100
Begin Resource structured field

defined 100
bill date field

defining 123
bookmarks

PDF indexer 243
BOOKMARKS 246
BOX

EXTENSIONS parameter 20
BPF 108
BREAKYES parameter 168

flags and values 15
syntax 15
valid values 15

C
carriage controls 15, 16, 48
carriage-control characters

indexing considerations 155
CC parameter

flags and values 15
OS/400 indexer 198
related parameters 15
syntax 15
valid values 15

CCTYPE parameter
flags and values 16
OS/400 indexer 198
syntax 16
valid values 16

CELLED
EXTENSIONS parameter 20

CHARS parameter
flags and values 17
specifying value 17
syntax 17

CMRALL value 66
CMS commands

invoking ACIF program to index
input file 148

COBOL 96
code page

data indexing 19
generic indexer 273
PDF indexer 245
report file 19

CODEPAGE: parameter 273
collecting AFP resources

description 5
commands

ARSPDOCI 263
ARSPDUMP 264

COMMENT: parameter 274
comments

in parameter file 147
Composed Text Control (CTC) structured

field
obsolete 108

concatenation
z/OS files 149

constant field 246
Constant FIELD syntax

OS/400 indexer 201
Content Manager OnDemand application

indexer information 193
specifying OS/390 indexer 193

conversion 18
CONVERT parameter

flags and values 18, 47
OS/400 indexer 198
syntax 18
valid values 18

converting print data streams
description 5

coordinate system 233
coordinates

FIELD parameter
mask option 246

fields
mask option 246

indexing
field mask 246
mask option 246

mask
FIELD parameter option 246

on FIELD parameter for PDF
indexer 246

PDF indexer
field mask 246
mask option 246

COORDINATES parameter
flags and values 246, 253
INDEXMODE

syntax 253
CPGID parameter

flags and values 19
OS/390 indexer 169
OS/400 indexer 198
syntax 19
valid values 19

creating index parameters
instructions 143

customer name field
defining 123

customer name index
defining 124

290 Indexing Reference

D
data

format 31, 32
database field

mapping to attribute names 144
date field 216
DBCS fonts 243, 245
DCB requirements

message file, z/OS 145
output file, z/OS 145

DCFPAGENAMES parameter
flags and values 19
syntax 19
valid values 19

DD:ddname parameter 193
default index value

FIELD parameter option 24, 246
defining an application

introduction to 143
defining fields 114
defining indexes 123, 136
defining triggers 121
diagnostic trace information 69
DJDE record 193
DJDECNT parameter 169
DJDECOL parameter 169
DJDETRIG parameter 169
DOC 177
DOCTYPE parameter

OS/400 indexer 199
document

DD statement for, z/OS 145
generic indexer parameter 276, 277,

278
output format 104

E
EBCDIC

parameter file for input data 12
EBCDIC data

CCTYPE parameter 16
CPGID parameter 19
example of 9
indexing 9
specifying 9
TRIGGER parameter 71
USERMASK parameter 78

EMPTYOK
EXTENSIONS parameter 20

End Document Index structured field
defined 104

End Document structured field
defined 108

End Named Group structured field
defined 108

End Page structured field
defined 108

End Resource Group structured field
defined 101

End Resource structured field
defined 101

EPF 108
error messages

ARSPDOCI program 262
PDF indexer 262

examples 148, 149
AFP data, indexing 117, 127, 141
AFP document output formats 104
EBCDIC input data, parameter file

for 12
generic indexer 279
indexing 109, 117, 127
invoking ACIF program to index

input file 148
JCL and ACIF processing

parameters 148
line data, converting to AFP 117, 127
line data, indexing 109, 117, 127
print file attributes 94
z/OS JCL to invoke ACIF 145

exits
index 86
input 81
non-zero return codes 94
output 88
print file attributes provided 94
resource, provided with ACIF 91
user exit search order 94

extended options 20
EXTENSIONS parameter

flags and values 20
related paramters 20
RESORDER value 66, 157
syntax 20

F
FDEF value 66
FDEFLIB parameter

flags and values 23
related parameters 23
syntax 23
valid values 23

FIELD parameter
constant field 246
default index value 24, 246
flags and values 24, 246
how Content Manager OnDemand

uses 229
OS/390 indexer 170
OS/400 indexer 200
trigger field 246

fields
ACIF parameter 24
constant field 246
default index value 24, 246
defining 113, 114, 122, 134
displaying 115, 125
generic indexer parameter 274, 275
OS/390 indexer 170
PDF indexer parameter 246
transaction fields 113
trigger field 246

