
ibm.com/redbooks

IBM Content Manager OnDemand
Web Enablement Kit Java APIs
The Basics and Beyond

Wei-Dong Zhu
Mark Mikeal

Hassan A. Shazly
Elliott Wade

Sebastian Welter

Develop Web applications by
using ODWEK V8.4 Java APIs

Gain insightful best
practices, hints, and tips

Tune and troubleshoot
OnDemand Web applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Content Manager OnDemand Web Enablement
Kit Java APIs: The Basics and Beyond

December 2008

International Technical Support Organization

SG24-7646-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2008)

This edition applies to Version 8 Release 4 of IBM Content Manager OnDemand (program
number 5724-J33).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this book . xii
Become a published author . xiv
Comments welcome. xiv

Part 1. Programming with the ODWEK Java APIs . 1

Chapter 1. ODWEK Java API overview . 3
1.1 Origin of the ODWEK Java APIs . 4
1.2 Content Manager OnDemand system overview . 4

1.2.1 Content Manager OnDemand Library Server and Object Servers . . . 4
1.2.2 Content Manager OnDemand data . 6
1.2.3 Content Manager OnDemand data model . 7
1.2.4 Content Manager OnDemand data indexing and loading 10

1.3 ODWEK Java APIs function overview. 11
1.3.1 Typical Web applications developed by using the

ODWEK Java APIs . 11
1.4 ODWEK Java APIs architecture . 12
1.5 ODWEK Java APIs components . 13

1.5.1 ODWEK Java and native shared library . 14
1.5.2 Viewers . 14
1.5.3 ODWEK Java API distribution files . 15

1.6 WEBi client . 17

Chapter 2. ODWEK Java API classes . 21
2.1 Core API classes and their functional relationship 22

2.1.1 Core API classes. 22
2.1.2 Functional relationship . 23
2.1.3 Server connection classes . 24
2.1.4 Content Manager OnDemand data model classes 28
2.1.5 Search classes . 32
2.1.6 Document data retrieval classes . 35
2.1.7 Error handling class . 38

2.2 Sample console application. 39
2.3 Setting up a Web development environment by using Rational Application

Developer . 43
© Copyright IBM Corp. 2008. All rights reserved. iii

Chapter 3. ODWEK Java API examples . 53
3.1 Examples overview . 54

3.1.1 Example files. 54
3.1.2 Program flow and control . 59

3.2 Making a connection to Content Manager OnDemand 59
3.3 Obtaining a list of cabinets and folders . 63
3.4 Displaying OnDemand folder information . 66
3.5 Obtaining a list of OnDemand folder search fields 70
3.6 Displaying an Content Manager OnDemand search results list 74
3.7 Retrieving and displaying an OnDemand document 79

3.7.1 Viewing line data documents with the applet 84
3.8 Disconnecting from OnDemand . 88

Chapter 4. Internet use case . 91
4.1 Use case overview . 92
4.2 Connection pooling consideration for the use case. 94
4.3 Sample application for the use case . 98

Part 2. Best practices, hints, and tips . 105

Chapter 5. Introduction to best practices, hints, and tips 107

Chapter 6. Connection pooling and connection handling 111
6.1 Connection pooling overview . 112

6.1.1 Benefits of connection pooling . 112
6.2 Connection pooling objects and pooling technique 113

6.2.1 The ODServer class . 113
6.2.2 ODWEK Java API objects and threads. 114
6.2.3 The ODWEK Java API pool levels . 117

6.3 A simple connection pool code example . 118
6.3.1 The pooling mechanism . 118
6.3.2 Connection pool code functions . 120
6.3.3 Connection pool code sample. 121

6.4 Thread safety . 128
6.4.1 Instance variables . 129
6.4.2 Synchronization. 129
6.4.3 Implementing synchronization in the ODWEK Java APIs 130
6.4.4 Synchronizing servlet code . 131

6.5 Resource consumption control . 132
6.5.1 Connection initialization . 132
6.5.2 Logging off and terminating a client connection 135
6.5.3 Allocation and release of resources and sessions 136

6.6 Timeout . 137
6.6.1 Inactivity timeout . 138
iv IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

6.6.2 Other timeouts. 139
6.6.3 Implementing an application timeout by using the ODServer.cancel()

method . 140
6.6.4 Recommended timeout implementation for a Web application. . . . 141

Chapter 7. Globalization . 143
7.1 Globalization overview . 144
7.2 Content Manager OnDemand character conversion architecture 146

7.2.1 Index data and annotations conversions. 147
7.2.2 UTF conversion. 148
7.2.3 Document data conversions . 149

7.3 Code page conversion in ODWEK . 149
7.3.1 API conversions . 149
7.3.2 Browser conversions. 150
7.3.3 Document data conversions . 150

7.4 The ICU conversion library . 151
7.5 Using Unicode as the database code page. 152
7.6 ODWEK language configuration . 154
7.7 Integrating custom code pages . 156

7.7.1 Locations that require configuration . 156
7.7.2 ICU and ICONV. 157
7.7.3 Customizing code page mappings for ICU 158

7.8 Globalizing applications by using ICU . 158

Chapter 8. Folder searching . 161
8.1 Criteria and SQL searches . 162

8.1.1 Criteria search. 162
8.1.2 SQL search . 164

8.2 Sort fundamentals . 167
8.3 Search results . 169

8.3.1 Query and display order . 169
8.3.2 Search result size . 170
8.3.3 Searching by date . 170
8.3.4 Selecting a document from the search result list 171

8.4 Callbacks. 172
8.4.1 Why use callbacks . 172
8.4.2 Searching with callbacks. 172
8.4.3 Callback search example . 173

Chapter 9. Document retrieval . 179
9.1 The importance of a retrieval strategy. 180

9.1.1 AFP documents. 180
9.1.2 Large objects versus small objects . 181
9.1.3 Requiring only a small part of a large object 181
 Contents v

9.1.4 Delivering documents . 181
9.2 Retrieval API overview . 182

9.2.1 Retrieval APIs in the ODHit class . 182
9.3 AFP resource retrieval and custom caching . 185
9.4 Segmented retrieval and large object support. 187

9.4.1 Retrieving segmented documents. 189
9.4.2 Obtaining segment information . 190

9.5 Avoiding memory issues for large files . 190
9.6 Getting document type information . 191
9.7 Retrieving converted data . 193

9.7.1 Supported data conversions and viewers . 195

Chapter 10. Applets, plug-ins, and transforms. 197
10.1 ODWEK plug-ins . 198

10.1.1 AFP plug-in . 198
10.1.2 Image viewer plug-in . 199

10.2 ODWEK Java applets . 200
10.2.1 Configuring and using the ODWEK applets 202
10.2.2 Line data applet. 203
10.2.3 AFP2HTML applet. 204

10.3 AFP2WEB Transform . 205
10.3.1 Configuring the AFP2WEB Transform . 205
10.3.2 Integrating the AFP2WEB Transform in ODWEK 209

10.4 Xenos transforms . 211
10.4.1 Configuring ODWEK to use Xenos transforms 211

Chapter 11. Document storing and updating . 215
11.1 Updating document indexes . 216

11.1.1 Use cases for the update API . 216
11.1.2 Update methods in the ODWEK Java APIs 216
11.1.3 Hints and tips . 217

11.2 Storing documents . 219
11.2.1 The storeDocument() method . 219
11.2.2 How the storeDocument() method works 220

11.3 Deleting documents. 222

Chapter 12. Memory and performance . 223
12.1 Scope of performance tuning . 224
12.2 Memory . 225

12.2.1 Optimizing native memory. 228
12.3 Java heap . 228
12.4 The Java stack . 230
12.5 Garbage collection . 231

12.5.1 Garbage collection phases . 231
vi IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

12.5.2 Garbage collection performance . 232
12.6 Startup parameters . 236

12.6.1 Supported commands and available options 236
12.6.2 Performance and analysis commands . 238
12.6.3 Memory allocation commands . 242
12.6.4 Customizing the heap size . 244
12.6.5 Customizing the object generations . 245
12.6.6 ODWEK Java API memory usage . 246

12.7 Other performance areas . 247
12.7.1 Network . 247
12.7.2 Disk . 250
12.7.3 Processor . 250
12.7.4 Physical memory. 250

Chapter 13. Troubleshooting . 251
13.1 ODWEK error reporting and trace logging . 252

13.1.1 ODException class . 252
13.1.2 Trace logging . 252
13.1.3 Analyzing the trace file . 254
13.1.4 Trace log sample. 256
13.1.5 Return codes and message IDs . 258

13.2 Common problems and their solutions . 259
13.2.1 Application is unresponsive or JVM out-of-memory error occurs . 259
13.2.2 Application terminates with a ‘DLL could not be found’ message . 260
13.2.3 Performance degrades with a large number of server connections; the

OnDemand server refuses network connections (Windows only) . 262
13.2.4 Document retrieval is long-running . 263
13.2.5 Folder search does not produce a correct hitlist after upgrading

ODWEK . 265
13.2.6 Entire document is not retrieved . 265

13.3 Java dump (javacore) . 265
13.3.1 IBM Thread and Monitor Dump Analyzer 266
13.3.2 HeapAnalyzer . 266
13.3.3 HeapRoots . 266

13.4 Other Java diagnostic tools . 266
13.4.1 The jmap command . 267
13.4.2 The jstat command . 268
13.4.3 Heap Profiler (HPROF) . 269
13.4.4 Java Heap Analysis Tool (jhat) . 271
13.4.5 Diagnostic Tool for Java Garbage Collector 271

13.5 Testing tools . 271
13.5.1 JUNIT . 271
13.5.2 ConTest. 272
 Contents vii

13.5.3 Visual Performance Analyzer . 272
13.6 Getting support . 273

13.6.1 OnDemand User Group . 273
13.6.2 Opening a Problem Management Record. 273

Related publications . 275
IBM Redbooks . 275
Other publications . 275
Online resources . 276
How to get Redbooks . 277
Help from IBM . 277

Index . 279
viii IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
alphaWorks®
DB2®
i5/OS®
IBM®
OS/390®

OS/400®
POWER™
Rational®
Redbooks®
Redbooks (logo) ®
System i®

System z®
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Adobe Reader, Adobe, and Portable Document Format (PDF) are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the United
States, other countries, or both and is used under license therefrom.

100% Pure Java, Java, Javadoc, JavaScript, JavaServer, JDK, JNI, JSP, JVM, Solaris, Sun, SunOS, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

ESP, Excel, Internet Explorer, Microsoft, Windows Vista, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel Pentium M, Intel Pentium, Intel, Pentium M, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Content Manager OnDemand is the industry leading report management
product. It provides enterprise report management and electronic statement
presentment. It is high-performance middleware for automatic management of
formatted computer output and reports. Content Manager OnDemand helps
companies gain significant return on investment by transforming costly
high-volume print output to electronic information capture and presentation in
support of customer service.

Content Manager OnDemand includes the OnDemand Web Enablement Kit
(ODWEK) with which companies can build their own Web applications for
interfacing with Content Manager OnDemand. Many companies have used
ODWEK, and the usage continues to grow significantly as companies integrate
Content Manager OnDemand into their enterprise Web and portal solutions.

In this IBM Redbooks® publication, we provide an overview of the ODWEK
version 8.4 Java™ APIs and explain the commonly used APIs for application
development. In addition, we examine the capabilities and usage of the APIs
through use cases, best practices, hints and tips, and code snippets. We also
explain connection pooling, folder searching, document retrieval, document
storing and updating, memory and performance, and troubleshooting in terms of
application development.

The ODWEK Java APIs can be incorporated into any Java-based application,
including stand-alone applications, portlets, servlets and Web services. We
illustrate the APIs by using servlet-based code to encourage an integrated
understanding of the topics.

This book is intended for application developers who are responsible for
developing Web applications that interface with Content Manager OnDemand. It
also serves as a good reference guide for developers and system administrators
to fine-tune and troubleshoot Content Manager OnDemand Web applications.
© Copyright IBM Corp. 2008. All rights reserved. xi

The team that wrote this book

This book was developed in Boulder, Colorado by a team of specialists from
around the world working with the IBM International Technical Support
Organization (ITSO).

Wei-Dong (Jackie) Zhu is an ITSO project leader specializing in enterprise
content management, risk, and discovery management. She has more than 10
years of software development experience in accounting, image workflow
processing, and digital media distribution. Jackie joined IBM in 1996. She is a
Certified Solution Designer for IBM Content Manager and has managed and lead
the production of many enterprise content management, risk, and discovery
management Redbooks publications. Jackie holds a Master of Science degree in
Computer Science from the University of Southern California.

Mark Mikeal is a senior managing consultant team leader with IBM Enterprise
Content Management Lab Services. He has more than 25 years of software
development and integration experience in enterprise content management.
Mark joined IBM in 1984 and is a Certified Specialist for cross-industry solutions
related to enterprise content management. He has presented at multiple industry
conferences. Mark holds a Bachelor of Science degree in Business
Administration from the University of South Carolina.

Hassan (Al) A. Shazly is a senior software engineer with Enterprise Content
Management OnDemand and has been with IBM since 1996. He has over 30
years of software management and development experience in various business
and scientific applications. He has been instrumental in the design, development,
and product testing of the OnDemand Content Management system. Hassan is
certified in both Content Manager OnDemand and On Demand Business. He has
over 20 publications and has presented at multiple technical conferences.
Hassan holds a Ph.D. in Remote Sensing and Image Processing from the
University of South Carolina.

Elliott Wade is a software engineer and architect with more than 10 years of
Java development experience. He has worked as a technology consultant in the
financial services and manufacturing sectors and is currently a senior developer
at ADP Retirement Services. His Content Manager OnDemand projects have
included stand-alone applications, batch processes, and middle-tier integration.
Elliott studied Computer Science at Boston University.

Sebastian Welter is a technical sales consultant with Enterprise Content
Management software in Germany. He has about four years of software
management and development experience in various business applications.
Sebastian joined IBM in 2004 and has worked on numerous Content Manager
OnDemand assets. Sebastian holds a diploma in Business Information Systems
xii IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

from the University of Corporate Education in Mannheim and a Bachelor of Arts
degree in Business Administration.

Many thanks to the following people who have shared their knowledge and
contributed substantial material for this book:

� Gordon Campbell, Certified Software IT Specialist, for providing the base
sample API programs and API description documentation

� Nelson Chen, Content Manager OnDemand Software Developer, for providing
education and globalization documentation

� Brian Hoyt, Content Manager OnDemand Software Architect, for providing
programming insight, information, and review

� Hubert Hwang, Content Manager OnDemand Level 2 Support, for providing
valuable troubleshooting hints and tips documentation

� Bob Lichens, Content Manager OnDemand Software Developer, for providing
guidance and documentation on best practices, hints, and tips

We also thank the following people for their contributions to this project:

Stephen Henrikson
Thomas Garcia
Gregory Felderman
Eric Hann
Ben Boltz
Janice L. Holoman
Kevin Van Winkle
IBM Software Group, Content Manager OnDemand, Boulder, Colorado
 Preface xiii

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Programming with
the ODWEK Java
APIs

In this part, we provide an overview ODWEK Java API overview and describe the
basic API usage with examples. In this part, we include the following chapters:

� Chapter 1, “ODWEK Java API overview” on page 3
� Chapter 2, “ODWEK Java API classes” on page 21
� Chapter 3, “ODWEK Java API examples” on page 53
� Chapter 4, “Internet use case” on page 91

Part 1
© Copyright IBM Corp. 2008. All rights reserved. 1

2 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 1. ODWEK Java API overview

To effectively use the OnDemand Web Enablement Kit (ODWEK) Java APIs, you
must understand the architecture of both the IBM Content Manager OnDemand
(OnDemand) server and the ODWEK Java APIs. In this chapter, we provide an
overview of both and introduce fundamental topics that are covered in detail in
this book.

This chapter covers the following topics:

� Origin of the ODWEK Java APIs
� Content Manager OnDemand system overview
� ODWEK Java APIs function overview
� ODWEK Java APIs architecture
� ODWEK Java APIs components
� WEBi client

1

© Copyright IBM Corp. 2008. All rights reserved. 3

1.1 Origin of the ODWEK Java APIs

Content Manager OnDemand provides report management capabilities including
the capturing and archiving of computer output, such as printed reports, and the
searching and retrieving of stored content. ODWEK is a toolkit that is provided
with Content Manager OnDemand to enable access and management of the
OnDemand server and its data. The ODWEK Java APIs are part of the toolkit
that you can use to write applications to access and manage data stored in
OnDemand servers.

ODWEK began as an IBM Services offering, called the OnDemand Internet
Client. OnDemand Internet Client evolved into an IBM project called the
OnDemand Web Enablement Kit, which was released with version 2.1.1.9 of
Content Manager OnDemand. As of this writing, the current release of ODWEK
is version 8.4.0.2. Over the years, many functions and features have been added.
The Java APIs were introduced with release 7.1.0.2 of ODWEK.

Before we provide an overview of the ODWEK Java APIs, you must have an
overall understanding of Content Manager OnDemand system, which we provide
briefly in the next section. If you are already familiar with Content Manager
OnDemand, skip the next section and proceed to 1.3, “ODWEK Java APIs
function overview” on page 11.

1.2 Content Manager OnDemand system overview

A Content Manager OnDemand system processes computer output, extracts
index information from data, stores the index information in a relational database,
and stores the data in the Content Manager OnDemand archive. It also enables
users to search and retrieve the stored data in the Content Manager OnDemand
archive.

In this section, we provide an overview of the Content Manager OnDemand
system architecture. It introduces Content Manager OnDemand data, its data
model, and discusses data indexing and loading.

1.2.1 Content Manager OnDemand Library Server and Object Servers

In general, Content Manager OnDemand server functionality is identical across
all supported platforms. The Content Manager OnDemand server environment
includes a Library Server and one or more Object Servers that reside on systems
connected to a TCP/IP network. Figure 1-1 on page 5 illustrates this
arrangement.
4 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 1-1 System overview: Library Server and Object Servers

Library Server
The Library Server maintains a central database that contains an index of the
reports and documents that are stored in Content Manager OnDemand. The
Library Server database also contains administrative objects such as users,
groups, printers, application groups, applications, folders, cabinets, and storage
sets. The Library Server processes client logons, queries, print requests, and
updates to the database.

In addition to the database itself, the Library Server consists of a set of
managers, which include the request manager, the database manager, and the
server print manager. The request manager receives, and routes or responds to,
incoming requests. The database manager provides the database engine and
database administration utilities. The server print manager schedules and
manages print requests.

Object Server
An Object Server maintains documents on persistent storage volumes. A storage
volume is either a cache or an archive volume. A cache volume is typically
disk-based and is intended to store frequently-accessed documents. Many
Content Manager OnDemand installations implement only this type of storage.

y j

Client

TCP/IP
Network

Object Server(s)
(1 or more)

Archive Storage
TSM – OAM

Library Server (1)

DB2

Same or different machine/platform

Cache
Storage

Temp
Storage

Cache
Storage

Temp
Storage

ODBC

Load
Proces
s

 Chapter 1. ODWEK Java API overview 5

Archive storage and the associated archive storage manager can be configured
to access data that are for long-term storage and might be needed less
frequently from media library or other archival storage systems. Archive storage
is optional.

An Object Server loads data, retrieves documents, and expires documents. Data
loading and maintenance utilities are installed on Object Servers.

Logical server
The combination of a single Library Server and multiple Object Servers is
regarded as a logical server. Any of this server’s components can run on a
supported operating system.

In this book, when we refer to an OnDemand server or a system without
indicating a particular subsystem, we are referring to the logical server. Although
this logical server, which is also considered as a logical system, is treated as a
unit, the number of physical servers and administrative roles depends on
particulars of the architecture and organization.

1.2.2 Content Manager OnDemand data

The Content Manager OnDemand data consists of reports and documents.

Reports and documents
A report represents the data loaded into Content Manager OnDemand in a single
operation. It is a body of content that can be unloaded or archived.

A document represents a logical segment or portion of a report that can be
requested and viewed by users who do not want (or are not permitted) to see the
entire report. An indexing process divides reports into logical documents.

As an example, consider a county agency that produces a billing report and a
transaction report, both on a monthly basis. To capture and retain the output of
these two reports, the Content Manager OnDemand administrator creates an
application called BILLS for the billing reports and an application called TRANS
for the transaction report.
6 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The billing report contains the property tax billing statement for every property
owner in the county. The BILLS application uses the document indexing method
to divide the report into documents. Each property owner’s billing statement in
the report becomes a document in Content Manager OnDemand. A user can
retrieve a billing statement with a specific date. Content Manager OnDemand
retrieves the corresponding document based on the property owner or property
number, and the user specified date.

The transaction report includes all the payment transactions by the property
owners. The TRANS application uses the report indexing method to divide the
report into documents. A group of 100 pages in the report becomes a document.
Each group is indexed by using the first and last sorted transaction values that
occur in the group. A user can retrieve a group of pages that contains a specific
transaction number by specifying the date and the transaction number. Content
Manager OnDemand retrieves the corresponding document that contains the
value that is entered by the user.

A document is a single object that is stored in Content Manager OnDemand.
Examples of documents are word processing documents, TIF images,
spreadsheets, and other type of documents or portions of reports.