file
message, ACIF 145
parameter, ACIF 145

FILEFORMAT parameter
flags and values

Multiplatform 31
z/OS platforms 32

OS/390 indexer 173
syntax 31, 32

FILEFORMAT parameter (continued)
valid values 31, 32

files
format 31, 32
OS/390 indexer 173
PDF indexer 244

flags and values 52
REMOVERES 257
RESOBJDD 258
RESTYPE 258

floating triggers 37, 71
FONT value 66
FONTLIB parameter

flags and values 33, 251
related parameters 33
syntax 33
valid values 33

fonts
CHARS parameter 17
converting 50
DBCS 243, 245
directory 33
library 33
location 33
Map Coded Font Format 2 structured

fields 50
MCF2 structured fields 50
NLS 60, 243, 245
PDF indexer 243, 251
resources 66
Set Coded Font Local structured

fields 60
SOSI 60
specifying 17
TRCs 70

form definitions 23, 34
FORMDEF

required by ACIF to process AFP 144
FORMDEF parameter

flags and values 34
related parameters 34
syntax 34
valid values 34

FRACLINE
EXTENSIONS parameter 20

G
general page

description 111
General page

application groups 120, 130
description 120, 130
introduction 143

generic indexer
about 269, 272
AFP data, processing 272
application group field names 274
code page 273
CODEPAGE: parameter 273
COMMENT: parameter 274
document 276, 277, 278
examples 279
field names 274
field values 275
group indexes, defining 274, 275

Index 291

generic indexer (continued)
GROUP_FIELD_NAME:

parameter 274
GROUP_FIELD_VALUE:

parameter 275
GROUP_FILENAME: parameter 276
GROUP_LENGTH: parameter 277
GROUP_OFFSET: parameter 278
input file 276, 277, 278
introduction 269
national language support (NLS) 273
NLS 273
overview 269
parameter file 273, 279
using 269

GOCA value 66
graphical indexer

PDF input files 230
group indexes

defining 38, 251, 274
defining for generic indexer 275
pages in a group 36

GROUP_FIELD_NAME: parameter 274
GROUP_FIELD_VALUE: parameter 275
GROUP_FILENAME: parameter 276
GROUP_LENGTH: parameter 277
GROUP_OFFSET: parameter 278
group-level indexes

about 8
TLE structured fields 141

GROUPMAXPAGES parameter
flags and values 36
OS/390 indexer 173
related parameters 36
syntax 36
valid values 36

GROUPNAME parameter
flags and values 37
syntax diagram 37

grouprange index 38
Grouprange index 38

H
header pages

skipping 43, 254

I
IMAGEOUT parameter

flags and values 37
OS/400 indexer 205

IMM structured fields 47
income index

defining 137
Index Element structured field

considerations 155
defined 103
group-level 102
index object file 155

index exit 86
Index Exit

description 185
index exit parameter

OS/390 indexer 185

index information
how Content Manager OnDemand

uses 229
index object file

DD statement for, z/OS 145
INDEX parameter

flags and values 38, 251
how Content Manager OnDemand

uses 229
JCL statement, z/OS 145
OS/390 indexer 174
OS/400 indexer 206
z/OS, JCL statement 145

index parameters
Grouprange 38

index user exit 44, 45
INDEXDD parameter

flags and values 41, 253
indexer

OS/400 195
overview 1

indexer information
specifying for OS/390 indexer 193

Indexer Information page 112
description 130
overview 143

indexer parameters 116
using break=yes versus

break=no 211
Indexer Parameters window

introduction 144
indexer properties

defining 138
setting 125

indexes
ACIF parameter 38
defining 115, 123, 136
displaying 115, 125
generic indexer parameter 275
group index 38
grouprange index 38
page index 38
pagerange index 38
PDF indexer parameter 251

indexing
Adobe PDF documents 227
constant field 246
CONVERT requirement 18
default index value 24, 246
EBCDIC data 9, 16, 19, 71, 78
effect on document 104
fields 24, 113, 114, 122, 134
fields for PDF indexer 246
file format 31, 32
floating triggers 71
generic indexer 269
graphical indexer 230
group indexes 38, 251
group-level indexes 8
groups 36
header pages 43, 254
helpful hints 155
index exit 81
indexes 38, 123, 136, 251
INDEXOBJ requirement 42
large object support 42
line data 161