1.2.3 Content Manager OnDemand data model

The Content Manager OnDemand data model is composed of applications,
application groups, folders, and cabinets. Figure 1-2 on page 8 shows a sample
implementation that stores student and faculty information for a university.
 Chapter 1. ODWEK Java API overview 7

Figure 1-2 Example Content Manager OnDemand data model implementation

Application
An application describes the physical characteristics of a report or document to
Content Manager OnDemand. Typically, you define an application for each report
or document type to be stored in Content Manager OnDemand.

The application includes information about the format of the data, the orientation
of the data on the page, the paper size, the record length, and the code page of
the data. The application also includes parameters that the indexing program
uses to locate and extract index data. In addition, it includes processing
instructions that Content Manager OnDemand uses to load index data into the
Library Server database and to load report and document data into the Content
Manager OnDemand Object Server.

The student and faculty example in Figure 1-2 shows three applications,
Transcripts, Grades, and Parents Payments, which generate student transcripts,
grade reports, and payment information.

Transcripts
Application
SSN/Course

Grades
Application
SSN/Course

Parents Payments
Application

SSN

Students
Application Group

SSN

Student Transcripts
Application Group

SSN/Course

Student Information
Folder

Folder Mapping - SSN/Course
Security

Student Info, Faculty info
Cabinet

Course info, Student info
Cabinet

Report

Document

FacultyInformation
Folder

Course information
Folder
8 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Application group
An application group is a collection of one or more applications with compatible
indexing and storage management requirements. The application group defines
the index information that is used to load, search for, and retrieve reports.

Multiple applications are combined into an application group so that users can
access the documents in all of the grouped applications with a single query. The
index keys of all applications in an application group must be compatible. That is,
they must be of the same data type and length.

For the student and faculty example in Figure 1-2 on page 8, the Transcripts
application uses student social security numbers (SSN) and course numbers
(Course) as indexes for student transcripts. The Grades application also uses
these two indexing fields for the grade reports. Therefore, these two applications
can be grouped into one application group, called Student Transcripts. The
Parents Payments application uses only the SSN as the index for the report. This
application belongs to a separate application group, called Students.

Folder
A folder contains one or more application groups. A folder provides users with a
convenient way to find related information that is stored in Content Manager
OnDemand, regardless of the source of the information or how the data was
prepared. By using folders, an administrator can set up a common query panel
for several application groups that might use different indexing schemes. A user
can retrieve the data with a single query.

In the student and faculty example in Figure 1-2 on page 8, a Student Information
folder contains student transcripts, grades, and payment information. This
information is stored in different application groups (Student Transcripts and
Students) that are defined in different applications (Transcripts, Grades, Parents
Payments) and are created by different programs. When a folder search is
performed, Content Manager OnDemand searches within each application group
that is part of the folder.

Cabinet
A cabinet is a container for one or more folders. You can identify a group of
folders as belonging to a cabinet for convenient navigation. A folder can belong to
multiple cabinets.

The student and faculty example in Figure 1-2 on page 8 shows one cabinet that
contains both the Course Information and Student Information folders and
another cabinet that contains both the Student Information and the Faculty
Information folders. Therefore, with the first cabinet, a user can locate folders that
contain information that is related to both students and course information. For
 Chapter 1. ODWEK Java API overview 9

the second cabinet, a user can locate folders that contain information that is
related to students and faculty. Note that cabinets do not enable searching. They
only group folders for easy access.

1.2.4 Content Manager OnDemand data indexing and loading

User applications generate printed output that can be saved as report data on
disk (on one of the Object Servers). The OnDemand server indexes, segments,
compresses and loads the report data into the OnDemand server. The indexes
are stored in the Content Manager OnDemand Library Server. The compressed
documents are stored in one of the Object Servers.

Indexing
The reports that are stored in Content Manager OnDemand must be indexed.
Library Server index entries for a particular report provide users an efficient
means to request and view specific report data. Content Manager OnDemand
supports several types of index data and indexing programs (also known as
indexers).

An administrator defines the index files and other processing parameters that are
used by the selected indexer to locate and extract index information from reports.
Data types that can be indexed and loaded include line data, AFP, TIF, PDF, and
others.

With Content Manager OnDemand, data can be indexed externally prior to being
used in the system.

Loading
The Content Manager OnDemand data loading programs read the index data
and load it into the Content Manager OnDemand database. The data loading
programs obtain processing parameters from the Content Manager OnDemand
database. Sample parameters include those that are used to segment,
compress, and store report data in cache storage or archive storage.

TIF data: Technically, Content Manager OnDemand does not index TIF data.
Content Manager OnDemand loads TIF data through the generic indexer,
which does not index data, but rather gets the indexes from a specified file.
10 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

1.3 ODWEK Java APIs function overview

The ODWEK Java APIs enable access to the OnDemand server from any IP
network, whether intranet or Internet. By using the APIs, you can write
applications that can access data stored in Content Manager OnDemand.

The ODWEK Java APIs provide the following functions for users to perform:

� Log into an OnDemand server.
� List cabinets or folders.
� Search for a specific set of documents in a folder.
� Retrieve documents.
� View documents.
� Log off from the system.

In addition to the common functions, by using the ODWEK Java APIs, users can
perform the following functions:

� Change the Content Manager OnDemand account password.
� Print documents.
� Add document annotations.
� Update documents.

Custom applications can support some or all of these functions. This book
addresses programming to support these functions and other functions that are
not listed here for a simplified introduction.

The ODWEK Java APIs can access OnDemand servers that are running on any
supported platform, including IBM z/OS®, System i®, AIX®, Linux® on
System z, and Microsoft® Windows®.

1.3.1 Typical Web applications developed by using the
ODWEK Java APIs

For Web applications, two broad scenarios exist for client access to data stored
in Content Manager OnDemand. The first scenario is an intranet access
scenario, in which users on the corporate network access the OnDemand server
by using an application that connects directly to Content Manager OnDemand.
Intranet applications usually expose a query-criteria interface to users, who
typically have their own security profiles on the OnDemand server.

The second scenario is an Internet client-access scenario, in which external
users are given access to a limited subset of the data stored in Content Manager
OnDemand. The access is given usually through a middle-tier application such
as a custom servlet or a Web service. An example is a banking application that
 Chapter 1. ODWEK Java API overview 11

allows customers to log on and view any of their statements for the previous
twelve months. In this scenario, users are restricted to access their own
documents, and thousands of users might access the system concurrently.

Application development techniques for both of the scenarios are discussed in
detail in the following chapters.

Figure 1-3 shows a workstation with a Web browser that uses the ODWEK Java
APIs to access data from an OnDemand server.

Figure 1-3 Client access using ODWEK

We discuss applets and Web viewers shown in Figure 1-3 in 1.5.2, “Viewers” on
page 14.

The architecture of Content Manager OnDemand enables systems that employ it
to scale with usage to the limits of available hardware and network resources.

1.4 ODWEK Java APIs architecture

The ODWEK Java APIs provide a convenient programming interface for
application developers. They allow architects and developers to choose the
implementation that best suits their requirements. Using the ODWEK Java APIs
is the preferred method for developing clients that access the OnDemand server.

Browser - Microsoft or Firefox
- Applet supported data types

-Line Data viewer
-AFP2HTML viewer

- Web Viewers invoked for other data types
-AFP, PDF, Image

z/OS, System i, Multiplatform
(AIX, HP-UX, Linux, Sun Solaris,
Windows, Linux on System z)

Object Server or Servers

Library Server

Internet
or

Intranet

Intranet
or

Internet

ODWEK Java API
Web Server Application

Web Server
12 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

You can use the ODWEK Java APIs to develop Web applications and to develop
both batch and stand-alone applications. In addition, you can use the ODWEK
Java APIs to create middleware that integrates existing applications with Content
Manager OnDemand.

Figure 1-4 illustrates the common architectural modes of the ODWEK Java APIs.

Figure 1-4 ODWEK-enabled application architectures

1.5 ODWEK Java APIs components

The ODWEK Java APIs comprise the standard libraries that you can use to write
applications that access data stored in Content Manager OnDemand and
viewers.

CMOD server

TCP/IP

ODWEK Java API

Java interface code

Optional
TCP/IP

Custom application

Library Server

Middleware integration Web implementation Stand-alone program

ODWEK Java API

Java code

WebSphere or other Web technologies

Browser

Java program

TCP/IP

User interface

User interface

Object Server

Note: This book is written based on ODWEK version 8.4.0.2.
 Chapter 1. ODWEK Java API overview 13

1.5.1 ODWEK Java and native shared library

The API classes are in the com.ibm.edms.od Java package. These classes
provide an object-oriented interface to the native Content Manager OnDemand
libraries, which access OnDemand servers over the TCP/IP network.

For a list of distributed files, see 1.5.3, “ODWEK Java API distribution files” on
page 15.

1.5.2 Viewers

Most ODWEK applications are capable of displaying retrieved documents or
report segments. ODWEK provides several viewers that can display various
document types in a browser window. Each viewer adds a toolbar to its display
window, providing controls that help users to work with the retrieved documents.

A viewer provided with ODWEK is implemented as either a browser plug-in or an
applet. Plug-ins must be installed locally on users’ workstations, where applets
are dynamically downloaded according to the type of data to be viewed.

ODWEK provides the following viewers:

� Locally installed plug-ins

– AFP Web Viewer plug-in
– Image Web Viewer plug-in

� Dynamically downloaded applets

– Java Line Data Viewer applet
– Java AFP2HTML Viewer applet

An advantage of applets is that they are dynamically downloaded to users’
workstations. On the contrary, locally installed plug-ins require special software
distribution. For example, when a new version of the AFP Web Viewer or Image
Web Viewer plug-in is available, the new software must be distributed to users in
order for them to benefit from the update.

The viewers that are provided with ODWEK retrieve documents from an
OnDemand server in compressed forms. A viewer uncompresses the documents
before displaying them in the browser. When a document is stored in Content
Manager OnDemand as a large object, the viewer retrieves and uncompresses
segments of the document as they are needed. That is, as the user scrolls
through the document’s pages.
14 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Viewers other than those provided with ODWEK can be integrated with the
ODWEK Java APIs. Such viewers can support additional document types or
provide custom document-related functions.

AFP Web Viewer plug-in
Browser plug-ins can extend the types of documents or media that a Web
browser is capable of displaying. The AFP Web Viewer plug-in enables browsers
with capabilities to search, retrieve, view, navigate, and print AFP documents.

Image Web Viewer plug-in
The Image Web Viewer plug-in enables browsers with capabilities to search,
retrieve, view, navigate, and print documents in the BMP, GIF, JPEG, PCX, PNG,
and TIFF formats.

Java Line Data Viewer applet
The Java Line Data Viewer applet displays line data documents in the browser
window and provides toolbar controls that help users to work with the documents.
An administrator enables the Java Line Data Viewer by using the ODConfig
object.

Java AFP2HTML Viewer applet
The Java AFP2HTML Viewer is an applet with which users can view the output
generated by the IBM AFP2WEB Transform service offering. AFP2WEB
Transform converts AFP documents and resources into HTML documents. The
Java AFP2HTML Viewer toolbar includes controls for working with large objects.
After installing and configuring the AFP2WEB Transform, an administrator
enables the Java AFP2HTML Viewer by using the ODConfig object.

Continue with the next section to see a list of distributed files.

1.5.3 ODWEK Java API distribution files

The ODWEK distribution includes the Java APIs, Common Gateway Interface
(CGI), servlet, viewers, and AFP2WEB Transform.

The following list of ODWEK Java API binary distribution files is provided to
acquaint developers with the distribution as an aid to use ODWEK in
development environments, application servers, or stand-alone deployments.
This listing might change because the distributed modules are subject to change
and vary slightly by platform and release level.
 Chapter 1. ODWEK Java API overview 15

� ODWEK Java and native shared libraries

– Java API

• ODApi.jar, Java API library
• ODApiDoc.zip, Java API documentation (javadoc)

– Native sockets interface

• arssck32.dll (Windows)

– Native shared libraries

• ars3wapi32.dll (Windows)
• libars3wapi32.a (AIX 32-bit)
• libars3wapi64.a (AIX 64-bit)
• libars3wapi32.sl (HPUX 32-bit)
• libars3wapi64.sl (HPUX 64-bit)
• libars3wapi32.so (SunOS™, iLinux 32-bit)
• libars3wapi64.so (SunOS, iLinux 64-bit)
• libars3wapi64.so (Linux on System z® 64-bit)
• libars3wapi32 (z/OS 32-bit)
• libars3wapi64 (z/OS 64-bit)

– Locale

Locale files are normally deployed with a full ODWEK installation.

• arscpcs.cfg, code page to code set mappings
• *.dll, various locale-specific libraries

– ICU support

ICU support files must be placed in a directory that is part of the executing
environment’s search path, typically defined by the path environment
variable.

• icudt36.dll (Windows)
• icuin36.dll (Windows)
• icule36.dll (Windows) No longer needed

• iculx36.dll (Windows) No longer needed
• icuuc36.dll (Windows)
• icudt36l.dat (Windows, Linux)
• icudt36b.dat (AIX, SunOS, HPUX) Leave this file in the locale

installation directory

Note: The icule36.dll is included for compatibility with any back-level
applications that may be running.
16 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Viewers (and transforms)

– Configuration files for transforms

• afp2html.ini Configures the AFP2WEB Transform
• afp2pdf.ini Configures the AFP2PDF Transform
• arsxenos.ini Configures the XENOS Transform

– Applets

• ODLineDataViewer2.jar

The Content Manager OnDemand Line Data Viewer applet

• ODAfp2Html2.jar

The Content Manager OnDemand AFP Transform applet

• IEFix.js

The JavaScript™ file that assists the applet launch

– Plug-ins

Plug-ins are distributed as InstallShield self-extracting installations. To
install a plug-in, download the installation file to the target Windows XP,
Windows 2000, Windows 2003, or Windows Vista® system, and execute
the file. If a browser is running while the installation is in progress, then
you must restart the browser before you can use the new plug-in.

• afpplgin.exe

Content Manager OnDemand AFP Web Viewer (Plugin/ActiveX);
supports all languages, double-byte character set (DBCS)

• afpplgin.zip

Content Manager OnDemand AFP Web Viewer (Plugin/ActiveX);
compressed format, supports all languages, DBCS

• imgplgin.exe

Content Manager OnDemand Image Web Viewer (Plugin/ActiveX);
supports all languages

1.6 WEBi client

WEBi (pronounced “webby”) is a fully functional Web 2.0 Content Manager
OnDemand client that uses the ODWEK Java APIs for interaction with Content
Manager OnDemand. It is an example Web application that was developed by
using the ODWEK Java APIs. WEBi is developed to meet broad customer
requirements. Many customers use it as their default Content Manager
OnDemand client application.
 Chapter 1. ODWEK Java API overview 17

Figure 1-5 shows the technology components and architecture of the WEBi
implementation. The Web 2.0 technologies employed by WEBi demonstrate a
rich and highly functional ODWEK user interface.

It is beyond the scope of this book to discuss WEBi in details. The information
provided here is for reference purposes only.

Figure 1-5 WEBI technology overview

The following windows show some of the WEBi user interface so that you can
see the type of the application and user interface that you can create with the
ODWEK Java APIs. Figure 1-6 on page 19 shows a WEBi user interface with a
returned list of search result.

CM OO API: In Figure 1-5, CM OO API stands for Content Manager Object
Oriented API.

WEBI

CM OO API

Java Workflow Tooling (JWT) ODWEK

Struts/Tiles/XSLT
Web Components Java Struts Controller

ODWEK API

J2EE Run Time

Browser
DHTML Components

Synchronous
request/response

AJAX

Events
18 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 1-6 WEBi user interface

Figure 1-7 shows a sample WEBi window with a retrieved hand-written customer
inquiry.

Figure 1-7 Sample WEBi window showing a retrieved hand-written customer inquiry
 Chapter 1. ODWEK Java API overview 19

Figure 1-8 shows a sample WEBi window with a retrieved customer statement.

Figure 1-8 Sample WEBi window showing a retrieved customer report

Figure 1-9 shows a sample WEBi window with a retrieved bank statement.

Figure 1-9 Sample WEBi window showing a retrieved bank statement
20 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 2. ODWEK Java API classes

In this chapter, we present the classes of the OnDemand Web Enablement Kit
(ODWEK) Java APIs and explain how they are related to one another. We
describe the essential use of these classes and explain how to set up
development environment projects for ODWEK-enabled applications.

We cover the following topics:

� Core API classes and their functional relationship
� Sample console application
� Setting up a Web development environment by using Rational Application

Developer

2

© Copyright IBM Corp. 2008. All rights reserved. 21

2.1 Core API classes and their functional relationship

All ODWEK Java API classes are in the com.ibm.edms.od Java package. By
convention, commonly used ODWEK Java classes (ODFolder, for example) are
considered individual APIs. In this section, we introduce the classes at the core
of the ODWEK Java APIs.

2.1.1 Core API classes

The following API classes are the most commonly used according to their
typical use:

� Server connection classes
� Content Manager OnDemand data model classes
� Search classes
� Document data retrieval classes
� Error handling class

Server connection classes control connections to a Content Manager OnDemand
(OnDemand) server. This group includes the following classes:

� ODServer
� ODConfig

Data model classes expose the OnDemand data model and metadata that
relates to document storage. This group includes the following classes:

� ODCabinet
� ODFolder
� ODApplication
� ODApplicationGroup
� ODApplicationGroupField

API Javadoc™ documentation: The documentation for the APIs is shipped
as part of the ODWEK installation. The documentation is in the Javadoc
format and must be extracted from the <odwek installation>/api/ODApiDoc.zip
file. After extracting the files, open the index.html file in a browser to view the
Javadoc content.

The sections below survey the highlights of selected APIs. Consult the
Javadoc documentation for a complete list of available methods.
22 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Search classes are used to perform document searches. This group includes the
following classes:

� ODFolder
� ODCriteria
� ODNamedQuery
� ODNamedQueryCriteria

Document data retrieval classes convey search results and are used to retrieve
OnDemand documents. This group includes the following classes:

� ODHit
� ODHitProperties
� ODNote

The error handling class consists of the ODException class, which handles
Content Manager OnDemand exception errors.

2.1.2 Functional relationship

Figure 2-1 on page 24 illustrates important functional relationships among these
core classes. Follow the italicized method calls along the highlighted path to
trace the usual connect-search-retrieve workflow.
 Chapter 2. ODWEK Java API classes 23

Figure 2-1 API functional relationships

In the next several sections, we take a closer look at some of these classes.

2.1.3 Server connection classes

By using the ODConfig and ODServer classes, you can connect to and
disconnect from OnDemand servers.

ODConfig
Use an instance of the ODConfig class to configure a connection to Content
Manager OnDemand. Prior to Content Manager OnDemand version 8.4, these
settings were specified in the arswww.ini file. In version 8.4, the proper way to
specify connection parameters is to use the ODConfig object.

With the parameters of the ODConfig class, you can specify such settings as the
conversion mechanism to be used for document data viewing, the ODWEK’s
temporary directory, and the level of detail for runtime log files.

1. Connect

ODUser

ODConfig

getUser

ODConfig cfg = new ODConfig();
ODServer srv = new ODServer(cfg);
...

2. Access data model

ODCabinet ODApplication

ODApplicationGroup

ODApplicationGroupField

ODFolder

openFolder

ODLogicalView

getField

getLogicalView

getApplicationGroup

getApplicationgetCabinets

ODNamedQuery

ODCriteria

ODNamedQueryCriteria

3. Search

4. Retrieve document data

getCriteria

getNamedQuery

getCriteria

Helper classes

ODException

ODCallback

ODConstant

ODHit

ODHit

ODHit

ODHit

Vector<ODHit>:
search
search (SQL)
search (ODNamedQuery)
search (ODCallback)
getHits
recreateHit

ODHitProperties

ODNote

ODNote

ODNote

ODLogicalView

byte []

01011...

getDocument
retrieve
retrieveSegment Functional relationships among

ODWEK Java API classes
The highlighted path illustrates the typical

connect-search-retrieve workflow

ODServer

viewerPassThru
viewer byte []

getProperties

Vector<ODNote>:
getNotes

getLogicalView
24 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The ODConfig class has three constructors:

� ODConfig() with no parameters

Instantiating ODConfig with no parameters initializes the configuration with
default values (see Table 2-1).

� ODConfig() with all parameters except the advanced properties

An ODConfig object can be instantiated with all the parameters listed in
Table 2-1 without specifying the optional properties. If there is no requirement
for AFP2PDF or AFP2WEB data conversions, then use this constructor.

� ODConfig() with all parameters

If you want to use AFP2PDF or AFP2WEB document conversions, then pass
properties that specify AFP2xxx parameters.

Table 2-1 shows the meaning of the constructor parameters and their default
values.

Table 2-1 Meaning of the ODConfig constructor parameters

Data type Parameter Default value

String AFP data conversion type ODConstant.PLUGIN

String LINE data conversion type ODConstant.APPLET

String META data conversion type ODConstant.NATIVEa

a. ODConstant.NATIVE can be used for those customers who want AFP data in its
native format.

long Maximum hits 200

String Applets directory "/applets"

String Language for output
messages

"ENU"

String Temp directory Value returned by
System.getProperty("java.io.tmpdir")

String Absolute path for trace file Value returned by
System.getProperty("java.io.tmpdir")

int Trace level 0

java.util.
Properties

Advanced configuration
properties

optional
 Chapter 2. ODWEK Java API classes 25

The ODConfig object offers access to the configuration settings that it stores.
See Table 2-2 for the ODConfig access methods.

Table 2-2 ODConfig access methods

ODServer
The ODServer class manages a connection to an OnDemand server. No other
API class (except ODConfig) can be instantiated until a valid connection has
been established through the ODServer object. If a connection becomes invalid,
perhaps timed out due to inactivity, the same ODServer instance can be used to
log on again.

Connected ODServer instances reserve native system resources. It is important
to manage them so as not to cause a resource or memory leak. Depending upon
your application, connections can be pooled, stored in an HTTP session, or
simply used once and disposed. We discuss various connection management
techniques in the following chapters.

Data type returned Method and description

String getAFPViewerType()
Get the AFP viewer type.

String getAppletDirectory()
Get the URL path or alias of the applet JAR file.

String getLanguageForMessages()
Get the three character language abbreviation for messages.

String getLineViewerType()
Get the Line viewer type.

long getMaxNumberOfHitsToDisplay()
Get the maximum number of search result hits.

String getMetaViewerType()
Get the META viewer type.

String getTemporaryWorkingDirectory()
Get the temp directory for OnDemand working files.

String getTraceDirectory()
Get the directory in which to place the arswww.trace files.

int getTraceLevel()
Get the trace level, which determines the detail of the
arswww.trace content.

void printConfig()
Print the configuration settings.
26 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Prior to Content Manager OnDemand version 8.4, ODServer instances could be
instantiated with a no- argument constructor. With Version 8.4, you must pass an
ODConfig object to create new ODServer instances.

To connect to Content Manager OnDemand:

1. Instantiate a new ODConfig object.

2. Instantiate a new ODServer object by using the ODConfig instance.

3. Call the ODServer.intialize() method, which takes a String parameter.

In the context of a Web application, pass the name of the Java class that
implements the viewer pass-through function for the Java Line Data Viewer
applet and the AFP plug-in. If your application does not use the applet or the
AFP plug-in, then any string value will suffice. The common practice is to pass
the name of the class that instantiates the ODServer.

4. Call the ODServer.logon() method.

The server name, user ID, and password are the minimum prerequisites for
logging on.

After the ODServer connection is no longer required, ensure proper disposal of
the connection:

1. Call the ODServer.logoff() method to log off the current user ID from the
server.

2. Call the ODServer.terminate() method to terminate and dispose the network
connection from the application to the server.

Table 2-3 lists popular ODServer methods.

Table 2-3 Popular ODServer methods

Data type returned Method and description

void cancel()
Cancel the current search or retrieve operation on this
connection.

void changePassword(String newPassword)
Change the logged-on user’s password.

java.util.Enumeration
(of ODCabinet instances)

getCabinets()
Get a list of the cabinets that are defined on the connected
server.

int getNumCabinets()
Get the number of cabinets that are defined on the
connected server.
 Chapter 2. ODWEK Java API classes 27

2.1.4 Content Manager OnDemand data model classes

The ODCabinet, ODFolder, ODApplicationGroup, ODApplication, and
ODApplicationGroupField classes comprise a model of the logical organization of
data stored in Content Manager OnDemand. Pay special attention to the
ODFolder class because it is the interface to the document search feature.

int getNumFolders()
Get the number of folders that are defined on the
connected server.

java.util.Enumeration
(of ODFolder instances)

getFolders()
Get the folders that are defined on the connected server.

ODFolder openFolder(String fldname)
Open a given folder.

String getFolderDescription(String fldname)
Get a given folder’s description.

void initialize(String applicationName)
Initialize this connection to the OnDemand server.

void logon()
Log on the configured user.

void logoff()
Log off the configured user.

void terminate()
Terminate this connection to the server.

byte[] viewerPassthru(String queryString)
Return a document to a viewer based on the query string
from the applet.

boolean isServerTimedOut()
Get the timeout status of this connection.

boolean keepServerAlive()
Reset the connection timeout.

String[] getServerPrinters()
Get a list of printers that are defined on the server.

Data type returned Method and description
28 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

ODCabinet
ODCabinet instances represent Content Manager OnDemand cabinets, which
are defined by the administrator to group a particular set of folders for the
convenience of users. Obtain the list of cabinets for your server by calling the
ODServer.getCabinets() method. Remember that a folder can belong to multiple
cabinets. Searches cannot be performed against the ODCabinet class.

Table 2-4 lists the ODCabinet methods.

Table 2-4 ODCabinet methods

ODFolder
ODFolder instances represent Content Manager OnDemand folders. To obtain a
usable ODFolder instance, call ODServer.openFolder(). Instances of ODFolder
expose the server’s definition of folders, and the criteria used to search them for
documents. Searches are usually performed by setting values into ODCriteria
objects obtained from an ODFolder, and then calling the folder’s search()
method.

Data type returned Method and description

String getDescription()
Get this cabinet’s description.

String[] getFolderNames()
Get folder names for this cabinet.
Note: First call open() to populate the folder list.

String getName()
Get this cabinet’s name.

int getNumFolders()
Get the number of folders for this cabinet.
Note: Call the open() method first to retrieve the number of
folders for this cabinet.

void open()
Open this cabinet.
 Chapter 2. ODWEK Java API classes 29

Table 2-5 lists principle ODFolder methods.

Table 2-5 ODFolder methods

Data type returned Method and description

void open()
Open this folder.

void close()
Close this folder.

String[] getApplGrpNames()
Get the application groups for this folder.

java.lang.Object[]
(Returned objects are Strings)

getApplNames(String applGroup)
Get names of applications in the given application
group.

java.util.Enumeration
(of ODCriteria instances)

getCriteria()
Get the search criteria for this folder.

String getDescription()
Get this folder’s description.

java.util.Vector
(of ODHit instances)

getHits()
Get the ODHit results of the last search performed
by this folder.

ODCriteria getCriteria(String name)
Get a particular search criterion.

ODNamedQuery getNamedQuery(String name)
Get a specific ODNamedQuery object.

java.util.Enumeration
(of String)

getNamedQueryNames()
Get a list of named query names for this folder.

void printDocuments(java.util.Vector hits,String
printer,int copies)
Print the documents referenced by the given ODHit
objects.

ODHit recreateHit(String docid)
Recreate an ODHit object given a document ID.

java.util.Vector
(of ODHit instances)

search()
Perform a search. Call after search criteria are set.

java.util.Vector
(of ODHit instances)

search(ODNamedQuery namedQ)
Perform a search by using the specified named
query.
30 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

ODApplicationGroup
ODApplicationGroup instances correspond to Content Manager OnDemand
application groups. Obtain ODApplicationGroup instances by calling the
getApplicationGroup() method on an ODServer instance.

Table 2-6 lists selected ODApplicationGroup methods.

Table 2-6 ODApplicationGroup methods

java.util.Vector
(of ODHit instances)

search(String sqlWhereClause)
Perform an SQL search.

long searchCountHits()
Get the total number of hits that will be returned by
a search of this folder by using the
currently-specified criteria.

Data type returned Method and description

ODApplication getApplication(String name)
Get an ODApplication object associated with this
application group.

String[] getApplicationNames()
Get the names of all applications that are associated
with this application group.

String getDescription()
Get this application group’s description.

java.util.Enumeration
(of ODApplicationGroupField
instances)

getFields()
Get the fields that are defined in this application group.

String getName()
Get the name of this application group.

Data type returned Method and description
 Chapter 2. ODWEK Java API classes 31

ODApplication
ODApplication instances correspond to Content Manager OnDemand
applications. Obtain these instances by calling the getApplication() method on an
ODApplicationGroup instance.

Table 2-7 lists the principle ODApplication methods.

Table 2-7 ODApplication methods

ODApplicationGroupField
ODApplicationGroupField objects represent OnDemand application group fields.
Obtain instances by calling the ODApplicationGroup.getFields() or
ODApplicationGroup.getField() methods.

Table 2-8 lists the ODApplicationGroupField methods.

Table 2-8 ODApplicationGroupField methods

2.1.5 Search classes

In conjunction with the ODFolder class, use the ODCriteria, ODNamedQuery,
and ODNamedQueryCriteria classes to prepare and execute document
searches.

Data type returned Method and description

String getDescription()
Get this application’s description.

char
(one of the FileTypeXXX constants
defined in interface ODConstant;
see the Javadoc documentation)

getDocumentType()
Get the document type defined for this
application.

String getName()
Get the name of this application.

Data type returned Method and description

short getMask()
Get the mask for this application group Field.

String getName()
Get this application group Field’s name.
32 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

ODCriteria
Administrators define the search criteria, which ODCriteria objects represent,
that are relevant to a given folder. Obtain the set of ODCriteria instances that
pertain to a folder by calling the ODFolder.getCriteria() method. Then prepare a
search by setting the operator and search value or values for each ODCriteria
instance. Search values are passed as strings and are converted by the API for
comparison with the corresponding field when executing the search. Note that
not all operators apply to all data types.

To search an ODFolder object for documents:

1. Get the desired search criteria by using one of the ODFolder.getCriteria()
methods.

2. Set the operator for each ODCriteria instance.

3. Set the search value or values for each ODCriteria. If a criterion refers to a
data type field of Date or Time, format the search value string according to the
format returned by the ODCriteria.getDefaultFmt() method.

4. Set whether the search criteria will be ANDed or ORed by calling the
ODFolder.setOrSearchCriteria() method.

5. Call the ODFolder.search() method to perform the search.

Table 2-9 lists the selected ODCriteria methods.

Table 2-9 ODCriteria methods

Data type returned Method and description

String[] getApplicationGroupNames()
Get the application group names to which this ODCriteria is
mapped.

boolean getAscending()
Get the ascending/descending sort search type for this
criterion.

String[] getFixedValues()
Get valid search values for this criterion, if configured.

String getName()
Get this criterion’s name.

int getOperator()
Get this criterion’s current operator.

String[] getSearchValues()
Get this criterion’s current search values.
 Chapter 2. ODWEK Java API classes 33

ODNamedQuery
ODNamedQuery objects represent Content Manager OnDemand named
queries. Use ODNamedQuery objects in conjunction with ODFolder to retrieve or
execute existing named queries and save new named queries.

Table 2-10 lists the commonly used methods.

Table 2-10 ODNamedQuery methods

char getType()
Get the type for this criterion.

int[] getValidOperators()
Get the valid operators for this criterion.

boolean isRequired()
Determine whether a search value is required for this criterion.

void setOperator(int op)
Set the operator for this criterion.

void setSearchValue(String val)
Set the search value for this criterion.

void setSearchValues(String val1, String val2)
Set the search values for this criterion when the operator is
BETWEEN or NOT BETWEEN.

void setSortOrder(int val)
Set the sort order for the field to which this criterion refers.

boolean isQueryable()
Determine whether this criterion can be used to narrow a
search.

boolean isDisplayable()
Determine whether this criterion may be displayed to users.

Data type returned Method and description

String getName()
Get this named query’s name.

int getNumCriteria()
Get the number of criteria that this named query
specifies.

Enumeration
(of ODNamedQueryCriteria)

getCriteria()
Get this named query’s criteria.

Data type returned Method and description
34 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

ODNamedQueryCriteria
ODNamedQueryCriteria objects represent the criteria of an OnDemand named
query. Obtain the criteria by calling the ODNamedQuery.getCriteria() method.

Table 2-11 lists the methods.

Table 2-11 ODNamedQueryCriteria methods

2.1.6 Document data retrieval classes

The ODHit and ODHitProperties classes convey index data from the OnDemand
server. ODHit can also be used to retrieve document content from the server.
ODNote objects convey notes associated with a document.

ODHit
ODHit objects represent single Content Manager OnDemand document index
entries.

The ODFolder.search() method returns a Java vector that contains the hits, if any,
that satisfy the ODFolder object’s current search criteria. ODHit objects convey
criterion and display values for their containing folder’s index fields. The display
values are suitable for presentation to users. Be sure to adhere to the folder’s
display order so that the users’ view of document index data is consistent.

Each ODHit object stores a document ID (docid) that uniquely identifies the
document on the server. Given this document ID, you can obtain the
corresponding ODHit object with a call to the ODFolder.recreateHit() method.
Note that the document IDs are occasionally altered by server operations.
Therefore, it is unwise to store them indefinitely as persistent bookmarks.

Data type returned Method and description

String getName()
Get the criterion name.

int getOperator()
Get the search operator.

String[] getSearchValues()
Get the search values.
 Chapter 2. ODWEK Java API classes 35

Table 2-12 lists the most commonly used ODHit methods.

Table 2-12 Principle ODHit methods

Data type returned Method and description

char
(one of the FileTypeXXX
constants defined in interface
ODConstant; see the
Javadoc documentation)

getDocType()
Get document type for this hit.

byte[] getDocument()
Get document content for this hit.

String getFolderName()
Get the name of the folder associated with this hit.

String getMimeType()
Get the MIME type for the document referenced by this
hit.

Vector getNotes()
Get notes associated with the referenced document.

String[] getPrinterNames()
Get list of server printers specific to this hit.

ODHitProperties getProperties()
Get the OnDemand internal properties for this hit.

void getResources(String fileName)
Get AFP resources for this hit, if applicable.

byte[] retrieve(String viewer)
Retrieve the referenced document.

byte[] retrieveSegment(int segment)
Retrieve document content for a segment of a large
object for this ODHit.

int getNumSegments()
Get number of segments for this hit.

String getDisplayValue(String criteriaName)
Get the given display field value.

String getDocId()
Get the persistent document ID.
Attention: If a document is updated or otherwise
modified, this document ID can and will change.
36 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

ODHitProperties
The ODHitProperties object represents internal property values of an ODHit
object. Obtain the property information by calling the ODHit.getProperties()
method.

Table 2-13 lists the commonly used ODHitProperties methods.

Table 2-13 Commonly used ODHitProperties methods

ODNote
ODNote objects convey OnDemand document notes. Obtain the document note
information by calling the ODHit.getNotes() method.

Table 2-14 lists selected methods on the ODNote class.

Table 2-14 Selected ODNote methods

Data type returned Method and description

String getApplicationGroupName()
Get the name of the referenced document’s application group.

String getApplicationName()
Get the name of the referenced document’s application.

long getLength()
Get the full length of the referenced document in bytes.

String getLoadName()
Get the load ID; this value is shared by all documents that are
loaded in the same arsload batch.

Data type returned Method and description

String getDateTime()
Get the date and time this note was created.

int getPageNum()
Get the page number for this note.

String getUserId()
Get the creator of this note.

boolean isPublic()
Get whether this note is public.

String getText()
Get this note’s text.
 Chapter 2. ODWEK Java API classes 37

2.1.7 Error handling class

The APIs specify only one custom exception class, which is the ODException
class.

ODException
The ODException class is for all exceptions thrown by the ODWEK Java APIs. If
ODWEK’s logging is enabled, the APIs log diagnostic information to disk when an
ODException is created. Application programs should place all API calls within
try and catch blocks or at least bracket every logical unit of work such as a
document search.

When you catch an ODException, ensure that your application does not leak
native resources through the ODServer instance. That is, no ODServer can go
out of scope for garbage collection before its logoff() and terminate() methods
are called.

Table 2-15 shows ODException methods.

Table 2-15 ODException methods

void setText(String text)
Set this note’s text.

void setPublic(boolean isPublic)
Set whether this note is public.

Data type returned Method and description

Data type returned Method and description

int getErrorId()
Get the error ID code.

String getErrorMsg()
Get the error message.

Tip: For information about Content Manager OnDemand error codes, see IBM
Content Manager OnDemand: Messages and Codes, SC27-1379, which
contains detailed descriptions. Although the guide lists the error codes with
the prefix ARS as used in the OnDemand system log, the integer maps
correctly to the error ID that is obtained from an ODException.
38 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

2.2 Sample console application

In this section, we show a simple console application that logs on to an
OnDemand server and lists the folders that have been defined. This program can
be used as a ping utility to test connectivity to the server.

When running this program from the command line, do not forget to specify the
java.library.path, so that Java can locate the ARS3WAPI.DLL file. The ICU
libraries are loaded via dependencies and must be in the default library search
path. Specify the java.library.path parameter by using the -D command line
option, as in the following example (on Windows):

java -classpath ".;C:\Program Files\IBM\OnDemand Web Enablement
Kit\api\ODApi.jar" ODPing -Djava.library.path="C:\Program
Files\IBM\OnDemand Web Enablement Kit\"

Alternatively (though not recommended for production configuration), you can
place the native libraries in the default library search path for your platform.

When setting up a development environment for ODWEK console applications
such as this example, no special Java project configuration is required. Simply
create a plain Java project. You have to reference the ODApi.jar file in your
project’s classpath or launch configuration and the native library path to the
ODWEK shared libraries.

In the Run window of an Eclipse-based integrated development environment
(IDE), you can specify the -D VM parameter and other launch configuration
parameters, as shown in Figure 2-2 on page 40. To access the Run window, from
the menu select Run → Open Run Dialog.
 Chapter 2. ODWEK Java API classes 39

Figure 2-2 VM arguments in the Run window

Example 2-1 shows the source code for the ODPing console application. After
you run this code, you see a message like the following example along with a list
of the folders that are defined on your OnDemand server:

OnDemand Server mydocserver is alive

Example 2-1 ODPing demonstration program

import java.util.Enumeration;

import com.ibm.edms.od.ODConfig;
import com.ibm.edms.od.ODConstant;
import com.ibm.edms.od.ODException;
import com.ibm.edms.od.ODFolder;
import com.ibm.edms.od.ODServer;

/**
 * This class demonstrates connecting to an OnDemand
 * server using Version 8.4 of the ODWEK Java API
 * by providing a simple ping console utility.
40 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

 */
public class ODPing
{

public static void main (String[] args) {
String serverName = "mydocserver"; // Name or IP address
String userId = "myUsername"; // User ID
String pwd = "myPassword"; // User password
int port = 1445; // Default port for OD. Configurable.

//
// Configure a new OnDemand server connection with
// the default configuration for this
// platform
//
ODServer odServer = new ODServer (new ODConfig ());

try {
//
// Set server and log-on credentials
//
odServer.setConnectType (ODConstant.CONNECT_TYPE_TCPIP);
odServer.setServerName (serverName); // Name or IP address
odServer.setPort (port);
odServer.setUserId (userId);
odServer.setPassword (pwd);

//
// Initialize the ODServer connection;
// once initialized, connection MUST be
// terminated when we're finished.
// Note use of this class' name, ODPing,
// as parameter to initialize().
//
odServer.initialize ("ODPing");

//
// Log on
//
odServer.logon ();

//
// Report ping status
//
System.out.println ("OnDemand server " +

odServer.getServerName () + " is alive");
 Chapter 2. ODWEK Java API classes 41

//
// Perform some useful function
//
listFolders (odServer);

}
catch (ODException e) {

//
// If server returns a "bad credentials"
// code 2107, then it must be alive
//
if (e.getErrorId () == 2107)
{

System.out.print ("OnDemand server " +
odServer.getServerName () + " is alive but: ");

System.out.println (e.getErrorMsg ());
}
else
{

System.err.println ("Encountered error: " +
e.getErrorMsg ());

System.err.println (" Error code: " +
e.getErrorId ());

}
}
catch (Exception e) {

// Unknown problem
e.printStackTrace ();

}
finally {

//
// Ensure user is logged off
//
try { odServer.logoff (); }
catch (Exception e) { /* ignore any problem */ }

//
// ALWAYS terminate connections that
// are no longer needed
//
odServer.terminate ();

}
}

public static void listFolders (ODServer odServer)
42 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

throws Exception
{

Enumeration en = odServer.getFolders ();
while (en.hasMoreElements ()) {

System.out.println ("Folder: " +
((ODFolder) en.nextElement ()).getName ());

}
}

}

When running the application in your environment, make sure that you update
the sample file with your OnDemand server name, user ID, and password (as
indicated by use of the bold text in the sample code).

2.3 Setting up a Web development environment by
using Rational Application Developer

We use IBM Rational® Application Developer Version 7 in this book to develop
code examples. Our development platform consists of the following components:

� Windows XP Professional SP 2.07
� Intel® Pentium® M processor 2 GHz
� 2 GB RAM
� Rational Application Developer V7
� ODWEK V8.4.0.2

In the following example, we step through the creation of a Rational Application
Developer Dynamic Web project that you can use to try the code that we present
in other chapters of this book. You might find it convenient to create a new
workspace to contain your ODWEK application projects.
 Chapter 2. ODWEK Java API classes 43

To create a workspace, in the Rational Application Developer Workspace
Launcher window, which is displayed when starting Rational Application
Developer (Figure 2-3), click Browse... and specify a new, empty workspace
directory.

Figure 2-3 Rational Application Developer: Workspace Launcher
44 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

After the desired workspace is open, configure a new Web development project.

1. Switch to the Web perspective and create a new Web project:

a. Select File → New → Project → Dynamic Web Project.

b. In the Dynamic Web Project window (Figure 2-4), enter a project name. In
this scenario, we type ITSOWEK. Click Next.

Figure 2-4 Creating a new dynamic Web project
 Chapter 2. ODWEK Java API classes 45

c. In the Project Facets window (Figure 2-5), select the JSTL check box.
Leave the other default facets selected. Click Next.

Figure 2-5 Selecting additional facets
46 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

d. In the Web Module window (Figure 2-6), if necessary, change to the Web
context to anything you want. Otherwise, accept the default values and
click Finish.