indexing (continued)
line separator 31, 32
mask 78
new line character 31, 32
OS/390 indexer 161
OS/400 indexer 195
page indexes 18, 38, 42
page-level indexes 3
page-level indexes not stored in

database 8
pagerange indexes 38
parameters 233
PDF indexer 227
recordrange triggers 71
skipping header pages 43, 254
TIFF images 161
TLE structured fields 141
transaction fields 113
trigger field 246
triggers 71, 121, 131, 259
XML indexer 281, 282, 283

indexing parameter
creating 9

indexing parameters
specifying triggers 10

INDEXMODE
options and values 253

INDEXOBJ
example 144

INDEXOBJ parameter
flags and values 42
OS/400 indexer 208

INDEXSTARTBY parameter 176
flags and values 43, 254
OS/400 indexer 209

INDEXSTYLE parameter
AFP 182
DOC 177
NODX 181
OS/400 indexer 209
PAGE 177
PDOC 179

INDXEXIT parameter
flags and values

Multiplatform 44
z/OS platforms 45

OS/390 indexer 185
inline resources

output files 157
processing 20, 66, 157
structured fields

Begin Document (BDT) 157
INLINE value 66
INLONLY value 66
INPCCSID

flags and values 45
INPEXIT parameter

flags and values
Multiplatform 45
z/OS platforms 46

OS/390 indexer 187
INPEXITNEW parameter

OS/390 indexer 189
input

z/OS 145
input exit parameter

OS/390 indexer 187, 189

292 Indexing Reference

input file
exit 81
generic indexer parameter 276, 277,

278
input record exit

apka2e 84
input user exit 45, 46
INPUTDD parameter

flags and values 255
Multiplatform 46
z/OS platforms 47

Invoke Medium Map 47
structured field 155

IOCA value 66

J
JCL

ACIF JCL statement defined 145
concatenating ACIF files, z/OS 149
concatenation example, z/OS 149
example, z/OS 148
for ACIF job, z/OS 148
for ACIF z/OS jobs 145
for ARSLOAD job, OS/390

indexer 193
for concatenating z/OS files 149
invoking ACIF program to index

input file 148
OUTPUT JCL statement defined 145
PRINTOUT JCL statement

defined 145
statement defined, ACIF JCL 145
statement defined, OUTPUT JCL 145
statement defined, PRINTOUT

JCL 145
z/OS example 148, 149

job run date 216

K
key concepts

convert 119
group index 119
group trigger 119
index break 119
resources 119

L
large object support 42
large objects

OS/390 indexer 193
limitations

PDF indexer 243
line data

AFP
converting to 117, 127

converting to AFP 5, 117, 127
description 6
example of indexing 109, 117, 127
groups 36
indexing 109, 117, 127
indexing with the OS/390

indexer 161
pages in a group 36

line separator 31, 32
LINECNT parameter

flags and values 48
LINEOFFSET parameter 190
links

PDF indexer 243
literal values

ASCII
parameter file for input data 12

determining how expressed 12
examples

ASCII input data, parameter file
for 12

parameter file
ASCII input data, example of 12

load information
description 116

Load Information page
description 126

Loading data 270

M
machine carriage controls 152
Map Coded Font Format 1 structured

field
converted 108

Map Coded Font Format 2 structured
field

archival, document integrity 108
converting 50
including fonts 66

mask 78
Mask FIELD syntax

OS/400 indexer 204
maximum pages in a group 36
MCC2ANSI parameter 191
MCF2 structured fields 50, 66
MCF2REF parameter

flags and values 50
message file

DD statement for, z/OS 145
messages

ACIF 80
ARSPDOCI program 262
PDF indexer 262

metadata
concepts 236, 237
indexing concepts 236, 237

mixed-mode data
description 6

MO:DCA-P data stream
ACIF changes to structured fields 6
defined 6

MSGDD parameter
flags and values 255

Multiplatform 50
z/OS platforms 51

N
naming input files

PDF indexer 244
national language support (NLS)

ACIF 19, 60
generic indexer 273

national language support (NLS)
(continued)

PDF indexer 243, 245
new line separator 31, 32
NEWPAGE parameter

flags and values 51
NLS

ACIF 19, 60
generic indexer 273
PDF indexer 243, 245

NODX 181
non-zero return codes 94

O
OBJCON value 66
OS/390 indexer

about 161
ANYEXIT parameter 164
Anystore Batch Capture Exit 164
application indexer 193
Content Manager OnDemand

application 193
DD:ddname parameter 193
index exit parameter 185
indexer information 193
INDXEXIT parameter 185
INPEXIT parameter 187
INPEXITNEW parameter 189
input exit parameter 187, 189
introduction 161
line data 161
overview 161
parameters 164
specifying parameters for the