Figure 2-6 Configuring the Web module settings

2. Add the ODWEK Java library as an external reference.

The project must reference or include the ODWEK Java library classes, which
are distributed in the ODApi.jar file. Most often, developers reference the JAR
file as an external library rather than importing the class files into their project.
With an external reference to the classes, dependent projects automatically
reflect updates to ODWEK made by the system administrator. If the library
classes are imported into the project, those classes must be re-imported to
take advantage of updates.

To add the ODWEK Java library as an external reference:

a. Right-click the ITSOWEK project name and select Properties.

b. In the Properties window (Figure 2-7 on page 48):

i. In the type filter text pane on the left, select Java Build Path.
ii. In the right pane, click the Libraries tab and click Add External JARs.
iii. Select the ODApi.jar file in the <odwek installation root>/api directory.
 Chapter 2. ODWEK Java API classes 47

Figure 2-7 Java Build Path

3. In the Edit System Variable window (Figure 2-8), update the path system
environment variable to include the <odwek installation root> directory by
using the method that is appropriate for your platform.

The ODWEK library consists of Java classes that rely on native components.
One method of referencing the native libraries is to update the system search
path to include the ODWEK installation directory.

Then click OK.

Figure 2-8 Updating the path system variable to include the ODWEK base installation
directory
48 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

4. Add the ITSO ear project (ITSOWEKEAR) to the test server:

a. Before you start the server, select the servers tab, right-click the
WebSphere® Application Server 6.1 server and select Add and
Remove Projects.

b. In the Add and Remove Projects window (Figure 2-9), in the Available
projects pane, select the ITSOWEKEAR project and click Add to add the
project to the Configured Projects pane. Click Finish to save the server
configuration.

Figure 2-9 Add and Remove Projects window

5. Start the server by selecting WebSphere Application Server 6.1 and
clicking the Start the server icon.

After the server has a status of started and a state of synchronized, continue
with the following step.
 Chapter 2. ODWEK Java API classes 49

6. Add the ODWEK JAR file and native libraries to the application server search
path:

a. Right-click the server and select Run administrative console.

b. From left navigation area of the administrative console (Figure 2-10),
expand Environment and select Shared Libraries.

c. In the right pane, make sure the value of Scope reflects Node=<your node
name> and Server=server1. Click the New button to name a new shared
library.

Figure 2-10 Shared libraries

d. In the next pane (Figure 2-11 on page 51):

i. For Name, type ODWEKLIB.

ii. For Classpath, type <odwek installation root>/api/ODApi.jar for
the JAR file.

iii. For Native Library Path, type <odwek installation root>.

iv. Click OK.

v. Click Save directly to master configuration.
50 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 2-11 Adding a new shared library

Figure 2-12 shows the new shared library configuration.

Figure 2-12 New shared libraries configuration

The project is ready to start adding Web components such as servlets and
JavaServer™ Pages.
 Chapter 2. ODWEK Java API classes 51

52 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 3. ODWEK Java API examples

In this chapter, we provide examples of the usage of the OnDemand Web
Enablement Kit (ODWEK) APIs within a Web application. The application
examples are intended to be used for guidance on the different ways that Content
Manager OnDemand (OnDemand) data can be accessed.

This chapter covers the following topics:

� Examples overview
� Making a connection to Content Manager OnDemand
� Obtaining a list of cabinets and folders
� Displaying OnDemand folder information
� Obtaining a list of OnDemand folder search fields
� Displaying an Content Manager OnDemand search results list
� Retrieving and displaying an OnDemand document
� Disconnecting from OnDemand

3

Important: Use the code as is and at your own discretion. IBM will not provide
support for the example code.
© Copyright IBM Corp. 2008. All rights reserved. 53

3.1 Examples overview

For the ODWEK Java API examples in this chapter, servlets are used to illustrate
how to enable Content Manager OnDemand with a Web application. Even
though you should use more modern frameworks, such as Struts and Faces
components, to create Web applications, a basic application that uses servlets
and JavaServer Pages (JSP™) files is used throughout these examples.

Rational Application Developer V7 is used as the development workbench. The
Java examples use ODWEK V8.4. The Dynamic Web project created in Rational
Application Developer in Chapter 2, “ODWEK Java API classes” on page 21, is
expanded to add the code examples.

In most cases, the examples that are discussed are depicted as code snippets
rather than the entire block of code for the Java class. No attempt is made to
create an application that can be used as-is in a production environment in this
chapter. The fact that servlets are used in these examples gives you the flexibility
to reuse the code snippets as you want within your own framework, such as
Struts, with minimal changes.

JSP files are used to render the Web pages. The focus of these discussions is on
the actual API calls to Content Manager OnDemand that are done at the servlet
level rather than the JSP level. Designing a JSP is not discussed in any detail.

3.1.1 Example files

The Web project has been designed to have Java classes segregated by unique
packages. In order to create a package, right-click the Java Resources: src
folder from the ITSOWEK project and select new → package. The following
packages were created for the purposes of this demonstration:

� The com.ibm.istowek.beans package
� The com.ibm.istowek.servlets package
� The com.ibm.istowek.utils package
54 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Table 3-1 shows a list of the JSPs, servlets, utility files, and Java beans that are
used in the example program.

Table 3-1 Files used in the example program

Java beans
The com.ibm.itsowek.beans package contains Java classes that are used as
data Java beans for holding Content Manager OnDemand information as a result
of an API call. These bean classes hold information about different OnDemand
components such as a folder, cabinet, search criteria, search results, and a
document. Table 3-2 lists the beans.

Table 3-2 Beans

JSPs Servlets
(com.ibm.itsowek.
servlets)

Utilities
(com.ibm.itsowek.
utils)

Beans
(com.ibm.itsowek.
beans)

logon ODLogon ODServerConnection ODCabinetBean

listfolders ODInit ODUtils ODFolderBean

folderinfo ODListFolders ODListener ODCriteriaBean

searchentry ODFolderInfo ODHitBean

searchresults ODSearchEntry

hitproperties ODSearch

ODDisplayDocument

ODPassthru

ODOpenHit

Name Description

ODCabinetBean Contains getters and setters for information about an OnDemand
cabinet.

ODFolderBean Contains getters and setters for information about an OnDemand
folder.

ODCriteriaBean Contains getters and setters for information about an OnDemand
folder field.

ODHitBean Contains getters and setters for information about an OnDemand
hit in the search results list.
 Chapter 3. ODWEK Java API examples 55

Servlets
The com.ibm.itsowek.servlets package contains servlet classes that are used to
receive input from an HTTP request, call the appropriate API, and return the
OnDemand information back to a JSP. Table 3-3 lists these servlets.

Table 3-3 Servlets

Utility packages
The com.ibm.istowek.utils package contains Java classes that are general
purpose utilities that act as helper classes to other classes within the application.
Table 3-4 lists the utilities.

Table 3-4 Utilities

Name Description

ODLogon Performs a user logon to Content Manager OnDemand.

ODListFolders Retrieves all cabinets and folders that a user has permissions
to view.

ODFolderInfo Displays information about a specific folder.

ODSearchEntry Retrieves the folder field information that a user can use for
document searches.

ODSearch Searches the folder based on the selected search criteria.

ODDisplayDocument Retrieves the OnDemand document selected from the search
results list.

ODOpenHit Displays information about the selected document from the
search results list without retrieving the document.

ODInit Default servlet that is invoked from the URL to display the logon
page.

ODPassthru Handles a line data applet or AFP viewer callback for document
content.

Name Description

ODServerConnection Performs the API functions to access Content Manager
OnDemand.

ODUtils General purpose methods to perform specialized functions.

ODListener Implements the HTTPSessionListener.
56 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

JSP files
It should be noted that all of the JSPs used in the examples are in the
WebContent folder in the ITSOWEK project. Table 3-5 shows the JSPs that are
used in these examples.

Table 3-5 JSP mapping

Throughout our examples, each servlet has the doGet and doPost methods
redirected to a processRequest method to handle either type of HTTP request as
shown in Example 3-1.

Example 3-1 Redirecting the doGet() and doPost() methods

protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

processRequest(request, response);
}

protected void doPost(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

processRequest(request, response);
}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

HttpSession session = request.getSession(true);

JSP Mapping

logon.JSP ODInit servlet

listfolders.JSP ODListFolders servlet

folderinfo.JSP ODFolderInfo servlet

searchentry.JSP ODSearchEntry

searchresults.JSP ODSearch

hitproperties.JSP ODOpenHit
 Chapter 3. ODWEK Java API examples 57

Each servlet also has a synchronized code block around the API objects to
enforce thread safety throughout execution of the application. One way to do this
is to synchronize on the HttpSession object as shown in the following example:

HttpSession session = request.getSession();
synchronized (session) {
.......code execution.......
} //end synchronized
request.getRequestDispatcher(“/listfolders.JSP”).forward(request,
response);

It is important to note that the HttpSession (session) object is used throughout
these examples to store references to other objects in order to persist them
between HTTP requests. The ODServer object reference is one example of how
to store its reference in the session object. After a successful OnDemand
connection is established, then persist the ODServer object in a manner to where
it can be retrieved and used among other HTTP requests.

Connection pooling is an extension of how to persist OnDemand connections
across multiple HTTP requests within a Web transaction. Use connection pooling
to get OnDemand connections, usually for Internet types of applications such as
online customer banking. Connection pooling is not used for the examples shown
in this chapter, but is explained more in Chapter 6, “Connection pooling and
connection handling” on page 111.
58 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

3.1.2 Program flow and control

Figure 3-1 shows a summary of the example program flow and control. We
explain the details of the program in the following sections.

Figure 3-1 Program flow

3.2 Making a connection to Content Manager
OnDemand

No other API function can be performed until an OnDemand connection is
established and remains active. The OnDemand connection is represented by
the ODServer object. An active connection is one in which a user ID has been
logged on to the target OnDemand server and the logged on connection has not
timed out due to inactivity.

Servlets
com.ibm.itsowek.servlets

ODLogon

ODListFolders

ODFolderInfo

ODSearchEntry

ODSearch

ODDisplayDocument

ODListener

Utilities
com.ibm.itsowek.utils

ODServerConnection

ODServerConnection.getCabinets
ODServerConnection.getFolders
ODServerConnection.getCabinetFolders
ODServerConnection.getCriteriaInfo

ODServerConnection.getCabinets
ODServerConnection.getFolders

ODServerConnection.getFolderInfo

ODServerConnection.getSeachResults

ODServerConnection.getDocument

ODServerConnection.getListProperties

logon.jsp

searchresults.jsp
Document info

Retrieve document

searchentry.jsp

folderinfo.jsp

listfolders.jsp
Info button

Select button

*.jsps

logon

Display list of folders

Display folder information

Enter search criteria

Display document hit list

Display document Info

logoff

Display document

hitproperties.jsp

browser

ODLogoff*.jsp
Logoff button

web.xml
 Chapter 3. ODWEK Java API examples 59

You must perform the following steps to make a connection to Content Manager
OnDemand:

1. Instantiate an ODConfig object with the correct property values.
2. Instantiate a new ODServer object with the ODConfig object.
3. Initialize the ODServer object.
4. Log on with a valid OnDemand user ID.

The ODConfig object replaces the need to have the arswww.ini configuration
settings read in by the application.

Consider the Web page rendered by the logon.jsp file as shown in Figure 3-2.

Figure 3-2 The rendered logon.jsp page

The user supplies the user ID and password and server name. The server name
can come from any method you choose. Typically, a list of available OnDemand
servers is displayed by name as a selection for the user to choose. These values
can come from a properties or XML file that is read in by the application. Then
the user clicks Logon.

Then the ODLogon servlet is invoked to get an OnDemand connection. The
ODLogon.processRequest method is invoked with request parameters as shown
in Example 3-2.

Example 3-2 ODLogon servlet code snippet

HttpSession session = request.getSession(true);

synchronized (session) {
String userid = request.getParameter("userid");
String password = request.getParameter(“password”);
String server = request.getParameter(“server”);
ODServer odServer = null;

try {
// get the custom properties
Properties props = new java.util.Properties();
60 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

java.net.URL url =
ClassLoader.getSystemResource(“ODWEK.properties”);

props.load(url.openStream());

// get the ODServer
ODServerConnection odServerConnection = new ODServerConnection();
odServer = odServerConnection.getConnection(server, userid,

password, props,
request.getContextPath());

}

The servlet receives the request parameters and loads a custom properties file
that has application specific directives as shown in Example 3-3.

Example 3-3 ODWEK custom properties

Values used in constructor for ODConfig Object
AfpViewer=plugin
LineViewer=applet
MaxHits=200
MetaViewer=NATIVE
Language=ENU
TempDir=c:\\temp
TraceDir=c:\\temp

TraceLevels 0=off, 1=minimal, 2=normal, 3=maximum
TraceLevel=3

#for api demo purposes
DefaultServer=localhost
DefaultDisplayFields=

#for internet demo purposes
#DefaultServer=localhost
#DefaultUserid=mamikea
#DefaultPassword=ondemand
#DefaultFolder=Credit Card Statements
#DefaultSearchField=Account
#DefaultSearchDateField=Date
#DefaultDisplayFields=Date,Account Balance

path to properties for afp2pdf transform
 Chapter 3. ODWEK Java API examples 61

TransformProperties=C:\\SDP70\\runtimes\\base_v61\\profiles\\AppSrv01\\
properties\\odtransform.properties

These directives are used in the ODConfig constructor. We placed these
properties in a custom file to dynamically change them without having to change
the application code.

The ODServerConnection class controls the API calls. The getConnection
method establishes the connection and returns a new ODServer object as shown
in Example 3-4.

Example 3-4 ODServerConnection.getConnection() method code snippet

ODServer odServer = null;
ODConfig odConfig = null;

// get the custom afp2pdf transform properties
String transformPropsName = myProps.getProperty(“TransformProperties”);
Properties transformProps = new Properties();
transformProps.load(new FileInputStream(transformPropsName));

// Build the relative URL for the LineDataViewer Applet directory
// This would be something as '/ITSOWEK/applets'
String appletDir = new
StringBuffer().append(“/”).append(contextRoot).append(“/applets”).toStr
ing();

// set the configuration values from my custom properties
odConfig = new ODConfig(myProps.getProperty(“AfpViewer”), // AfpViewer

myProps.getProperty(“LineViewer”), // LineViewer
myProps.getProperty(“MetaViewer”), // MetaViewer
Long.parseLong(myProps.getProperty(“MaxHits”)), // MaxHits
appletDir, // AppletDir
myProps.getProperty(“Language”), // Language
myProps.getProperty(“TempDir”), // TempDir
myProps.getProperty(“TraceDir”), // TraceDir
Integer.parseInt(myProps.getProperty(“TraceLevel”)), // trace
// level
transformProps); // properties

odServer = new ODServer(odConfig);
odServer.initialize(new StringBuffer()

.append(“/”).append(contextRoot).append(“/ODPassthru”).toString());
62 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

// logon to the ODServer
odServer.logon(server, userid, password);

// print out the configuration values
// odConfig.printConfig();

return odServer;

The TransForm properties parameter on the ODConfig constructor is optional
and is only required if an AFP2xxx transformation is performed by ODWEK.

The parameters of the ODServer.initialize() method take on different meanings
depending on the requirements of the application. If the ODWEK line data viewer
applet or AFP viewer is used for viewing content, specify the name of a servlet
that accepts callback calls from these viewers. Otherwise, the parameter can be
any string value that is desired.

A counter in ODWEK is incremented for each successful initialize() call and
decremented for each terminate() call. During the lib loading process, several
internal environments, such as the messaging and trace engines, are also
initialized. This is the only time the Language= and TraceDir/TraceLevel settings
are read from the ODConfig object. The proper way to end a user’s connection to
OnDemand is to always call the ODServer.logoff() and ODServer.terminate()
methods.

After the servlet receives the new ODServer object, the reference is saved in the
session object as shown in the following example:

session.setAttribute(“odServer”, odServer);

Finally, if no exceptions are thrown, the servlet forwards the HTTP request and
response references to either another servlet or a JSP. In the case of a
successful OnDemand connection, the servlet forwards to the ODListFolders
servlet as shown in the following example:

request.getRequestDispatcher(“/ODListFolders”).forward(request,
response);

3.3 Obtaining a list of cabinets and folders

An OnDemand folder is used as a search template for stored content. To perform
a search, you must obtain and open the ODFolder object. OnDemand user IDs
are granted permission to access one or more folders. A list of these folders is
available from the ODServer object.
 Chapter 3. ODWEK Java API examples 63

OnDemand cabinets are optional. OnDemand folders can be classified under a
higher grouping of cabinets. Folders can belong to one or more cabinets.

The following example shows how to display any existing cabinet and folder
information based on the logged on user’s permissions. The ODListFolders
servlet is used to gather information about cabinets and folders and uses the
listfolders.jsp file to render the results on a Web page.

If the ODLogon servlet establishes a successful OnDemand connection, it
forwards the request to the ODListFolders servlet, and the processRequest
method is invoked as shown in Example 3-5.

Example 3-5 ODListFolders servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
ODServer odServer = (ODServer) session.getAttribute(“odServer”);
try {

// get cabinets if any exist
ODServerConnection odServerConnection = new ODServerConnection();
List listCabinets = odServerConnection.getCabinets(odServer);
if (listCabinets != null) {

request.setAttribute(“cabinets”, listCabinets);
}
// get folders
List listFolders = odServerConnection.getFolders(odServer);
if (listFolders != null) {

request.setAttribute(“folders”, listFolders);
}

}

The ODListFolders servlet calls the ODServerConnection.getCabinets method to
receive a list of ODCabinetBean objects, of which each represents an
OnDemand cabinet as shown in Example 3-6.

Example 3-6 ODServerConnection.getCabinets() method code snippet

List<ODCabinetBean> listCabinets = new ArrayList<ODCabinetBean>();
for (Enumeration cabinet_enum = odServer.getCabinets();
cabinet_enum.hasMoreElements();) {

ODCabinetBean odCabinetBean = new ODCabinetBean();
ODCabinet cabinet = (ODCabinet) cabinet_enum.nextElement();
cabinet.open();
odCabinetBean.setName(cabinet.getName());
odCabinetBean.setDescription(cabinet.getDescription());
64 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

odCabinetBean.setFolderNames(Arrays.asList(cabinet.getFolderNames()));
listCabinets.add(odCabinetBean);

}
return listCabinets;

The ODServerConnection.getFolders method is called to receive a list of
ODFolderBean objects, of which each represents an OnDemand folder as shown
in Example 3-7.

Example 3-7 ODServerConnection.getFolders() method code snippet

List<ODFolderBean> listFolders = new ArrayList<ODFolderBean>();
for (Enumeration folder_enum = odServer.getFolders();
folder_enum.hasMoreElements();) {

ODFolderBean odFolderBean = new ODFolderBean();
ODFolder folder = (ODFolder) folder_enum.nextElement();
odFolderBean.setName(folder.getName());
odFolderBean.setDescription(folder.getDescription());
odFolderBean.setApplGrpNamesArray(folder.getApplGroupNames());
listFolders.add(odFolderBean);

}
return listFolders;

The ODListFolders servlet saves the references to the list of ODCabinetBeans
and ODFolderBeans in the HTTPRequest object and dispatches the
listfolders.jsp as shown in the following example:

request.getRequestDispatcher(“/listfolders.JSP”).forward(request,
response);

By using the JSTL taglib, the JSP can iterate through the list of ODCabinet and
ODFolder beans as shown in Example 3-8.

Example 3-8 The listfolders.jsp code snippet

<c:if test="${!empty cabinets}”>
<c:forEach var="beanCabinet" items="${cabinets}">

<tr>
<td>${beanCabinet.name}</td>
<td>${beanCabinet.description}</td>
<td><c:if test="${!empty beanCabinet.folderNames}">

<c:forEach var="foldername"
items="${beanCabinet.folderNames}">
 ${foldername}

 Chapter 3. ODWEK Java API examples 65

</c:forEach>
</c:if></td>

</tr>
</c:forEach>

</c:if>

Figure 3-3 shows the rendering of the JSP file.

Figure 3-3 The rendered listfolders.jsp page

3.4 Displaying OnDemand folder information

Content Manager OnDemand can return folder information by issuing ODFolder
methods to display attribute values such as the number of folder fields and their
display order.
66 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

In our example, each ODFolder object that is displayed can select the Info button
in the listfolders.jsp file. This action invokes the ODFolderInfo servlet
processRequest method as shown in Example 3-9.

Example 3-9 ODFolderInfo servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
ODServer odServer = (ODServer) session.getAttribute("odServer");
try {

String folderName = request.getParameter("folder");

// get folder info
ODServerConnection odServerConnection = new ODServerConnection();
ODFolderBean odFolderBean =

odServerConnection.getFolderInfo(odServer, folderName);
if (odFolderBean != null) {

request.setAttribute("folderinfo", odFolderBean);
}

}

The ODFolderInfo servlet calls the ODServerConnection.getFolderInfo() method
to get information about the folder from Content Manager OnDemand as shown
in Example 3-10.