ARSLOAD program 193
TIFF images 161
using 161, 193

OS/390 indexer example 193
OS/400 indexer

about 195
introduction 195
overview 195
parameters 196
using 195

OUTCCSID 52
OUTEXIT parameter

flags and values
Multiplatform 52
z/OS platforms 53

output file
format 104

OUTPUT JCL statement
defined, z/OS 145
z/OS 145

output record exit 88
output user exit 52, 53
OUTPUTDD parameter

flags and values 256
Multiplatform 53
z/OS platforms 54

overlays 54, 55
OVLY value 66
OVLYLIB parameter

flags and values
Multiplatform 54
z/OS platforms 55

Index 293

P
PAGE 177
page definition

resource file 108
page definitions 56, 59
page indexes

about 106
CONVERT requirement 18
defining 38
INDEXOBJ requirement 42
large object support 42

page segments 61
page-level IELs 102
page-level indexes

about 3
not stored in database 8
TLE structured fields 141

PAGEDEF parameter
flags and values 56

pagerange index 38
parameter file

ARSPDOCI program 245, 263
comments 147
DD statement for, z/OS 145
EBCDIC input data, example of 12
generic indexer 279
PDF indexer 233, 245, 263
syntax rules, z/OS 147
values spanning multiple records 147

parameter values
spanning multiple records 147

parameters
ANYEXIT parameter for OS/390

indexer 164
Anystore Batch Capture Exit for

OS/390 indexer 164
ARSPDOCI program 245, 263
ARSPDUMP program 264
BREAKYES 15
BREAKYES parameter 168
CC 15
CCTYPE 16
CHARS 17
CODEPAGE: 273
COMMENT: 274
CONVERT 18
COORDINATES 246
CPGID 19
DCFPAGENAMES 19
DJDECNT parameter 169, 193
DJDECOL parameter 169, 193
DJDETRIG parameter 169, 193
examples 246
EXTENSIONS 20
FDEFLIB 23
FIELD 24, 164, 246
FILEFORMAT 164
FILEFORMAT (Multiplatform) 31
FILEFORMAT (z/OS platforms) 32
FONTLIB 33, 251
FORMDEF 34
generic indexer 273
GROUP_FIELD_NAME: 274
GROUP_FIELD_VALUE: 275
GROUP_FILENAME: 276
GROUP_LENGTH: 277
GROUP_OFFSET: 278

parameters (continued)
GROUPMAXPAGES 36, 164
GROUPNAME 37
IMAGEOUT 37, 156
INDEX 38, 164, 251
index exit parameter for OS/390

indexer 185
INDEXDD 41, 253
INDEXMODE 253
INDEXOBJ 42
INDEXSTARTBY 43, 254
INDXEXIT (Multiplatform) 44
INDXEXIT (z/OS platforms) 45
INDXEXIT parameter for OS/390

indexer 185
INPCCSID 45
INPEXIT (Multiplatform) 45
INPEXIT (z/OS platforms) 46
INPEXIT parameter for OS/390

indexer 187
INPEXITNEW parameter for OS/390

indexer 189
input exit parameter for OS/390

indexer 187, 189
INPUTDD 255
INPUTDD (Multiplatform) 46
INPUTDD (z/OS platforms) 47
INSERTIMM 47
IOCA images 156
LINECNT 48
LINEOFFSET parameter 190
MCC2ANSI parameter 191
MCF2REF 50
MSGDD 255
MSGDD (Multiplatform) 50
MSGDD (z/OS platforms) 51
NEWPAGE 51
OS/390 indexer 164
OUTCCSID 52
OUTEXIT (Multiplatform) 52
OUTEXIT (z/OS platforms) 53
OUTPUTDD 256
OUTPUTDD (Multiplatform) 53
OUTPUTDD (z/OS platforms) 54
OVLYLIB (Multiplatform) 54
OVLYLIB (z/OS platforms) 55
PAGEDEF 56
PARMDD 256
PARMDD (Multiplatform) 58
PARMDD (z/OS platforms) 58
PDEFLIB 59
PDF indexer 233, 245, 263
PRMODE 60
PSEGLIB 61
RESEXIT 63
RESFILE 63
RESLIB 64
RESOBJDD (Multiplatform) 65
RESOBJDD (z/OS platforms) 66
RESTYPE 66
TEMPDIR 259
TRACE 69
TRACEDD (Multiplatform) 69
TRACEDD (z/OS platforms) 70
TRC 70
TRIGGER 71, 164, 259
UNIQUEBNGS 76