Example 3-10 ODServerConnection.getFolderInfo() method code snippet

ODFolder odFolder = odServer.openFolder(folderName);
ODFolderBean odFolderBean = new ODFolderBean();
if (odFolder != null) {

odFolderBean.setName(odFolder.getName());
odFolderBean.setDescription(odFolder.getDescription());
odFolderBean.setNumApplGroups(odFolder.getNumApplGroups());
odFolderBean.setNumCriteria(odFolder.getNumCriteria());
odFolderBean.setMaxHits(odFolder.getMaxHits());

String[] stringOrder = odFolder.getApplGroupNames();
odFolderBean.setApplGroupNames(ODUtils.stringArray(stringOrder,

"|"));

stringOrder = odFolder.getDisplayOrder();
odFolderBean.setDisplayOrder(ODUtils.stringArray(stringOrder, "|"));

stringOrder = odFolder.getQueryOrder();
odFolderBean.setQueryOrder(ODUtils.stringArray(stringOrder, "|"));
 Chapter 3. ODWEK Java API examples 67

}
return odFolderBean;

The ODFolderInfo servlet saves the ODFolderBean reference in the request
object and dispatches the folderinfo.jsp file. The JSP uses the JSTL taglib to
display the information that is held in the bean as shown in Example 3-11.

Example 3-11 The folderinfo.jsp code snippet

<c:if test="${!empty folderinfo}">
<h1>${folderinfo.name}-${folderinfo.description}</h1>
<TABLE cellpadding="1" cellspacing="1" border="1">

<TR>
<TH>Property</TH>
<th>Value</th>

</TR>
<!-- List folder properties ------->
<tr>

<td>Name</td>
<td>${folderinfo.name}</td>

</tr>
<tr>

<td>Description</td>
<td>${folderinfo.description}</td>

</tr>
<tr>

<td>Number Application Group</td>
<td>${folderinfo.numApplGroups}</td>

</tr>
<tr>

<td>Application Groups</td>
<td>${folderinfo.applGroupNames}</td>

</tr>
<tr>

<td>Number of Criteria</td>
<td>${folderinfo.numCriteria}</td>

</tr>
<tr>

<td>Display Order</td>
<td>${folderinfo.displayOrder}</td>

</tr>
<tr>

<td>Query Order</td>
<td>${folderinfo.queryOrder}</td>
68 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

</tr>
<tr>

<td>Max Hits</td>
<td>${folderinfo.maxHits}</td>

</tr>
</TABLE>

</c:if>

The folderinfo.jsp file is rendered as shown in Figure 3-4.

Figure 3-4 The rendered folderinfo.jsp page
 Chapter 3. ODWEK Java API examples 69

Figure 3-5 shows a summary of how the application establishes a connection to
the OnDemand server and displays a list of folders that the user is permitted to
see.

Figure 3-5 Program flow for connecting to the server and displaying the list of folders

3.5 Obtaining a list of OnDemand folder search fields

To perform an OnDemand folder search, you must set the folder field values with
appropriate data via the ODCriteria objects. You can also perform a folder search
by setting application group field values by using an SQL search style.

Our example shows how to retrieve the folder fields for display purposes so that a
user can complete the appropriate search information. The ODSearchEntry
servlet retrieves folder field information to be displayed in the searchentry.jsp file.
The user invokes the ODSearchEntry.processRequest() method by clicking the
Search Criteria link from the listfolders.jsp file.

Utilities
com.ibm.itsowek.utils

Servlets
com.ibm.itsowek.servlets

3-ODServerConnection
odConfig = new ODConfig

odServer = new ODServer(odConfig)
odServer.initialize(….), increment ODWEK counter

odServer.logon(server, userid, password);
return (ODServer object)

2-ODLogon
1-logon.JSP

Enter userID & pwd

// save a reference to the ODServer object in the session object
session.setAttribute(“odServer”, odServer);

Read custom properties file
odServer = odServerConnection.getConnection(server, userid,
password, props, request.getContextPath());

// If connection is successful forward the result to the ODListFolders servlet
request.getRequestDispatcher(“/ODListFolders”).forward(request, response);

4-ODListFolders

List listCabinets = odServerConnection.getCabinets(odServer)

List listFolders = odServerConnection.getFolders(odServer);

request.getRequestDispatcher(“/listfolders.JSP”).forward(request, response);
7-listfolders.jsp

Display the folder list

Select Info button

Properties file

5-ODServerConnection.getCabinets
return listCabinets

6-ODServerConnection.getfolders
return listFolders

8- ODFolderInfo

odFolderBean = odServerConnection.getFolderInfo(odServer, folderName); 9-ODServerConnection.getFolderInfo
return odFolderBean10-folderInfo.jsp

Display the folder info
70 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

In this example, the user is given the ability to select a folder from a cabinet to
search or to select any folder that the user has permissions to search. For any
folder that is chosen, the ODSearchEntry servlet retrieves a list of ODCriteria
objects, which represent information about each OnDemand folder field, as
shown in Example 3-12.

Example 3-12 ODSearchEntry servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
ODServer odServer = (ODServer) session.getAttribute("odServer");
String selectedCabinetName = request.getParameter("Cabinet");
String selectedFolderName = request.getParameter("Folder");

try {
ODServerConnection odServerConnection = new ODServerConnection();
// get cabinets if any exist
if (selectedCabinetName != null) {

List listCabinets = odServerConnection.getCabinets(odServer);
if (listCabinets != null) {

request.setAttribute("cabinets", listCabinets);
}

}
// get all alll folders for display or get only cabinet folders
List listFolders = null;
if (!selectedCabinetName.equals("List All Folders")) {

listFolders = odServerConnection.getFolders(odServer);
}
else {

listFolders = odServerConnection.getCabinetFolders(odServer,
selectedCabinetName);

}
if (listFolders != null) {

request.setAttribute("folders", listFolders);
}
// get criteria
List listCriteria = odServerConnection.getCriteriaInfo(odServer,

selectedFolderName);
if (listCriteria != null) {

request.setAttribute("criterias", listCriteria);
}

}

 Chapter 3. ODWEK Java API examples 71

The ODSearchEntry servlet calls the ODServerConnection.getCabinets() and
getFolders() methods as was performed in the ODListFolder servlet. A call is also
made to the ODServerConnection.getCabinetFolders() method to retrieve a list
of ODFolder objects that are in the selected cabinet as shown in Example 3-13.

Example 3-13 ODServerConnection.getCabinetFolders() method code snippet

List<ODFolderBean> listFolders = new ArrayList<ODFolderBean>();
for (Enumeration cabinet_enum = odServer.getCabinets();
cabinet_enum.hasMoreElements();) {

ODCabinet cabinet = (ODCabinet) cabinet_enum.nextElement();
if (cabinet.getName().equals(cabinetName)) {

cabinet.open();
String[] folders = cabinet.getFolderNames();
for (int j = 0; j < cabinet.getNumFolders(); j++) {

ODFolder folder = odServer.openFolder(folders[j]);
ODFolderBean odFolderBean = new ODFolderBean();
odFolderBean.setName(folder.getName());
odFolderBean.setDescription(folder.getDescription());
listFolders.add(odFolderBean);

}
}

}

return listFolders;

The ODSearchEntry servlet calls the ODServerConnection.getCriteriaInfo()
method to retrieve a list of folder field objects that are in the OnDemand folder.
The getCriteriaInfo() method retrieves the search attributes for each folder field
that was defined by the OnDemand administrator. An ODCriteria object is created
to represent each folder field that can be queried as shown in Example 3-14.

Example 3-14 ODServerConnection.getCriteriaInfo() method code snippet

List<ODCriteriaBean> listCriterias = new ArrayList<ODCriteriaBean>();
// open the slected folder
ODFolder odFolder = odServer.openFolder(folderName);

// get list of odcriteria and iterate
for (Enumeration criteria_enum = odFolder.getCriteria();
criteria_enum.hasMoreElements();) {

ODCriteriaBean odCriteriaBean = new ODCriteriaBean();
ODCriteria criteria = (ODCriteria) criteria_enum.nextElement();
// make sure this is elgible for query display
if (criteria.isQueryable()) {

odCriteriaBean.setName(criteria.getName());
72 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

char typeCriteria = criteria.getType();
odCriteriaBean.setTypeName(ODUtils.getTypeName(typeCriteria));

// get the operators that have been defined for this field
int opers[] = criteria.getValidOperators();
String[] validOperatorNames = new String[opers.length];
for (int i = 0; i < opers.length; i++) {

validOperatorNames[i] = ODUtils.operatorName(opers[i]);
}

odCriteriaBean.setValidOperatorNames(Arrays.asList(validOperatorNames))
;

// set if this field value must be entered
odCriteriaBean.setRequired(criteria.isRequired());

listCriterias.add(odCriteriaBean);
}

}
return listCriterias;

The ODSearchEntry servlet receives a list of ODCriteriaBeans, which represent
valid ODCriteria objects that are eligible to be queried. The list is saved as a
reference in the request object, and the searchentry.jsp file is displayed as shown
in Figure 3-6 on page 74.
 Chapter 3. ODWEK Java API examples 73

Figure 3-6 The rendered searchentry.jsp page

3.6 Displaying an Content Manager OnDemand search
results list

After the ODCriteria object values are set, you can perform an OnDemand folder
search to return the search results list that is commonly referred to as a hitlist.

Our example shows how to receive search information from the searchentry.jsp
file and perform a search to obtain a list of objects that represent OnDemand
content such as a document. The ODSearch servlet receives search information
from the searchentry.jsp file and performs the folder search.

The ODSearch servlet receives the search values and folder names from the
searchentry.jsp file. The servlet iterates across each ODCriteria object in the
folder and sets each folder field’s value or values based on whether the value
was specified in the searchentry.jsp file as shown in Example 3-15 on page 75.
74 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Example 3-15 ODSearch servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
ODServer odServer = (ODServer) session.getAttribute("odServer");
String selectedFolderName = request.getParameter("Folder");
String sqlStatement = request.getParameter("SQL_Statement");
String applGroup = request.getParameter("appl_group");
String value = null;
try {

// open the selected folder
ODFolder odFolder = odServer.openFolder(selectedFolderName);
ODFolderBean odFolderBean = new ODFolderBean();
String[] folderFieldDisplayNames = odFolder.getDisplayOrder();
odFolderBean.setDisplayOrderArray(folderFieldDisplayNames);
odFolderBean.setName(selectedFolderName);
if (sqlStatement != null) {

odFolder.setApplGroupForSearchWithSQL(applGroup);
}
else {

for (Enumeration criteria_enum = odFolder.getCriteria();
criteria_enum.hasMoreElements();) {

// For each search criteria in the folder,
ODCriteria criteria = (ODCriteria)

criteria_enum.nextElement();
// The parameter with the criteria name (Name) will have

the
// value to search for
value = request.getParameter(criteria.getName());
// If a value is provided, set the oper and value of the
// criteria.
if (value != null && !value.equals("")) {

// The parameter 'Name_' will have the character
// representation of the operator integer.
int oper =

Integer.valueOf(request.getParameter(criteria.getName() + "_"))
.intValue();

criteria.setOperator(oper);
// The parameter 'Name_2' will have the second value for
// the BETWEEN/NOTBETWEEN operators
if (oper == ODConstant.OPBetween || oper ==

ODConstant.OPNotBetween) {
 Chapter 3. ODWEK Java API examples 75

// For BETWEEN/NOTBETWEEN, set two values in the
criteria.

criteria.setSearchValues(value,
request.getParameter(criteria.getName() +

"_2"));

}
else {

// Just set the one value for the search
criteria.setSearchValue(value);

}
}

}

if (request.getParameter("andOr").equals("OR")) {
odFolder.setOrSearchCriteria(true);

}
else {

odFolder.setOrSearchCriteria(false);
}

}
// Return the search result vector after all criteria is set.
ODServerConnection odServerConnection = new ODServerConnection();
List listHits = odServerConnection.getSearchResults(odServer,

odFolder, sqlStatement,
odFolderBean.getDisplayOrderArray());

if (listHits != null) {
request.setAttribute("hits", listHits);

}
if (odFolder != null) {

session.setAttribute("folderbean", odFolderBean);
}

}

76 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

When the folder field (ODCriteria) values are set, the ODSearch servlet calls the
ODServerConnection.getSearchResults() method to perform the OnDemand
search. This method generates a list of ODHit objects that represent the
OnDemand document information that is returned from a successful search as
shown in Example 3-16.

Example 3-16 ODServerConnection.getSearchResults() method code snippet

List<ODHitBean> listHits = new ArrayList<ODHitBean>();
// get list of odcriteria and iterate
Vector searchResults = null;
if (sqlStatement != null) {

odFolder.search(sqlStatement);
}
else {

searchResults = odFolder.search();
}

if (searchResults != null && searchResults.size() > 0) {
Iterator iter = searchResults.iterator();
while (iter.hasNext()) {

ODHitBean odHitBean = new ODHitBean();
ODHit odHit = (ODHit) iter.next();
odHitBean.setDocId(odHit.getDocId());

// for each folder field to display, get the field value for
display

String[] displayVals = new
String[folderFieldDisplayNames.length];

for (int i = 0; i < folderFieldDisplayNames.length; i++) {
displayVals[i] =

odHit.getDisplayValue(folderFieldDisplayNames[i]);
}
odHitBean.setDisplayCriteria(displayVals);
listHits.add(odHitBean);

}
}
return listHits;
 Chapter 3. ODWEK Java API examples 77

The ODSearch servlet forwards the request to the searchresults.jsp file
(Figure 3-7).

Figure 3-7 The rendered searchresults.jsp page
78 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 3-8 shows a summary of how the application displays folder search fields
and lists the search results.

Figure 3-8 Program flow for displaying search fields and listing the search results

3.7 Retrieving and displaying an OnDemand document

Several methods can be invoked to retrieve and display an OnDemand
document. In the example in this section, the document is displayed in its native
data format, such as Advanced Function Presentation (AFP). The discussion in
Chapter 10, “Applets, plug-ins, and transforms” on page 197, shows how to
invoke a transform of an AFP document. Example 3-17 on page 80 shows how to
retrieve information about a document by querying its properties. The document
properties can be retrieved without retrieving the document content.

Utilities
com.ibm.itsowek.utils

Servlets
com.ibm.itsowek.servlets

2-ODSearchEntry

1-listfolders.jsp
Select Search Criteria link

ODSearchEntry.processRequest

// if cabonet name specified
List listCabinets = odServerConnection.getCabinets(odServer);

// if cabinet name = “list all folders”
listFolders = odServerConnection.getFolders(odServer);

// else search specific folder
istFolders = odServerConnection.getCabinetFolders(odServer, selectedCabinetName);

// get criteria
List listCriteria = odServerConnection.getCriteriaInfo(odServer, selectedFolderName);

3-ODServerConnection.getCabinets
return listCabinets

4-ODServerConnection.getfolders
return listFolders

7-searchentry.jsp.
Display Folder field information

Select folder

5-ODServerConnection.getCabinetFolders
return listFolders;

6-ODServerConnection.getCriteriaInfo
return return listCriterias;

ODCriteria objects
ODCriteria objects
ODCriteria objects

8-ODSearch
List listHits = odServerConnection.getSearchResults(…

…
ODHit objects
ODHit objects
ODHit objects

search values and
folder names

9-odServerConnection.getSearchResults
return listHits;

10- searchresults.jsp

Display the document hit list
 Chapter 3. ODWEK Java API examples 79

Example 3-17 ODDisplayDocument servlet code snippet

HttpSession session = request.getSession();
ServletOutputStream out = response.getOutputStream();

synchronized (session) {
try {

ODServer odServer = (ODServer) session.getAttribute("odServer");
String folderName = request.getParameter("folder");
String docId = request.getParameter("docid");

ODServerConnection odServerConnection = new ODServerConnection();
ODHitBean odHitBean = odServerConnection.getDocument(odServer,

folderName, docId,
true, false);

response.setContentType(odHitBean.getMimeType());

// write the byte array out to the browser
out.write(odHitBean.getOdDocument());

}

Each row in the searchresults.jsp file represents an OnDemand document by
using the ODHit object. Each ODHit object has a document ID that is used by
Content Manager OnDemand to retrieve the content. Our example shows how to
recreate the ODHit object from the document ID that is sent as a parameter from
the selected document to view from the searchresults.jsp file.

Displaying the document ID on the search results page, either as a visible or
hidden html field, can be a security issue for some applications. Another
technique to circumvent this issue is to store the ODHit object search results as a
list in the HTTPServletSession object without displaying the document ID in the
Web page. When the user selects a document from the results list, the
ODDisplayDocument matches the relative position of the selected document to
the stored ODHit object and uses the relative position to retrieve the document.
80 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The servlet calls the retrieve() method to retrieve the content of the OnDemand
document as a byte array. This method is also used to retrieve document
information as shown in Example 3-18.

Example 3-18 Retrieve() method code snippet

ODHitBean odHitBean = new ODHitBean();
ODFolder odFolder = odServer.openFolder(folderName);

// recreate the ODHit object from the docId
ODHit odHit = odFolder.recreateHit(docId);
odHitBean.setDocId(docId);

// retrieve the content
if (retrieveContent) {

// retrieve the content
char fileType = odHit.getDocType();
String viewerType = "";
if (transformDoc) {

viewerType = ODUtils.getTransformDocType(fileType);
}
odHitBean.setOdDocument(odHit.retrieve(viewerType));

}
else {

// retrieve document info only
getHitProps(odFolder, odHit, odHitBean);

}

// get the mime type
odHitBean.setMimeType(odHit.getViewMimeType());
odFolder.close();

return odHitBean;
 Chapter 3. ODWEK Java API examples 81

The result is a display of an OnDemand AFP document that is being rendered by
the AFP browser plug-in shown in Figure 3-9.

Figure 3-9 The rendered AFP document

An application can access information about a document that the application
might need to know prior to retrieving a document. One such example is
interrogating the document length for each ODHit in the search results list. The
application might need to know when a document is larger than an acceptable
boundary. Based on the information, the application can deny the user the ability
to retrieve the document. Then the application can stage the retrieval request
during a non-peak time of day and e-mail the document to the user at that time.

When the Info button is selected, the ODDisplayDocument servlet is invoked to
retrieve information about the document without retrieving the document content
from the OnDemand Object Server. The ODDisplayDocument servlet uses both
the ODHit and ODHitProperties APIs to retrieve and consolidate information
about the selected document as shown in Example 3-19 on page 83.
82 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Example 3-19 ODServerConnection.getHitProps() method code snippet

odHitBean.setResourceID(odHit.getResourceID());
odHitBean.setViewerType(ODUtils.getViewerTypeString(odHit.getViewerType
()));
odHitBean.setViewExt(odHit.getViewExt());
ODHitProperties hitProps = odHit.getProperties();
odHitBean.setLength(String.valueOf(hitProps.getLength()));
odHitBean.setCompLength(String.valueOf(hitProps.getCompLength()));
odHitBean.setCompOffset(String.valueOf(hitProps.getCompOffset()));
odHitBean.setOffset(String.valueOf(hitProps.getOffset()));
odHitBean.setLoadName(hitProps.getLoadName());
odHitBean.setStartDate(hitProps.getStartDate());
odHitBean.setEndDate(hitProps.getEndDate());
odHitBean.setTableName(hitProps.getTableName());

return odHitBean;
odHitBean.setViewMimeType(odHit.getViewMimeType());

When the ODDisplayDocument receives an ODHitBean object back, the request
is forwarded to the hitproperties.jsp file as shown in Figure 3-10.

Figure 3-10 The rendered hitproperties.jsp page
 Chapter 3. ODWEK Java API examples 83

3.7.1 Viewing line data documents with the applet

For line data documents that need to be viewed in their original format, the line
data applet is an option to use as the viewer. To use the applet, copy the following
directories to your Rational Application Developer project WebContent directory:

� <odwek installation root>/applets
� <odwek installation root>/images

When the applet is invoked by the browser for the first time, it prompts the user
with a certificate for approval to run locally on the user’s machine. When the
applet is loaded, it makes callbacks to the Web application to retrieve the
document content and format it locally. The applet makes a callback to a servlet
that is identified when the ODServer object was initialized. We initialized the
ODServer object as shown in the following example:

odServer.initialize(new StringBuffer()
.append("/").append(contextRoot).append("/ODPassthru").toString());

By using our example, the callback is made to /ITSOWEK/ODPassthru.

Line data can be searched and retrieved from the Loan Delinquency Reports LO
folder and searched by the default criteria set by the administrator. Figure 3-11
on page 85 shows the search results page.

Note: The viewerPassthru() mechanism is also used by the AFP plug-in.
84 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 3-11 The rendered searcresults.jsp page

When a user wants to display a line document, the applet is retrieved, and the
call back is made from within the HTML as shown in Example 3-20.

Example 3-20 Line data viewer applet HTML

<html>
<head>
<script src="/ITSOWEK/applets/IEFix.js"></script>
<title>ODLineDataViewer Applet </title>
</head>
<body onload="getHistoryCnt();"
topmargin="0" leftmargin="0" marginwidth="0" marginheight="0">
 <div id="APPLET_DIV_ID">
 </div>
 <script>
 CreateControl("APPLET_DIV_ID",
 "http://java.sun.com/getjava/",
 "com.ibm.edms.od.ODLineDataViewer",
 "/ITSOWEK/applets/",
 "1.4.1",
 "ODLineDataViewer2.jar",
 "/applets/images",
 Chapter 3. ODWEK Java API examples 85

 "",
 "/ITSOWEK/ODPassthru",
 "0",
 "",
 "0",
 "Loan+Delinquency+Reports+LO",

"v7126-9241-9243-9242-NOB1-1FAAA%24-0-1446-25257-6849-85-79-0-1-0-%5E%0
19040%0110000%011000999",
 "plugin",
 "0");
 </script>
 </body>
</html>

Example 3-21 shows the ODPassthru servlet code snippet.