parameters (continued)
USERLIB 76
USERMASK 78
USERPATH 79
z/OS 147

PARMDD parameter
flags and values 256

Multiplatform 58
z/OS platforms 58

PASSPF
EXTENSIONS parameter 20

PDEFLIB parameter
flags and values 59

PDF indexer
about 227
Adobe font requirements 243
ARSPDOCI reference 263
ARSPDUMP reference 264
bookmarks 243
code page 245
constant field 246
coordinate system 233
DBCS fonts 243, 245
default index value 246
error messages 262
fields 246
file naming conventions 244
font requirements 243
fonts 243, 251
graphical indexer 230
group indexes 251
indexes 251
indexing data 232
introduction 227
limitations 243
links 243
messages 262
naming input files 244
national language support

(NLS) 243, 245
NLS 243, 245
overview 227
parameter file 233
parameter reference 245, 263
printing 243
Regular expressions 238
resource collection 242
restrictions 243
support for DBCS fonts 243
system limitations 243
tags 232
transferring input files to 244
trigger field 246
triggers 259
using 227
x, y coordinate system 233

PDF resource collection 242
PDOC 179
Portable Document Format (PDF) 227
PostScript file

how processed by PDF indexer 244
relation to PDF file 227

PostScript Passthrough markers
PDF indexer limitations 243

PRCOLOR
EXTENSIONS parameter 20

print file attributes 94

294 Indexing Reference

print file attributes (continued)
user exits 94

printing
PDF indexer 243

PRINTOUT JCL statement
defined 145

PRMODE parameter
flags and values 60

PSEG value 66
PSEGLIB parameter

flags and values 61
PTOCA value 66
publication

audience ix
publication information ix

R
recordrange triggers 71
REGION size for ACIF 145
regular expressions 157
Regular expressions

PDF indexer 238
REMOVERES 257
report wizard 195
reports

accessing 9, 110, 119, 128
example of 119, 128
example of accessing 142
examples

reports 110
format 31, 32
opening 112, 121, 131
transmitting data 9

requirements
Adobe font requirements 243
fonts 243

RESEXIT parameter
flags and values 63

RESLIB parameter
flags and values 64

RESOBJDD 258
RESOBJDD parameter

flags and values
Multiplatform 65
z/OS platforms 66

RESOBJDD statement
z/OS 145

RESORDER
EXTENSIONS parameter 20

RESORDER value 66
resource exit

provided with ACIF 91
resource file

DD statement for, z/OS 145
format 100

resource retrieval
file format 100
resource exit 91

resource user exit 63
resources

directory 64
exits 63
file 63
fonts 33
form definitions 23, 34
group 63

resources (continued)
inline, processing 20, 66, 157
library 64
location 64
overlays 54, 55
page definitions 56, 59
page segments 61
RESTYPE parameter 66
types of 66
user-defined 76

restrictions
PDF indexer 243

RESTYPE 258
required by ACIF to process AFP 144

RESTYPE parameter
flags and values 66

S
Set Coded Font Local structured field 60
skipping header pages 43, 254
SOSI 60
SPCMPRS

EXTENSIONS parameter 20
specifying application group 193
specifying temporary file for work

space 193
STARTINDEXINGONPAGE parameter

OS/400 indexer 210
STARTTRANSACTIONFIELDSONLINE

parameter
OS/400 indexer 210

STARTTTRIGGERSONLINE parameter
OS/400 indexer 210

statement date field page
defining 134

statement number field page
defining 134

STRMONOND command 270
structured fields

AFP 98
Begin Document 106
Begin Document Index 103
Begin Named Group 104, 107
Begin Page 108
Begin Print File 108
Begin Resource 100
Begin Resource Group 100
Composed Text Control

(obsolete) 108
End Document 108
End Document Index 104
End Named Group 104, 108
End Page 108
End Print File 108
End Resource 101
End Resource Group 101
group level 101
Index Element 102, 103, 155
index object file

archiving considerations 155
Invoke Medium Map 47, 155
Map Coded Font Format 1 108
Map Coded Font Format 2 50, 108
page level 101
Presentation Text Data

Descriptor 108

structured fields (continued)
Set Coded Font Local 60
Tag Logical Element 98, 104, 107, 155
Tag Logical Element (TLE) 98

subtotal
locating 133

subtotal field page
defining 135

SYSIN JCL statement
z/OS 145

SYSPRINT JCL statement
z/OS 145

system date 216
system requirements

Adobe font requirements 243
fonts 243

T
Tag Logical Element (TLE)

structured fields 98
Tag Logical Element structured field

as part of the indexing process 104,
107

created in the output document
file 104

defined 104
examples and rules 98
in named groups 150

out-of-storage problem, possible
cause 150

storage problem, possible
cause 150

TEMPDIR parameter
flags and values 259

TIFF images
indexing with the OS/390

indexer 161
total income

locating 133
total income field page

defining 135
trace facility 266
TRACE parameter

flags and values 69
tracedd command 266
TRACEDD parameter

flags and values
Multiplatform 69
z/OS platforms 70

tracelevel command 266
Transaction FIELD syntax

OS/400 indexer 202
transaction fields 113
TRANSLATEPRINTCONTROL parameter

OS/400 indexer 211
translation reference characters

(TRC) 17, 70
TRC 17, 70
TRC parameter

flags and values 70
trigger field 246

syntax 24
Trigger FIELD syntax

OS/400 indexer 200
TRIGGER parameter

options and values 71, 259

Index 295

TRIGGER parameter (continued)
OS/390 indexer 192

TRIGGER1
defining 121, 132

triggers
ACIF parameter 71
defining 121, 131
displaying 115, 125
floating 71
floating and groupname 37
OS/390 indexer 192
PDF indexer parameter 259
recordrange 71

type of income
locating 133

type of income field
defining 135

U
unformatted ASCII data

ACIF formatting of 7
description 7
indexing 81

UNIQUEBNGS parameter
flags and values 76

user accessibility ix
user exit search order 94
user exits

index 44, 45, 86
input 45, 46, 80
output 52, 53
output record 88
print file attributes 94
provided with ACIF 80
resource 63
resource, provided with ACIF 91

user programming exit 80
USERAPPL

z/OS statement 145
USERLIB

required by ACIF to process AFP 144
USERLIB parameter

flags and values 76
USERMASK parameter

flags and values 78, 79
using ACIF

in the z/OS environment 145

V
value 216
View Information page

description 112, 120, 126, 130
overview 143

X
x,y coordinate system 233
XML indexer

.xsd file 281
about 281, 282, 283
arsload 283
introduction 281
invocation 283
overview 281

XML indexer (continued)
resources 282
schema 281
using 281, 282, 283

XML schema 281

Z
z/OS

ACIF parameters 147
ACIF requirements 3, 145
concatenation example 149
DD statement for document file 145
INDEX JCL statement 145
index object file 145
input 145
invoking ACIF 145
JCL example 148, 149
JCL for ACIF job 145
JCL statement 145
JCL to invoke ACIF 145
message file, ACIF 145
OUTPUT JCL statement 145
parameters, ACIF 147
RESOBJ statement 145
SYSIN JCL statement 145
SYSPRINT JCL statement 145
USERAPPL statement 145
using ACIF 145

296 Indexing Reference

����

Printed in USA

SC19-3354-01

	Contents
	ibm.com and related resources
	Contacting IBM

	About this publication
	Who should use this publication
	Accessibility information for Content Manager OnDemand

	Indexer overview
	ACIF indexer
	ACIF overview
	ACIF batch utility
	Line data conversion to AFP
	AFP data
	Mixed Object Document Content Architecture Data
	Line data
	Mixed-mode data
	Unformatted ASCII data

	AFP resources
	How Content Manager OnDemand uses index information
	ACIF parameters for EBCDIC data
	Accessing reports
	Creating indexing parameters
	Specifying indexing parameters