Example 3-21 ODPassthru servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
try {

ODServer odServer = (ODServer) session.getAttribute("odServer");

byte[] results =
odServer.viewerPassthru(request.getQueryString());

OutputStream outputStream = response.getOutputStream();
outputStream.write(results);

}

86 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 3-12 shows the document as displayed by using the applet viewer.

Figure 3-12 Line data viewer applet
 Chapter 3. ODWEK Java API examples 87

Figure 3-13 shows a summary of how the application retrieves and displays a
document.

Figure 3-13 Program flow for retrieving and displaying a document

3.8 Disconnecting from OnDemand

In the previous examples, we show how a user is connected or logged on to
Content Manager OnDemand. We also show how the ODServer object that
contains the connection is saved in the HttpServletSession object during the
entire user experience until the user’s session is terminated.

The application must always attempt to disconnect the OnDemand connection
either from an explicit user logoff action or when another condition, such as a
session time-out, is detected. The examples in this chapter show the application
persisting the connection in the session object. Another alternative is to persist
and control the connections by connection pooling, which we discuss in
Chapter 6, “Connection pooling and connection handling” on page 111.

Utilities
com.ibm.itsowek.utils

Servlets
com.ibm.itsowek.servlets

2-ODDisplayDocument
// find selected document within ODHiit objects
String docId = request.getParameter("docid");

// use the docid to retrieve the document
ODHitBean odHitBean = odServerConnection.getDocument(..);

// write the byte array out to the browser
out.write(odHitBean.getOdDocument());

// get document properties

1- searchresults.jsp
Display the document hit list

Select a document
or

Select the info button

3-odServerConnection.getDocument

// recreate the ODHit object from the docId
ODHit odHit = odFolder.recreateHit(docId);

if (retrieveContent)
{
// retrieve the content
if (transformDoc)

viewerType = ODUtils.getTransformDocType(fileType);
odHitBean.setOdDocument(odHit.retrieve(viewerType));
}

else
{
// retrieve document info only
getHitProps(odFolder, odHit, odHitBean);
}

return odHitBean;

byte array

browser

A-ODServerConnection.getHitProps
ODHitProperties hitProps = odHit.getProperties();

return odHitBean;

hitproperties.jsp
88 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The ODLogoff servlet is invoked whenever a user selects to log off their
OnDemand connection from any of the JSP files. The application should always
try to perform the ODServer.logoff() and ODServer.terminate() methods as
shown in Example 3-22. These methods clean up user connections and enable
the shared libraries to free up allocated native system memory.

Example 3-22 ODLogoff servlet code snippet

HttpSession session = request.getSession();

synchronized (session) {
ODServer odServer = (ODServer) session.getAttribute("odServer");
try {

if (odServer != null) {
odServer.logoff();
odServer.terminate();

}
session.removeAttribute("odServer");
session.removeAttribute("folderbean");

}

The application might also want to implement an HttpSession listener that is
invoked by the application server whenever an HttpSession object becomes
invalid. Ensure that the Web.xml is configured for a session listener as shown in
the following example:

<listener-class>com.ibm.itsowek.utils.ODSessionListener</listener-class>

Our example has implemented the HttpSessionListener.sessionCreated()
method to terminate the connection and remove any object references from the
session object as shown in Example 3-23.

Example 3-23 ODSessionListener.sessionCreated() method code snippet

public void sessionCreated(HttpSessionEvent sessionEvent) {
HttpSession session = sessionEvent.getSession();
ODServer odServer = null;
try {

if (session != null) {
odServer = (ODServer) session.getAttribute("odServer");

}

 Chapter 3. ODWEK Java API examples 89

synchronized (odServer) {
if (odServer != null) {

odServer.logoff();
odServer.terminate();

}
}

}

Figure 3-14 shows a summary of how the application disconnects from the
OnDemand server.

Figure 3-14 Program flow for disconnecting from the server

Servlets
com.ibm.itsowek.servlets

2-ODLogoff

if (odServer != null)
{
odServer.logoff();
odServer.terminate();

}

1- any.jsp
Select the logoff button

web.xml
// create session istener
<listener-class>com.ibm.itsowek.utils.ODSessionListener</listener-class>

ODSessionListener
public void sessionCreated(HttpSessionEvent sessionEvent)

{
if (odServer != null)

{
odServer.logoff();
odServer.terminate();
}

}

User invoked logoff

Invalid HttpSession object invoked logoff
90 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 4. Internet use case

In this chapter, we provide a use case of how to use the Java APIs for online
Internet access to IBM Content Manager OnDemand.

The chapter covers the following topics:

� Use case overview
� Connection pooling consideration for the use case
� Sample application for the use case

4

© Copyright IBM Corp. 2008. All rights reserved. 91

4.1 Use case overview

A common use case across many different business segments involves allowing
registered customers to select a range of documents to view. For example, in the
banking industry case, these documents can be one or more bank statements
that can be selected from a predefined number of months. For health insurance
companies, the documents might be explanation-of-benefit statements. For utility
companies, the documents might be bills or invoices.

The customer is usually a user who is registered to the company’s Web site. The
registration process gives entitlement back to the user in the form of credentials,
perhaps a user ID and password. To gain access to the company applications,
the user submits their credentials from a Web page, such as a portal, to be
authenticated by the company’s Web application. After the user is authenticated,
the application places constraints on what tasks the user can perform when
navigating the Web site.

Currently Content Manager OnDemand requires each user who needs access to
have a defined user ID. However, it is not manageable to create an OnDemand
user ID for each registered Internet user. The user population can reach into the
thousands or millions. Therefore, most applications perform a search on behalf of
a user by using a user ID that has the permissions to search a specific folder and
retrieve one or more documents. The assumption is that if the user is
authenticated, and the constraints are placed on the search values to guarantee
unique results, then one or more user IDs can be defined to have full permissions
to the folder that is searched.

Regardless of the industry that has OnDemand statements to present to the
customer, typically two kinds of transactions are possible that a customer can
perform.

� Displaying a search results list of documents, usually within a predefined date
range.

The application performs the search on behalf of the user. This type of
transaction is in contrast to examples in Chapter 3, “ODWEK Java API
examples” on page 53. In that chapter, a user is given permission to select a
folder to search and to specify search criteria for one of more folder fields. In
this use case, after a user is authenticated, the application chooses a unique
key or key combination to ensure that the search results are for that user and
performs the search without any user interaction.

� Selecting a document from the search results list that is presented

The data type of the document comes into consideration when displaying
content to Internet users. For example, if the document is stored in Content
Manager OnDemand as an AFP data stream, either the users need an AFP
92 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

viewer program locally installed on their machine, or data conversion must
occur to provide a data stream that is more palatable for viewing. In many
cases, transforms are performed by the application, such as AFP to PDF, to
make it easier for the user to view. The PDF viewer is easily obtainable if it is
not already installed on the user’s machine. The AFP viewer, from a plug-in
for example, might be more difficult to obtain and manage by the company
that is providing the Web service.

The following steps are involved for this example:

1. A user signs on to Web site with their credentials.

2. The Web application authenticates the user.

3. The Web application retrieves an OnDemand connection from a pool of
connections.

4. The Web application selects a predefined OnDemand folder to search.

5. The Web application assigns one or more OnDemand folder field values to
perform a search unique to the user.

6. The Web application performs a search, for example by account number and
date range, and returns a search result list to the user.

7. The Web application closes the OnDemand folder.

8. The Web application releases the OnDemand connection back to the pool of
connections.

9. The user selects a document to view from the search results list.

10.(Optional) The user is re-authenticated before being allowed to retrieve the
document.

11.The Web application retrieves an OnDemand connection from a pool of
connections.

12.The Web application retrieves the document and optionally performs a data
transformation before releasing the document to the user.

13.The Web application releases the OnDemand connection back to the pool of
connections.
 Chapter 4. Internet use case 93

4.2 Connection pooling consideration for the use case

For the kind of use cases mentioned in the previous section, consider
implementing connection pooling within the design of the OnDemand Web
application. While we discuss connection pooling in detail Chapter 6,
“Connection pooling and connection handling” on page 111, we explain
connection pooling that is applicable in this use case.

The implementation of connection pooling for OnDemand Web access can
provide a significant performance improvement when using APIs. To perform an
OnDemand search, a user ID must be logged on and a folder must be opened.
Also, when a user’s session is completed, log off the user and terminate the
OnDemand session. Performing the steps to log on and log off repeatedly by
using the APIs can degrade the performance of the Web server.

The examples in Chapter 3, “ODWEK Java API examples” on page 53, do not
show connection pooling, but show methods on how to save the ODServer
connection in the HttpServletSession object. This gives the sense of persisting
the user’s connection throughout their set of transactions. The application is
dependent upon detecting a session termination by either the user explicitly
selecting a logoff link or by another condition such as a session time-out that
invokes the HTTP session listener implementation.

Implementing a connection pool can take on many different designs. While there
are several methods to implement connection pooling, the method that is
selected is based on a design decision made by the architects. The example in
this chapter shows a pool of OnDemand connections that are created
automatically during the initialization of a servlet. The connections are retrieved
and returned during the doGet and doPost methods. All of the OnDemand
connections are terminated after the servlet instance is destroyed. Either the
connection pool or the application can own the responsibility of creating and
opening the ODFolder object. In our example, the application creates the
ODFolder object.

The connections in the pool are represented by ODServer object instances. For
internet users, such as banking customers, where all of the statements are
accessed from one OnDemand folder, the connection pool can be extended to
also open the folder as part of creating the ODServer instance. For applications
where the OnDemand folder is selected at random by the user, then it might
make more sense to open the folder outside of the connection pooling
implementation.
94 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Our example uses an ODConnectionPool class to manage the OnDemand
server connections. when the servlet initializes, it calls the ODConnectionPool
constructor to create a predefined number of ODServer connections as shown
Example 4-1.

Example 4-1 ODConnectionPool code snippet

this.server = server;
this.username = username;
this.password = password;
this.myProps = myProps;

this.maxConnections = maxConnections;
this.waitIfBusy = waitIfBusy;

if (initialConnections > maxConnections)
initialConnections = maxConnections;

availableConnections = new Vector(initialConnections);
busyConnections = new Vector();

for (int i = 0; i < initialConnections; i++)
availableConnections.addElement(makeNewConnection());

}

...code...
private ODServer makeNewConnection() throws Exception {

try {
// get the custom afp2pdf transform properties
String transformPropsName =

myProps.getProperty("TransformProperties");
Properties transformProps = new Properties();
transformProps.load(new FileInputStream(transformPropsName));

// Build the relative URL for the LineDataViewer Applet directory
// This would be something as '/ITSOWEK/applets'
String appletDir = new

StringBuffer().append("/").append(myProps.getProperty("ContextRoot"))
.append("/applets").toString();

// set the configuration values from my custom properties
ODConfig odConfig = new

ODConfig(myProps.getProperty("AfpViewer"), // AfpViewer
myProps.getProperty("LineViewer"), // LineViewer
 Chapter 4. Internet use case 95

myProps.getProperty("MetaViewer"), // MetaViewer
Long.parseLong(myProps.getProperty("MaxHits")), // MaxHits
appletDir, // AppletDir
myProps.getProperty("Language"), // Language
myProps.getProperty("TempDir"), // TempDir
myProps.getProperty("TraceDir"), // TraceDir
Integer.parseInt(myProps.getProperty("TraceLevel")), //

trace
// level
transformProps); // properties

// Initialize ODServer object and login
System.out.println("Making a new ODServer connection in the

pool");
ODServer connection = new ODServer(odConfig);
// connection.initialize(configDir, appName);
connection.initialize(new StringBuffer().append("/")

.append(myProps.getProperty("ContextRoot"))

.append("/ODPassthru").toString());

connection.logon(server, username, password);
return (connection);

As the servlet needs a new connection, it invokes the
ODConnectionPool.getConnection() method (Example 4-2) to receive an
ODServer object from the pool that either existed or was created when all active
connections were occupied.

Example 4-2 ODConnectionPool.getConnection() method code snippet

if (!availableConnections.isEmpty()) {
System.out.println("Getting a connection from the list");
ODServer existingConnection = (ODServer)

availableConnections.lastElement();
int lastIndex = availableConnections.size() - 1;
availableConnections.removeElementAt(lastIndex);

// If connection on available list is closed (e.g.,
// it timed out), then remove it from available list
// and repeat the process of obtaining a connection.
// Also wake up threads that were waiting for a
// connection because maxConnection limit was reached.

if (!existingConnection.isInitialized()) {
notifyAll(); // Freed up a spot for anybody waiting
96 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

return (getConnection());
}
else {

busyConnections.addElement(existingConnection);
return (existingConnection);

}
}
else {

// Three possible cases:
// 1) You haven't reached maxConnections limit. So
// establish one in the background if there isn't
// already one pending, then wait for
// the next available connection (whether or not
// it was the newly established one).
// 2) You reached maxConnections limit and waitIfBusy
// flag is false. Throw SQLException in such a case.
// 3) You reached maxConnections limit and waitIfBusy
// flag is true. Then do the same thing as in second
// part of step 1: wait for next available connection.

System.out.println("No connections avail. Trying to make a new
one");

if ((totalConnections() < maxConnections) && !connectionPending)
makeBackgroundConnection();

else if (!waitIfBusy)
throw new Exception("Connection limit reached");

// Wait for either a new connection to be established
// (if you called makeBackgroundConnection) or for
// an existing connection to be freed up.

try {
System.out.println(" Please wait...");
wait();

}
catch (InterruptedException ie) {
}

// Someone freed up a connection, so try again.
return (getConnection());

}

 Chapter 4. Internet use case 97

4.3 Sample application for the use case

The sample application is created for the Internet use case that is described in
this chapter. When a user requests access to the Internet Web site, the sample
application prompts the user for the user’s user ID and password (Figure 4-1).

Figure 4-1 Initial login

After the user enters their credentials, an authentication process can occur. We
simulated this by calling an ODAuthenticate servlet (Example 4-3). The servlet
calls another process to authenticate the user and returns the user’s account
number in order for our application to perform a search that is unique to the user.
The account number is a folder field. When this field is searched by a given
value, all of the results are returned for the specified account number value.

Example 4-3 ODAuthenticate servlet code snippet

String userid = request.getParameter("userid");
String password = request.getParameter("password");

if (!userid.equals("") && !password.equals("")) {
try {

/* authenticate the user credentials such as */
/* ClientAuthenticate ca = new ClientAuthenticate(); */
/* String accountNumber = ca.authenticate(userid, password); */
/* request.setAttribute("accountnumber", accountNumber); */

// test
String accountNumber = request.getParameter("testacct");
request.setAttribute("accountnumber", accountNumber);
// end test

}

For this example, all statements are defined to one OnDemand folder. Two folder
field names are used to perform the searches. Rather than try to discover the
folder field names by iterating through the list of ODCriteria objects as we did in
98 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 3, “ODWEK Java API examples” on page 53, we identify those fields in a
properties file to improve performance. The OnDemand administrator must keep
the application developer aware of any changes to the folder name or folder field.

After the user is authenticated, the request is forwarded to the
ODSearchRetrieve servlet. This servlet performs the OnDemand folder search
and retrieves an Ondemand document depending on the request parameters.
We added an init() method that invokes the ODConnectionPool constructor to
create the initial set of OnDemand connections. See Example 4-4.

Example 4-4 ODSearchRetrieve.init() code snippet

try {
// get the custom properties
props = new java.util.Properties();
java.net.URL url =

ClassLoader.getSystemResource("ODWEK.properties");
props.load(url.openStream());

String userid = props.getProperty("DefaultUserid");
String password = props.getProperty("DefaultPassword");
String server = props.getProperty("DefaultServer");

connectionPool = new ODConnectionPool(server, userid, password,
props);

String displayFields = props.getProperty("DefaultDisplayFields");
if (displayFields != null && !displayFields.equals("")) {

userDisplayFields = displayFields.split(",");
// userDisplayFields = Arrays.asList(splitFields);

}
}

The servlet init method is invoked whenever the servlet is first instantiated. We
elected to have the servlet loaded during the application server startup as shown
in the following Web.xml configuration file:

<load-on-startup>-1</load-on-startup>

The ODSearchRetrieve servlet performs two functions based on the function
request that is forwarded by either the ODAuthenticate servlet or the
searchresultsexternal.jsp file. For a search operation, the servlet performs a
search by opening a predefined OnDemand folder. The servlet sets the account
folder field value and date field values to search for up to a predefined number of
previous month’s worth of statements. See Example 4-5 on page 100.
 Chapter 4. Internet use case 99

Example 4-5 ODSearchRetrieve servlet code snippet

HttpSession session = request.getSession(true);

synchronized (session) {
ODServer odServer = null;
ODFolder odFolder = null;
try {

// get an OnDemand connection from the pool
odServer = connectionPool.getConnection();

String requestFunction = request.getParameter("requestfunction");

ODServerConnection odServerConnection = new ODServerConnection();
String folderName = props.getProperty("DefaultFolder");

if (requestFunction != null && requestFunction.equals("search"))
{

// get account number
String keyValue = (String)

request.getAttribute("accountnumber");
// String keyValue = request.getParameter("keyvalue");

// get the folder and field names to search
String searchFieldName =

props.getProperty("DefaultSearchField");
String searchDateName =

props.getProperty("DefaultSearchDateField");
odFolder = odServer.openFolder(folderName);
ODCriteria critKey = odFolder.getCriteria(searchFieldName);
ODCriteria critDate = odFolder.getCriteria(searchDateName);

// set the folder search criteria
critKey.setSearchValue(keyValue);
critKey.setOperator(ODConstant.OPEqual);

//calculate previous 6 months begin date
SimpleDateFormat sdf = new SimpleDateFormat("MM/dd/yy");
Calendar c = Calendar.getInstance();
String endDate = sdf.format(c.getTime());
c.add(Calendar.MONTH, -6);
String beginDate = sdf.format(c.getTime());
critDate.setSearchValues(beginDate, endDate);
critDate.setOperator(ODConstant.OPBetween);
100 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

odFolder.setOrSearchCriteria(false);

// perform search
ODFolderBean odFolderBean = new ODFolderBean();
String[] folderFieldDisplayNames = odFolder.getDisplayOrder();

// set my user defined fields to display if any in the
// properties file
if (userDisplayFields == null) {

odFolderBean.setDisplayOrderArray(odFolder.getDisplayOrder());
}
else {

odFolderBean.setDisplayOrderArray(userDisplayFields);
}

odServerConnection = new ODServerConnection();
List<ODHitBean> listHits =

odServerConnection.getSearchResults(odServer, odFolder,
null, odFolderBean.getDisplayOrderArray());

.getDisplayOrderArray());
if (listHits != null) {

request.setAttribute("hits", listHits);
}

// odFolderBean.setDisplayOrderArray(folderFieldDisplayNames);
session.setAttribute("folderbean", odFolderBean);
odFolder.close();

request.getRequestDispatcher("/searchresultsexternal.jsp").forward(requ
est, response);

}
else {

if (requestFunction != null &&
requestFunction.equals("displaydoc")) {

// get request parameters
String docId = request.getParameter("docid");

// retrieve the OnDemand document
ODHitBean odHitBean =

odServerConnection.getDocument(odServer, folderName, docId,
true, true);
 Chapter 4. Internet use case 101

 response.setContentType(odHitBean.getMimeType());

// write the byte array out to the browser
ServletOutputStream out = response.getOutputStream();
out.write(odHitBean.getOdDocument());

}
}
// release this OnDemand connection back to the pool
connectionPool.free(odServer);

}

The search results are displayed in the searchresultexternal.jsp file, which is
rendered as shown in Figure 4-2.

Figure 4-2 The rendered searchresultsexternal.jsp page

In this case, the user is presented with a list of statements for the last six months.
The user can click the Display button, and the ODSearchRetrieve servlet is
102 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

invoked, but this time with a request parameter to displaydoc. The servlet
requests an OnDemand connection from the connection pool and retrieves the
document by using the document ID that passed in from the
searchresultsexternal.jsp file. This action might not be desirable for some Web
applications. As discussed in Chapter 3, “ODWEK Java API examples” on
page 53, another technique is to create a list of ODHit objects that can be
maintained in some way on the server. Instead of sending the document ID as
part of the search results, the search results JSP sends the relative location of
the selected document. The search servlet matches the selected relative location
with the ODHit object in the saved list.

In this example, we convert the AFP data stream to PDF by calling the AFP2PDF
transformation utility. This is accomplished by either how the ODConfig object
properties are set or how the retrieve method is invoked on the ODHit object.
When we determine that the file type is AFP, we set the ODHit object viewer to
PDF (Example 4-6).

Example 4-6 ODUtil code snippet

String str;
switch (fileType) {
case ODConstant.FileTypeAFP:

str = ODConstant.PDF;
break;

case ODConstant.FileTypeLINE:
str = ODConstant.APPLET;
break;

default:
str = ODConstant.NATIVE;
break;

}
return str;
 Chapter 4. Internet use case 103

By setting the object viewer to PDF, we tell Content Manager OnDemand to
transform the AFP document to PDF by using the AFP2PDF Transform utility
(Example 4-7). When the document is successfully retrieved, we get the MIME
type of the document.