	Determining how literal values are expressed

	ACIF indexer parameters
	BREAKYES
	CC
	CCTYPE
	CHARS
	CONVERT
	CPGID
	DCFPAGENAMES
	EXTENSIONS
	FDEFLIB
	FIELD
	FILEFORMAT (Multiplatform)
	FILEFORMAT (z/OS platforms)
	FONTLIB
	FORMDEF
	GROUPMAXPAGES
	GROUPNAME
	IMAGEOUT
	INDEX
	INDEXDD
	INDEXOBJ
	INDEXSTARTBY
	INDXEXIT (Multiplatform)
	INDXEXIT (z/OS platforms)
	INPCCSID
	INPEXIT (Multiplatform)
	INPEXIT (z/OS platforms)
	INPUTDD (Multiplatform)
	INPUTDD (z/OS platforms)
	INSERTIMM
	LINECNT
	LINEOFFSET
	MCF2REF
	MSGDD (Multiplatform)
	MSGDD (z/OS platforms)
	NEWPAGE
	OUTCCSID
	OUTEXIT (Multiplatform)
	OUTEXIT (z/OS platforms)
	OUTPUTDD (Multiplatform)
	OUTPUTDD (z/OS platforms)
	OVLYLIB (Multiplatform)
	OVLYLIB (z/OS platforms)
	PAGEDEF
	PARMDD (Multiplatform)
	PARMDD (z/OS platforms)
	PDEFLIB
	PRMODE
	PSEGLIB
	RESEXIT
	RESFILE
	RESLIB
	RESOBJDD (Multiplatform)
	RESOBJDD (z/OS platforms)
	RESTYPE
	TRACE
	TRACEDD (Multiplatform)
	TRACEDD (z/OS platforms)
	TRC
	TRIGGER
	Examples
	TRIGGER1
	Group trigger
	Group trigger with column range
	Recordrange trigger
	Float trigger
	Trigger using structured field data
	Triggers using a regular expression

	UNIQUEBNGS
	USERLIB
	USERMASK
	USERPATH

	Print messages
	User exits and attributes of the input file
	User programming exits
	Input record exit
	Using the user input record exits (Multiplatform)

	Index record exit
	Output record exit
	Resource exit
	User exit search order
	Non-Zero return codes
	Attributes of the input file
	ACIF exits written in COBOL (z/OS systems)

	ACIF data stream information
	Tag Logical Element (TLE) structured field
	Format of the resource file
	Begin Resource Group (BRG) structured field
	Begin Resource (BR) structured field
	End Resource (ER) and End Resource Group (ERG) structured fields

	ACIF processing of fully composed AFP files

	Format of the ACIF index object file
	Group-level Index Element (IEL) structured field
	Page-level Index Element (IEL) structured field
	Begin Document Index (BDI) structured field
	Index Element (IEL) structured field
	Tag Logical Element (TLE) structured field
	End Document Index (EDI) structured field

	Format of the ACIF output document file
	Page groups
	Begin Document (BDT) structured field
	Begin Named Group (BNG) structured field
	Tag Logical Element (TLE) structured field
	Begin Page (BPG) structured field
	End Named Group (ENG), End Document (EDT), and End Page (EPG) structured fields
	Output MO:DCA data stream

	ACIF examples
	Example one: Bank loan report
	Report data processing
	Key concepts
	Defining the application, part 1
	General page
	View Information page
	Indexer Information page

	Opening reports
	Defining fields
	Defining fields
	Defining indexes
	Displaying triggers, fields, and indexes
	Setting values in the Indexer Properties dialog box
	Defining the application, part 2
	Indexer parameters
	Load Information page
	Adding the application

	Example Two: Phone bill
	Accessing the report
	Key concepts
	Defining the application, part 1
	General page
	View Information page
	Indexer Information page

	Opening the report
	Defining triggers
	Defining TRIGGER1
	Locating the account number

	Defining fields
	Defining the account number field
	Defining the customer name field
	Defining the bill date field

	Defining indexes
	Defining the account number index
	Defining the customer name index
	Defining the bill date index

	Displaying triggers, fields, and indexes
	Setting indexer properties
	Defining the application, part 2
	View Information page
	Indexer parameters
	Load Information page
	Adding the application

	Example three: Income statement
	Accessing the sample report
	Key concepts
	Defining the application, part 1
	General page
	View Information page
	Indexer Information page

	Opening the report
	Defining triggers
	Defining TRIGGER1
	Locating the statement number
	Locating the total income
	Locating the type of income
	Locating the subtotal

	Defining fields
	Defining the statement date field
	Defining the statement number field
	Defining the total income field
	Defining the type of income field
	Defining the subtotal field

	Defining indexes
	Defining the statement date index
	Defining the statement number index
	Defining the total income index
	Defining the type of income index
	Defining the subtotal index

	Displaying triggers, fields, and indexes
	Defining indexer properties
	Defining the application, part 2
	View Information page
	Indexer parameters
	Load Information page
	Adding the application

	Example four: AFP data
	Accessing the report
	Key concepts
	Defining the application, part 1
	General
	View Information
	Indexer Information

	Creating indexing parameters
	Data format parameters
	Defining indexing information
	Defining resource information
	Defining the application, part 2
	Indexer parameters
	Load information
	Adding the application