Example 4-7 ODServerConnection.getDocument() method code snippet

// retrieve the content
if (retrieveContent) {

// retrieve the content
char fileType = odHit.getDocType();
String viewerType = "";
if (transformDoc) {

viewerType = ODUtils.getTransformDocType(fileType);
}
odHitBean.setOdDocument(odHit.retrieve(viewerType));

}

Figure 4-3 shows the results of the AFP document being transformed and
displayed as a PDF document by using Adobe® Reader.

Figure 4-3 AFP document transformed to PDF
104 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Part 2 Best practices,
hints, and tips

In this part, we discuss best practices, hints and tips on ODWEK Java API
usages with advanced topics such as connection pooling, globalization, and
searching.

This part includes the following chapters:

� Chapter 5, “Introduction to best practices, hints, and tips” on page 107
� Chapter 6, “Connection pooling and connection handling” on page 111
� Chapter 7, “Globalization” on page 143
� Chapter 8, “Folder searching” on page 161
� Chapter 9, “Document retrieval” on page 179
� Chapter 10, “Applets, plug-ins, and transforms” on page 197
� Chapter 11, “Document storing and updating” on page 215
� Chapter 12, “Memory and performance” on page 223
� Chapter 13, “Troubleshooting” on page 251

Part 2

Multicultural support: For more information about multicultural support, see
the definition in 7.1, “Globalization overview” on page 144.
© Copyright IBM Corp. 2008. All rights reserved. 105

106 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 5. Introduction to best
practices, hints, and tips

In this chapter, we provide a quick overview of the content of the remaining
chapters in the book. We introduce the topics and areas where best practices,
hints, and tips are discussed in these chapters. We provide a synopsis of each
chapter’s content in the following sections. Where appropriate, topics of a more
sophisticated nature are indicated as advanced.

An OnDemand Web Enablement Kit (ODWEK) Web application can often be
written without employing these advanced techniques. However, an application
that operates under heavy load, such as a middle-tier component or a batch
process, can employ one or more of these advanced methods to achieve the
required performance and scalability.

5

© Copyright IBM Corp. 2008. All rights reserved. 107

Chapter 6, “Connection pooling and connection handling”
By using connection pooling, applications, especially middle-tier and portal
applications, can scale up to meet the demands of large numbers of concurrent
requests to IBM Content Manager OnDemand. A connection pool accomplishes
this by allocating only the number of connections that are permitted for
simultaneous access to the server and queuing the excess traffic, rather than
allocating a separate connection immediately for each new request. Connection
pooling saves the time that is required to initialize new connections and prevents
a flood of requests from overwhelming the application server.

In this chapter, we provide an overview of connection pooling and best practices
with regard to the ODWEK Java API implementation. We also discuss the best
practices for developing connection pools using the ODWEK Java APIs.

Resource allocation and memory problems occur in applications that fail to open
and close connections to the OnDemand server in an appropriate manner. We
also provide a detailed understanding of the allocation of resources by Content
Manager OnDemand connections and explain how to create and terminate
connections properly.

Chapter 7, “Globalization”
Many OnDemand servers store documents in multiple languages and serve
clients with different languages, locales, and character sets. To ensure successful
implementation of the OnDemand system, you must understand and take into
consideration the usage of different encoding schemes and conversions.

In this chapter, we address code page conversion and other data-access
considerations that arise in heterogeneous environments. We also discuss ICU,
which is the multicultural support API shipped with ODWEK.

Chapter 8, “Folder searching”
Locating documents that are archived by Content Manager OnDemand is one of
the core functions of any ODWEK Web application feature. Understanding and
proper usage of the search techniques is critical in the success of your Web
application. Document searches can be accomplished by performing either a
criteria search or an SQL search.

In this chapter, we provide an overview of the techniques for performing
OnDemand document searches by using the ODWEK Java APIs.

Multicultural support: For more information about multicultural support, see
the definition in 7.1, “Globalization overview” on page 144.
108 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 9, “Document retrieval”
After documents are located, they can be retrieved and displayed to users.
Documents are stored in Content Manager OnDemand either as a unit or in
segments (for OnDemand large documents), in which case the segments are
retrieved sequentially.

In this chapter, we discuss how documents are retrieved.

Chapter 10, “Applets, plug-ins, and transforms”
Retrieved documents are usually converted from their original storage format into
a format that is more convenient for clients, such as to convert AFP documents
that are generated by mainframe processes into PDFs, which are easily
displayed on a PC client. Options for document conversion include utilities that
are bundled with ODWEK and third-party and custom solutions.

In this chapter, we explain how the plugs-ins and transforms are used in
document retrieval. We pay special attention to AFP resources and large objects.

Chapter 11, “Document storing and updating”
Documents are nearly always loaded to the OnDemand server by an
administrator or batch process by using the command-line utilities that are
included with Content Manager OnDemand. However, there is an occasional
need to store documents programmatically. The ODWEK Java APIs also
accommodate the occasional need to update or delete document index
information on the server.

In this chapter, we discuss these APIs and address care that you must take when
performing server updates using the APIs.

Chapter 12, “Memory and performance”
The ODWEK Java APIs can be employed in any architectural tier and embedded
virtually anywhere that a Java application can run. As such, performance and
resource tuning is a platform-centric, rather than ODWEK-centric, effort.

In this chapter, we present investigation and tuning techniques that we have
found to be useful. We also offer guidelines for memory allocation and platform
tuning for ODWEK applications.

Note: These options require separate entitlement.
 Chapter 5. Introduction to best practices, hints, and tips 109

Chapter 13, “Troubleshooting”
In this chapter, we present general troubleshooting techniques and make
recommendations for addressing some of the most commonly-reported
problems.
110 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 6. Connection pooling and
connection handling

In this chapter, we provide an overview of connection pooling and best practices
in regard to the OnDemand Web Enablement Kit (ODWEK) Java API
implementation. We also discuss best practices for developing connection pools
by using the ODWEK Java APIs.

The chapter includes the following topics:

� Connection pooling overview
� Connection pooling objects and pooling technique
� A simple connection pool code example
� Thread safety
� Resource consumption control
� Timeout

6

© Copyright IBM Corp. 2008. All rights reserved. 111

6.1 Connection pooling overview

When a client application (or a Web application in the context of this book)
connects to an IBM Content Manager OnDemand (OnDemand) server, it
establishes and consumes several resources in order to retrieve the document
data that is being requested by the user. A typical sequence of requests to
retrieve a document is to log on, retrieve the folder list, open a folder, issue a
query, and then retrieve the document from the document hitlist. All of these
requests consume resources in terms of mid-tier memory and CPU, OnDemand
server memory and CPU, network, and elapsed time.

Connection pooling allows for the reduction of resource consumption through the
re-use of objects by multiple incoming connections (user requests). Therefore,
the use of connection pooling improves performance.

For example, consider a Web-based Internet application, such as customer
statement presentation, where thousands of customers access their statements
on an hourly basis. For each customer access, a logon, folder open, folder query,
and document retrieve request must be performed. In this scenario, all
customers can use a single logon ID (to the OnDemand server) and open a
single folder (for example monthly statements). The query against the folder is
different for each customer (for example, based on the social security number)
and thus results in different document data being returned to each customer.

If we do the same logon and the same folder open thousands of times per hour, it
is more efficient to perform these requests only a few times and store the results
in a pool that can be re-used over and over again.

6.1.1 Benefits of connection pooling

The pooling of connection resources results in multiple benefits both on the Web
server application side and on the OnDemand server side. The benefits include a
reduction in memory and CPU consumption and an improvement in overall
response time and network throughput:

� Connection pooling helps to reduce memory consumption.

From the Web server application perspective, because the pooled objects are
shared among the connected users, it is only necessary to maintain a pool as
large as the maximum number of concurrently active users. From the
OnDemand server perspective, the order of magnitude is less than the
number of users who are expected to log onto the system. That is, the
maximum number of concurrently active users, which might be hundreds or
thousands of users, is much less than the number of all users who use the
system, which might be thousands or tens of thousands of users.
112 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Connection pooling helps to reduce CPU consumption.

The Web server issues fewer requests since the pooled objects are already
available. The processing of fewer requests results in a reduction in CPU
consumption. The OnDemand server also receives fewer requests and thus
consumes fewer CPU resources.

� Connection pooling helps to improve response time.

Accessing the pooled objects directly on the Web server is much faster than
retrieving another copy of the objects from the OnDemand server. When a
request is sent to the OnDemand server, it executes faster because fewer
requests are issued against the server.

� Connection pooling helps to reduce network traffic.

Reduced network traffic is the result of the reduced number of requests and
responses that are sent over the network. The reduction in network traffic can
also lead to improved network throughput.

6.2 Connection pooling objects and pooling technique

You can develop code that pools a variety of Content Manager OnDemand
objects. The code requirements vary in sophistication based on the needs of the
application. In this section, we discuss the Content Manager OnDemand objects
and a pooling technique that uses arrays.

6.2.1 The ODServer class

The ODWEK Java APIs are implemented as a set of classes. For a set of
requests issued by a single user, the various classes are instantiated to form a
group of objects.

The main class that represents an OnDemand session is the ODServer class.
Each ODServer class can handle a connection and a login to a single
OnDemand server.

The ODServer class provides five important methods for connection and session
handling:

� constructor

All configuration data is passed to the constructor. No other method exists to
change the configuration data. The ODConfig object is instantiated within the
constructor and acts as a container for the configuration data for the specific
session.
 Chapter 6. Connection pooling and connection handling 113

� initialize

The ODServer.initialize() method must be called before establishing a
connection to an OnDemand server. If the ODServer.initialize() method is not
called, the ODServer object cannot perform a logon to an OnDemand server.

After the ODServer object is initialized, you can perform as many logon and
logoff requests as required. You do not need to terminate and initialize the
ODServer object for each login. You can determine if an ODServer object has
been initialized by using the isInitialized() method.

Each time an ODServer is initialized, an internal counter is incremented. By
incrementing the internal counter, the ODWEK Java APIs can keep a count of
how many client applications are running and how long the shared resources
must be kept in memory.

� logon

The ODServer.logon() method establishes the TCP/IP connection with, and
logs onto, the specified OnDemand server. After the completion of a
successful logon, a token for the session is created on the OnDemand server
and transferred back to the logon API. This token is used throughout the
client connection as a session identifier.

The logon() method does not use significant memory resources.

� logoff

Locally, the ODServer.logoff() method closes any open folders (ODFolder)
and clears the cached hitlist if one exists. The ODServer.logoff() method
terminates all non-shared session-related objects. It has no effect on shared
resources.

� terminate

ODServer.terminate() causes the internal counter, which indicates the
number of clients connected to the OnDemand server, to be decremented.
When the counter reaches zero, which implies that all clients have terminated
their ODServer objects, then the API knows that it is time to release the
shared resources from memory. Specifically, “shared resources” refers to
AFP resource data.

6.2.2 ODWEK Java API objects and threads

The ODWEK Java API objects provide access to servers, folders, criteria, and
hits. These objects are unique to a connection and must not be shared across
connections.
114 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 6-1 illustrates the relationship between threads, methods, and objects for
two cases, batch and interactive cases. There are many different interaction
possibilities and flow scenarios that can result in different thread allocations.

Figure 6-1 Content Manager OnDemand threads, methods, and objects (simplified)

The left side of Figure 6-1 shows the batch case. In this case, a batch program
issues the API requests sequentially, logon through logoff. All the requests run on
a single thread. All of the objects are created as needed and are destroyed when
the program terminates.

The right side of the diagram in Figure 6-1 illustrates the interactive case, which
is also known as the conversational case. This case can be thought of as a Web
server application that supports a set of pages in a browser through which users
can enter their requests and view the retrieved data.

When a user enters a user ID and password on the logon page, a servlet is
invoked on its own thread in the Web server. The servlet calls both the initialize
and the logon methods, which results in the creation of two objects, ODConfig
and ODServer. By using the ODServer object, a folder list is obtained and
downloaded to the browser for display, at which point, the Web server thread is

Start thread

End thread

Initialize

Logon

Folder list

Folder open

Folder search

Document retrieve

Hit list

Ti
m

e
Logoff

Interactive session
(Multiple threads)

ODConfig

ODServer

ODHit

Start thread

End thread

Initialize

Logon

Folder list

Folder open

Folder search

Document retrieve

Hit list

Ti
m

e

Logoff

Batch session
(Single thread)

ODConfig

ODServer

ODFolder

ODHit

Start thread

End thread

Start thread

Start thread

Start thread

End thread

End thread

End thread

End thread

Start thread

ODCriteria

ODFolder

ODCriteria
 Chapter 6. Connection pooling and connection handling 115

terminated, and the objects are removed. The user then selects a folder from the
folder list to open. A new thread is invoked on the Web server, the folder open
method is executed, and the ODFolder and ODCriteria objects are created. A
Web page that contains the folder key information is created and downloaded to
the browser. The Web server thread is terminated, and the objects are removed.

This process continues throughout the user’s session. Between thread
invocations, data might need to be saved to be used in the next method or thread
invocation. This data needs to be saved in the Web server application that you
develop.

Figure 6-2 shows an extension of the conversational scenario presented in
Figure 6-1 on page 115. It illustrates the interactions of three users who
concurrently access the Web server. As the amount of concurrent user access
increases, the number of threads increases, and the number of objects that are
required to be stored on the Web server increases. By using connection pooling,
you can reduce the number of times that the Web server must make requests
from the OnDemand server for the pooled objects.

Figure 6-2 Three Content Manager OnDemand concurrently active users

Start thread

End thread

Initialize

Logon

Folder list

Folder open

Folder search

Document retrieve

Hit list

Ti
m

e

Logoff

Interactive session
multiple threads

ODConfig

ODServer

ODFolder

ODHit

Start thread

End thread

Start thread

Start thread

Start thread

End thread

End thread

End thread

End thread

Start thread

Start thread

End thread

Initialize

Logon

Folder list

Folder open

Folder search

Document retrieve

Hit list

Ti
m

e

Logoff

Interactive session
multiple threads

ODConfig

ODServer

ODFolder

ODHit

Start thread

End thread

Start thread

Start thread

Start thread

End thread

End thread

End thread

End thread

Start thread

Start thread

End thread

Initialize

Logon

Folder list

Folder open

Folder search

Document retrieve

Hit list

Ti
m

e

Logoff

Interactive session
multiple threads

ODConfig

ODServer

ODFolder

ODHit

Start thread

End thread

Start thread

Start thread

Start thread

End thread

End thread

End thread

End thread

Start thread

Web server application
116 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

6.2.3 The ODWEK Java API pool levels

The concept of connection pooling entails locally storing objects that can be used
by multiple users, thus avoiding continuous requests for the same objects from
the server. When looking at the ODWEK Java API objects, in general, there are
three connection pool usage scenarios, which are summarized in Table 6-1.

Table 6-1 Connection pool usage scenarios

The most basic connection pooling level is at the ODServer object level. The
ODServer object is created and initialized and is common to all types of user
access to the Java APIs. Each user must then be logged on and off between
transactions. Pooling at this level is beneficial in the intranet case where there are
have tens of thousands of users, each of whom has their own Content Manager
OnDemand IDs and permissions.

If the ODServer objects in the pool are used in an environment where you can
map multiple users to a single user ID, then these objects can be initialized and
logged on. Rather than logging off the user between requests, the ODServer
object stays logged on between requests. After the user request is completed,
the ODServer object is returned to the pool and is available for subsequent
requests.

If the ODServer objects in the pool are used in an environment where you can
map multiple users to a single user ID and where users all access the same
folder (online billing, as a prime example), then all ODServer objects that are
stored in the pool should have their folder left open. The application developer
must know the folder name and be able to obtain the ODFolder without
re-opening the folder. In this case, the application developer must collect and
store the folder name somewhere, for example, in the session object.

Initial
object stat

Shared
object

Usage scenario

initialize ODServer In an intranet application where there are tens of
thousands of users each of whom has their own Content
Manager OnDemand IDs and permissions.
Using connection pooling reduces memory consumption.

inititialize
logon

ODServer In an intranet or Internet application where you can map
your Web users to a single Content Manager OnDemand
ID.

initialize
logon
folder open

ODFolder In an intranet or internet application where you can map
your Web users to a single Content Manager OnDemand
ID and they can all access the same folder.
 Chapter 6. Connection pooling and connection handling 117

6.3 A simple connection pool code example

There are many different designs for implementing connection pooling and many
different levels (object types, states) at which objects can be pooled. This
example is a simple connection pool at the ODServer object level that uses
arrays to store the pooled objects. Storing the pooled data objects is not limited
to arrays but can be accomplished by using any kind of storage mechanisms
including vectors, hash tables, or both.

6.3.1 The pooling mechanism

This example implements connection pooling by using two arrays. The first array
is used to store the ODServer pooled objects and a second “parallel” array is
used to store the State of the ODServer objects. Figure 6-3 illustrates these two
arrays diagrammatically.

Figure 6-3 Object caching using arrays

Important: The example code presented in this section is not intended for
use. Its purpose is only to illustrate the concepts of connection pooling.

1. initialize

2. Place object inUse

3. Return object to pool

OdServer object

OdServer object

OdServer object

OdServer object

Status=1

Status=1

Status=1

Status=1

Status ODServers

OdServer object

OdServer object

OdServer object

OdServer object

Status=2

Status=1

Status=1

Status=1

OdServer object

OdServer object

OdServer object

OdServer object

Status=1

Status=1

Status=1

Status=1

-Application requests
pooled object

-Retrieve object for
application

-Application releases
pooled object

- Return object to pool

Web Server
application
118 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

When the connection pool class (ODPool) is instantiated, a predetermined
number of ODServer objects are created, initialized, and logged on to the
OnDemand server. These objects are then stored in the ODServers array.
Additionally, a second array (the Status array) is created in which the status of
these objects is stored. The initial status value for all of the created objects is set
to 1. This indicates that the objects were created and are available for use by the
Web server application program.

When the Web server code requests an ODServer object from the pool, the
ODServer object is retrieved from the ODServer array and then forwarded to the
Web server application. The status of the object in the Status array is changed
from a 1 to a 2 indicating that the object is in use. The pool code searches for an
available object from the beginning of the array. Thus the objects at the beginning
of the array are used more frequently than the objects toward the end of the
array.

When the Web server application is finished using the ODServer object, the
application returns the ODServer object to the pool. The connection pool code
then changes the ODServer status for that object from 2 to 1, indicating that the
object is now available for reuse.

The use of arrays is one of multiple mechanisms that are available for object
storage. Other collection storage methods, such as vectors or hash tables, are
also feasible.
 Chapter 6. Connection pooling and connection handling 119

6.3.2 Connection pool code functions

Figure 6-4 illustrates the flow of the connection pool code.

Figure 6-4 Connection pooling code flow

The connection pool code provides the following functions:

� Pre-allocate and initialize the connections.

This function is accomplished in the constructor. The ODServer objects are
initialized, logged on, and placed in an array that is available for use.

� Get a connection.

This function is implemented in the getODServer() method. If an ODServer
object is not available (meaning that the maximum pool size has been
reached), then the ODPool code throws an exception. Otherwise, the ODPool
code searches for an available ODServer object and checks to see that it is
initialized. If the object is not initialized, then it re-initializes it and forwards the
object to the Web application. If the object is initialized, it is immediately
forwarded to the Web application.

Status

ODPool

maxServers = maximum number of ODServer objects
maxServersUsed = maximum server used

getODServer

ODServer

keepServersAlive

terminateServers

toString

putODServer

ODServers

ODServer
ODServer

1- Initialize – Create ODPool

2- Application
uses and
releases
ODServer
objects

3- Application
periodically
retrieves ODPool
status and
ensures that all
servers are active

4- At shutdown, all active
servers are terminated
120 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Release a connection.

This function is implemented in the putODServer() method. The ODServer
object is returned to the pool. The ODPool code then changes the Status
array value to indicate that the ODServer object is now available for reuse.

� Keep the pool connections alive.

This function is accomplished by polling the OnDemand server from each of
the ODServer objects at predefined intervals. Alternatively, connections can
be prevented from timing out by setting the OnDemand server timeout period
to “Never time out.” Pooled connections do not timeout unless some
mechanism that is external to the ODPool code forces the time out.

� Get the current ODPool status.

The toString() method returns the current pool information including the
maximum used and currently used server objects.

� Shut down the connection pool.

The terminateServers() method closes down all the server connections prior
to terminating the ODPool code.

6.3.3 Connection pool code sample

For the connection pool code, we show code snippets for the following methods:

� ODPool(): The constructor.
� getODServer(): Obtains an ODServer from the pool.
� putODServer(): Returns an ODServer to the pool.
� keepServersAlive(): Reconnects any timeout servers.
� toString(): Returns information about the current pool status.
� terminateServers(): Terminates the servers and shuts down the connection

pool.

The code must include a reference to the package that contains the ODApi.jar
file:

package com.ibm.edms.od;

The ODPool() method: The constructor
The ODPool class is called from the Web server application when it is ready to
start connecting to the OnDemand server, which is usually toward the end of its
initialization process. The example ODPool constructor accepts the pool
initialization parameters as listed in Table 6-2 on page 122.
 Chapter 6. Connection pooling and connection handling 121

Table 6-2 Connection pool initialization parameters

The ODPool constructor creates two arrays:

� The ODServers array with a size of maxServers
� The Status array with a size of maxServers

The constructor creates a new ODServer object. It then initializes the object and
performs an odServer.logon() method to log on to the OnDemand server. After
the successful logon, the object is stored in the ODServers array. The ODServer
object’s status is updated to Available in the Status array, and the number of
available servers (availableServers) is incremented by one.