	Using ACIF in z/OS
	Sample JCL
	About the JCL statements

	ACIF parameters
	Syntax Rules

	JCL and ACIF parameters
	z/OS libraries
	ACIF output
	Concatenating files

	Hints and tips
	Control statements that contain numbered lines
	Placing TLEs in named groups
	File transfer
	ANSI and machine carriage controls
	Common methods of transferring files
	Physical media
	PC file transfer program
	FTP
	Download

	Using the Invoke Medium Map (IMM) structured field
	Indexing considerations
	Concatenating resources to an AFP file
	Specifying the IMAGEOUT parameter
	Running ACIF with inline resources
	Writing inline resources to the output file
	Using regular expressions
	Regular expressions and the TRIGGER parameter
	Regular expressions and the FIELD parameter
	Default values for fields

	OS/390 indexer
	OS/390 indexer parameters
	AFPINDEXBUF
	ANYEXIT
	Developing an ANYSTORE exit

	BREAKYES
	CPGID
	DJDECNT
	DJDECOL
	DJDETRIG
	FIELD
	Trigger FIELD syntax
	Constant FIELD syntax
	Transaction FIELD syntax - for INDEXn with GROUPRANGE
	Transaction FIELD syntax - for INDEXn with GROUPRANGE2

	FILEFORMAT
	GROUPMAXPAGES
	INDEX
	INDEXSTARTBY
	INDEXSTYLE
	DOC
	PAGE
	PDOC
	NODX
	AFP

	INDXEXIT
	Developing an index exit

	INPEXIT
	Old parameter format
	New parameter format
	Developing an input exit

	INPEXITNEW
	LINEOFFSET
	Notes for index usage

	MCC2ANSI
	Triggers
	XEROX DJDE Support

	Using the OS/390 indexer
	Content Manager OnDemand application
	Large objects and the OS/390 indexer
	The ARSLOAD program in a z/OS environment

	OS/400 indexer
	OS/400 indexer parameters
	Unique indexing parameter reference
	CC
	CCTYPE
	CONVERT
	CPGID
	DOCTYPE
	FIELD
	Trigger FIELD syntax
	Constant FIELD syntax
	Transaction FIELD syntax
	Mask FIELD syntax

	FILEFORMAT
	IMAGEOUT
	INDEX
	INDEXOBJ
	INDEXSTARTBY
	INDEXSTYLE
	STARTINDEXINGONPAGE
	STARTTRANSACTIONFIELDSONLINE
	STARTTRIGGERSONLINE
	TRANSLATEPRINTCONTROL

	BREAK setting
	Controlling maximum number of pages per group
	Using Group triggers versus Float triggers
	Defining multi-key indexes
	Multi-key index example

	Using system date or job run date as the value of a date field
	Defining transaction fields
	Transaction report example

	Assigning default index values
	Defining text search fields
	Handling SCS spooled files that have AFP overlays
	Using a mask when defining application fields
	Using Tag Logical Elements (TLEs)
	Understanding Translate Print Control

	PDF indexer
	How Content Manager OnDemand processes index information
	Processing PDF input files with the graphical indexer
	Indexing input data
	Coordinate system
	Indexing parameters

	Indexing with metadata indexes
	Indexing with internal indexes
	Using Regular Expressions
	Using a regular expression on the TRIGGER parameter
	Using a regular expression on the FIELD parameter

	How to create indexing parameters
	PDF fonts and output file size
	PDF Resource Collection
	PDF indexing system requirements
	Specifying the location of Adobe fonts
	PDF indexing limitations
	Input data requirements
	National language support for indexed PDF documents

	PDF indexer parameters
	BOOKMARKS
	COORDINATES
	FIELD
	FONTLIB
	INDEX
	INDEXDD
	INDEXMODE
	INDEXSTARTBY
	INPUTDD
	MSGDD
	OUTPUTDD
	PARMDD
	REMOVERES
	RESOBJDD
	RESTYPE
	TEMPDIR
	TRACEDD
	TRIGGER

	PDF indexer messages
	ARSPDOCI program
	ARSPDUMP program
	Trace facility

	Generic indexer
	Loading data
	Processing AFP data
	Generic indexer parameters
	CODEPAGE:
	COMMENT:
	GROUP_FIELD_NAME:
	GROUP_FIELD_VALUE:
	GROUP_FILENAME:
	GROUP_LENGTH:
	GROUP_OFFSET:

	Parameter file examples

	XML indexer reference
	.xsd schema file
	Resources
	Invocation

	Notices
	Trademarks
	Privacy policy considerations

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
	Z