Any method that uses the ODServer object in the future does not have to go
through the initialization and server logon process again.

Example 6-1 shows the code snippet for the ODPool() constructor method.

Example 6-1 The ODPool() constructor method

public ODPool(String server, String username, String password, int
portNum, int maxServers) throws Exception
 {
 //Setup ODServer login/init needs
 this.server = server;
 this.portNum = portNum;
 this.ODrunName = "ODPoolTest";

 this.username = username;
 this.password = password;

 this.maxServers = maxServers;

 Status = new int[maxServers];
 ODServers = new ODServer[maxServers];

 availableServers =0;

Variable Description

String server Name or IP address of the OnDemand server to connect to

String username User ID with correct privileges to service all users requests

String password Password of specified user name

int portNum OnDemand server port to connect to

int maxServers Number of ODServer objects to place in the pool
122 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

try
 {
 /* place the ODServer objects in the array */
 for(int i=0; i<maxServers; i++)

 {
// create the odConfig object
ODConfig odConfig = new ODConfig();

// create a server object
ODServer odServer = new ODServer(odConfig);
odServer.initialize(ODrunName);
odServer.setPort(portNum);

// logon to the CMOD server
odServer.logon(server, username, password);
ODServers[i] = odServer;

// update the Status array to indicate server available
Status[i]=1; // 1 = server available

// increment the number of available servers in the pool
availableServers ++;
} // end for (int i=0

}

catch(ODException e)
{
throw new ODException("createPool error: " + e);
}

 } // end constructor ODPool

The getODServer() method
The getODServer() method is called by the Web server application program to
get an ODServer object from the ODPool. The getODServer() method is listed in
Example 6-2 on page 124.

When the getODServer() method is called, it checks to see if an object is
available in the ODPool. If an object is available, the getODServer() method
copies that object and checks to see that the object is still connected to the
OnDemand server. If the object is still connected, the method passes the object
to the Web application. Otherwise it re-connects the object, updates the
ODServers array, and then passes the ODServer object to the Web application.
 Chapter 6. Connection pooling and connection handling 123

If there are no available ODServer objects, the getODServer() method throws a
“Connection limit reached” exception.

Example 6-2 The getODServer() method

public synchronized ODServer getODServer() throws Exception
 {
 if (availableServers > 0)
 {
 // a server is available, So find available server and return it
 // search for non-busy server
 for (int i=0; i<maxServers; i++)
 {
 if (Status[i] == 1) // server is available for use
 {
 Status[i] = 2; // server is no longer available
 odServer = ODServers[i];
 if ((i+1) > maxServersUsed)
 maxServersUsed = i+1;
 availableServers--;
 totServersUsed++;

 // check to see that odserver is still connected
 if (!odServer.isInitialized())
 {

try
{

 // logoff then logon
 odServer.logoff();
 odServer.logon(server, username, password);
 }

catch (ODException e1)
{
throw new ODException("getODServer error: " + e1);
}

 // place ODServer back in array
 ODServers[i] = odServer;
 }
 } // end if (Status[i]
 } // end for (int i=0
 return odServer;
 }
 else
 {
 // there are no servers available
124 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

 System.out.println("No Servers available.. need to specify higher
maxServers");
 throw new Exception("Connection limit reached");
 }
 } // end method getODServer

The putODServer() method
The putODServer() method (Example 6-3) is called by the Web server
application program to return an ODServer object to the ODPool. When the
putODServer() method is called, it locates the ODServer object in use and
changes its status to available. It also increments the number of
availableServers.

Example 6-3 The putODServer() method

public synchronized int putODServer(ODServer currentServer)
 {
 int retVal = 1; // assume the worst
 for(int i = 0; i < maxServers; i++)
 {
 if (Status[i] == 2)
 {
 ODServer server = ODServers[i];
 if(server.equals(currentServer))
 {
 Status[i] = 1; // set the server to be available to use
 retVal = 0;
 break;
 }
 }
 }
 return retVal;
 } // end method putODServer
 Chapter 6. Connection pooling and connection handling 125

The keepServersAlive() method
The keepServersAlive() method (Example 6-4) can be called periodically to
ensure that all the server connections are still valid.

Example 6-4 The keepServersAlive() method

public synchronized int keepServersAlive() throws Exception
 {
 // make sure all non-busy servers are alive
 for (int i=0; i<maxServers; i++)
 {
 if (Status[i] == 1) // server is available for use
 {
 odServer = ODServers[i];

try
{
// check to see that odserver is still connected

 if (!odServer.isInitialized())
 {
 // logoff then logon
 odServer.logoff();
 odServer.logon(server, username, password);
 }
 else
 {
 // just keep the server alive
 odServer.keepServerAlive();
 }
 // place ODServer back in array
 ODServers[i] = odServer;

}
catch(ODException e2)

{
throw new ODException("keepServersAlive error: " + e2);
}

} // end if (Status[i]
 } // end for (int i=0

 } // end method keepServersAlive
126 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The toString() method
The toString() method (Example 6-5) returns information about the ODPool
including the user name, current ODServer objects in use, maximum number of
ODServer objects in use, and size of the ODPool (maxObjects). maxObjects is
the maximum number of concurrent connections, which is the same as the
maximum number of ODServer objects.

Example 6-5 The toString() method

public synchronized String toString()
 {
 String info =
 "ODPool(" + server + "," + username + ")" +
 ", pool Size =" + maxServers +
 ", Currently used=" + (maxServers-availableServers) +
 ", Currently unused=" + availableServers +
 ", Max Concurrently Used=" + maxServersUsed +
 ", Total Servers Used=" + totServersUsed;

 return(info);
 } // end method toString

The terminateServers() method
The terminateServers() method (Example 6-6) is used to force a termination of
all existing connections, after which it shuts down the connection pool. This
method also forces the garbage collection of all the ODServer objects that were
used.

Example 6-6 The terminateServers() method

public synchronized void terminateServers()
 {
 for(int i=0; i<maxServers; i++)
 {
 odServer = ODServers[i];
 if (odServer.isInitialized())
 {
 odServer.logoff();
 odServer.terminate();
 }
 } // end for(int i=0;
 System.exit(0);
 } // end method terminateServers
 Chapter 6. Connection pooling and connection handling 127

By setting the appropriate pool size, you can ensure optimum usage of
connection pooling in your environment.

6.4 Thread safety

Running in a multithreaded environment has become a feature of modern
programming architectures. For example, Web applications that run on Web
application servers, such as the WebSphere Application Server, automatically
use multiple threads. Each call to a Java servlet can be executed on a different
thread.

The ODPool class must support both multithreading and object synchronization.
You must fully understand these two concepts and implement them within your
Web server application.

As illustrated in Figure 6-1 on page 115 and Figure 6-2 on page 116, running the
Java APIs in a multi-user environment results in the creation of many threads and
many objects within the ODWEK Java APIs and the Web server application code.
The number of concurrent threads and in-memory objects varies depending on
the design and usage pattern of the system. However, it is safe to say that there
will be many of each. To ensure the proper operation of the system, you must
ensure thread safety.

Thread safety exists if an object’s state is always valid in a multithreaded
environment. This means that an API should not cause data corruption when it is
called from multiple threads.

From a practical perspective, to make our objects thread safe, we begin by
designing our classes so that all the instance variables are private and the
methods that handle object state are synchronized.

Important: The code snippets shown in this section provide a simple
implementation of an ODPool. The code is not intended to be used as is. You
can use the concepts presented and expand on these methods as needed for
your environment.

Thread-safe object: An object is said to be “thread safe” if the object’s state
is always valid in a multithreaded environment.
128 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

6.4.1 Instance variables

The Java virtual machine (JVM™) keeps local variables, method parameters,
and return values on the Java stack, and each thread has its own stack.
Therefore, no thread can harm another thread’s stack. This is what we call
thread-safe.

Instance variables and class variables are only thread-safe if they are private. By
making them private, you can control access to the data by controlling access to
the code that manipulates the data.

Read-only data does not need to be private. For example, constants, such as
static final variables, do not change. They are read only, and therefore, cannot be
corrupted by multiple threads that access them at the same time.

Making instance variables private is sufficient in a single threaded environment,
but it may not be sufficient in a multithreaded environment. The problem is that
the JVM may interrupt the thread that is executing on an object and allow another
thread to run against that same object. By the time both threads finish execution,
the state of the object is unknown (at best). In such a case, to prevent state
corruption, each thread must have its own object instance.

The ODWEK Java APIs are no exception. The APIs are grouped into classes of
objects. The object instance must only be accessed by a single thread at a time.
Therefore, each thread instance has its own object instance for all the Java API
objects.

6.4.2 Synchronization

A critical section of code is a method or a block of code that must be executed
atomically as a single, indivisible operation. By declaring the method to be
synchronized by using the synchronized keyword, only one thread at a time is
allowed to execute that method. By using synchronized objects, you can use
wait() and notify() methods to get threads to cooperate in achieving some
common goal.

Synchronization involves a performance penalty. Generally speaking,
synchronizing a method causes its invocation to be slower because of the
blocking and unblocking of threads. In severe cases, blocking and unblocking can
cause a deadlock that leads to program delays or hangs.
 Chapter 6. Connection pooling and connection handling 129

6.4.3 Implementing synchronization in the ODWEK Java APIs

The ODWEK Java APIs support multithreading, which allows multiple concurrent
connections to be established and maintained with an OnDemand server. The
multiple threads allow for the creation of multiple ODServer objects and other API
classes that belong to their specific ODServer session.

Access to a single ODServer session must be done in a single-threaded fashion.
That is, only one thread can access objects of a specified Content Manager
OnDemand session at a time.

Since ODWEK version 7.1.2.7, all API functions are fully synchronized and
thread safe. All operations within the API are synchronized. The only exception is
the ODServer.cancel() method, which is discussed further in 6.6.3,
“Implementing an application timeout by using the ODServer.cancel() method”
on page 140.

Single-threaded access to a single Content Manager OnDemand session implies
that when one thread accesses operations within an ODServer session, any
other threads that try to access the same objects are blocked.

However, you cannot regard the synchronization that is built into the ODWEK
Java APIs as the only level of synchronization when building Web applications.
When each call to a servlet is wrapped in its own thread, ensure that each thread
uses the right ODServer instance. In Web applications, you typically keep the
ODServer object within the Web application server session data, which enables
the threads to have access to the right ODServer objects that belong to the user
session.

Guaranteeing a single ODServer instance per session does not eliminate the
threading issue. A common issue in Web application is when users mistakenly
submit multiple identical transactions. Examples include when a user clicks the
Submit button of a form multiple times, when a user clicks the browser Stop
button and resubmits a transaction, and when a user clicks a link several times.
Each operation creates multiple transactions at a mid-tier level and a new thread.
Each thread accesses the same ODServer instance, which violates the ODWEK
Java API requirements of one thread at a time per ODServer instance.
Subsequent access by multiple threads is blocked through the synchronization at

Rule of thumb: Synchronize only the methods that require synchronization.
Do not synchronize any other methods. Implementing synchronization in this
manner (only as needed) makes your code safe, minimally effects code
performance, and most importantly ensures that the code works correctly.
130 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

the API level. To prevent possible loss of data or unexpected behavior, you must
implement synchronization handling on the session object.

6.4.4 Synchronizing servlet code

By synchronizing on the servlet session object, you guarantee that multiple
requests that come from the same browser are handled sequentially within your
code. As shown in Example 6-7, synchronization on the session object is easy to
implement and provides a safe environment in which to use the ODWEK Java
APIs.

Example 6-7 Synchronization on a session object

public doPost(HttpServletRequest req, HttpServletResponse res) {
HttpSession wwwsession;
ODServer odserver;

wwwsession= req.getSession(true);

synchronized(wwwsession) {

odserver = (ODServer)wwwsession.getAttribute("ODServer");
ODFolder fld = odserver.openFolder("Statements");

...
}

...
}

Implementing synchronization at the application logic level is possible but not
recommended. For example, you can synchronize on the specific application
method or class that initiates the search in Content Manager OnDemand. The
drawback of doing this is revealed by examining the thread flow of the Web
application. You cannot be assured that, apart from (for example) the search
operation, all other operations are synchronized. Otherwise, you limit the
execution of the ODWEK Java API operations to a completely single-threaded
model. Therefore, either carefully test the synchronization behavior of your
application when using self-defined synchronization, or preferably, synchronize
on the session object of the Web application.

Note: By synchronizing on the session object or on the ODServer object, you
can ensure that no other thread can perform operations on the same Content
Manager OnDemand connection session.
 Chapter 6. Connection pooling and connection handling 131

Tracking down synchronization performance problems
You can run into performance problems when implementing too much
synchronization or synchronizing in the wrong locations. One way to track down
threading and synchronization problems within an existing application is to take a
Java dump of the JVM in WebSphere (or any other Web application server that
you are using) when the performance problem occurs. By examining the dump,
you can determine the object or method that each thread is working on and
which of the threads is waiting. Only threads that are in an active state and have
com/ibm/edms/od/* classes in their stack trace are working actively on the
ODWEK Java APIs.

Synchronization according to user sessions
In many Internet implementations, multiple concurrent sessions are established
by using the same user name, which can lead to the idea of implementing
per-user synchronization. Per-user synchronization is not necessary in Content
Manager OnDemand.

Content Manager OnDemand supports the coexistence of multiple sessions that
are all logged in by using the same user ID. All of the sessions can access the
ODWEK Java APIs concurrently. The requirement is that only one thread
operates on one ODServer session at a time. The user login that is used by the
ODServer session is of no importance with respect to the multithreaded behavior
of the ODWEK Java APIs. The only synchronization level that is required by the
ODWEK Java APIs is at the session level, not at the user or login level.

6.5 Resource consumption control

Resource consumption, especially memory, is highly impacted by the proper
initialization and termination of Content Manager OnDemand connections. In the
following sections, we describe best practices to follow during connection
initialization and termination for resource consumption control.

6.5.1 Connection initialization

ODWEK version 7.1.2.6 introduced the ODConfig class, which is used to
configure an ODServer session without reading the arswww.ini file. In version
8.4, use of the ODConfig class is mandatory, because the previous ODServer
constructor that worked without an instance of ODConfig has been deprecated.
132 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Initialization steps
An ODWEK session can be initialized with the following actions:

1. An ODConfig object is instantiated and its configuration data is set.

2. An ODServer object is created, specifying the ODConfig object as a
constructor parameter.

3. The ODServer.initialize() method is called to initialize a new Content Manager
OnDemand client session, which then can be used to perform a logon to an
OnDemand server.

The ODConfig object contains the configuration data and makes the
configuration reusable when creating multiple sessions. ODConfig objects are
configured though the constructor. An ODConfig object cannot be reconfigured,
but its configuration can be queried by using multiple methods.

ODConfig parameters
The ODConfig class supports three constructors:

� ODConfig()

The ODConfig() constructor initializes the object by using the default
configuration values.

� ODConfig(String afpViewer, String lineViewer, String metaViewer,
long maxHits, String appletDir, String language, String tempDir,
String traceDir, int traceLevel)

This ODConfig constructor is the default when specifying a custom
configuration. All standard configuration settings that are available in ODWEK
are represented by the parameters.

� ODConfig(String afpViewer, String lineViewer, String metaViewer,
long maxHits, String appletDir, String language, String tempDir,
String traceDir, int traceLevel, java.util.Properties props)

This ODConfig constructor requires the same configuration options as the
previous one, but includes a Properties object, which can hold additional
properties. The Properties object is used for providing configuration data for
the AFP2WEB and Xenos transformations.
 Chapter 6. Connection pooling and connection handling 133

Table 6-3 describes the available configuration parameters and the default values
that are used when you create an ODConfig object without using any parameters.

Table 6-3 ODConfig configuration parameters

For tempDir and traceDir, the default value is the path of the temporary directory
that the system uses. This value is retrieved by using the
System.getProperty("java.io.tmpdir") Java method.

The props parameter, which is an object of type Properties, is a container for
configuration data that is needed for transformations. For each transformation
(AFP2PDF, AFP2HTML, AFP2XML, and Xenos), the directory of the
transformation binaries and the location of the INI configuration file must be set in
the props object.

Special note about trace files and language
The trace directory, traceDir, which is used for trace files, can grow to a
significant size, depending on the traceLevel. ODWEK creates a new trace file
each time the Web container is restarted and renames the existing file by using a
date-time scheme. The trace files are not deleted automatically, and therefore,
must be deleted manually.

Parameter Default value Description

afpViewer ODConstant.PLUGIN Default conversion method or viewer for AFP data documents

lineViewer ODConstant.APPLET Default conversion method or viewer for line data documents

metaViewer ODConstant.NATIVE Default conversion method for metadata documents

maxHits 200 Maximum number of hits that can be returned

appletDir /applets Directory where the applets reside

language ENU Language used by ODWEK for messages

tempDir java.io.tmpdir Directory to store temporary files

traceDir java.io.tmpdir Directory to store the trace files in (if enabled)

traceLevel 0 Tracing level:
0: No logging enabled
1: Log only ERROR events
2: Log only ERROR and WARNING events
3: Log ERROR, WARNING, and INFO events
4: Log ALL events

props N/A Properties object for providing additional configuration data
134 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The language parameter configures the language in which ODWEK produces
messages. The only type of messages that you receive from ODWEK classes
are exceptions. The language setting is irrelevant unless you plan to display the
exception messages to users. If this is the case, you must set the language
parameter to the language in which your application is running. See Chapter 7,
“Globalization” on page 143, for a list of supported languages. If you do not want
to expose the exception message to users, you can create your own messages.

The easiest way to initialize an ODWEK session is to use the default
configuration. Example 6-8 shows the sample code to initialize an ODWEK Java
API session.

Example 6-8 ODWEK session initialization

try{
ODConfig cfg = new ODConfig();
ODServer odserver = new ODServer(cfg);
odserver.initialize("AppletCallbackServlet");
odserver.logon("9.155.41.12", "user01", "secret");
...

} catch(ODException e){
...

}

6.5.2 Logging off and terminating a client connection

The ODServer class is reusable with regard to user logins. After an
ODServer.iniialize() call, you can use the ODServer.logon() and
ODServer.logoff() methods multiple times on the same ODServer class instance.
You can have your application log off a user and log on another user by using the
same ODServer object.

The ODServer.logon() method creates a logon token. The ODServer.logoff()
method removes the logon token.

After the final ODServer.logoff() method is called, the ODServer.terminate()
method must be called. The ODServer.terminate() method informs the
application that the client session is finished and decrements the number of

Language parameter: The language parameter is a global setting that
applies to the whole JVM. The first call to ODConfig sets the language for all
applications running in this JVM. The language parameter cannot be changed
after the first call. All subsequent changes to language are ignored.
 Chapter 6. Connection pooling and connection handling 135

clients-in-use counter. When the counter reaches zero, then all shared resources
are deleted.

Consider the following points when logging off and terminating a client
connection:

� A session that is terminated by an ODServer.terminate() call before an
ODServer.logoff() call becomes unusable, but the logon token still persists on
the system for a while until it times out.

� If an ODServer class instance is not used anymore, for example, because of
an exception in the application, an explicit logoff, a close on the client
interface, or a timeout of the Web application, ensure that the
ODServer.logoff() and ODServer.terminate() methods are called. The best
practice is to call the ODServer.logoff() method (if an active logon still exists)
and then call the ODServer.terminate() method.

� Ensure that your exception handling code contains functionality to correctly
terminate a Content Manager OnDemand session. When handling a critical
application error, which can force a user to actively logon to your application
again, make sure that you end the ODServer session by using the
ODServer.logoff() method (if applicable) and calling the ODServer.terminate()
method.

� When handling exceptions within your login or initialization code, see if
ODServer has been initialized before calling the terminate() method because
the exception might be thrown during the ODServer.initialize() call. To check
whether the ODServer is initialized, use the ODServer.isInitialized() method.

6.5.3 Allocation and release of resources and sessions

Three main types of data are stored in memory when using the ODWEK Java
APIs:

� Objects retrieved from the OnDemand server

Each time a document is retrieved, it is stored temporarily in memory while it
is downloaded to the ODWEK Java APIs. If your application design permits,
you can use less memory by downloading documents directly to disk. See
Chapter 9, “Document retrieval” on page 179, for more information.

� Shared AFP resources that are retrieved along with the AFP data stream

AFP resources are loaded into memory by the ODWEK Java APIs. All further
requests for AFP documents that use the same resource are served by using

Attention: Failing to call the ODServer.terminate() method causes the shared
resources not to be released.
136 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

the resource data that is located in memory. The resource data is not freed
until all active client connections are terminated.

� Hitlist

Only one active hitlist is cached in memory for each session (ODServer
instance). Each time a search is performed, the resulting hitlist is cached in
memory and is overwritten by the next search.

In addition to these classes, Java class instances, logon credentials, handles to
open folders, and other minor data structures are reserved during the lifetime of
their objects.

In addition to the objects in memory during retrieval and the hitlist creation, the
AFP resources are the main consumers of memory. They are loaded into
memory the first time that a user requests an AFP document, but they are not
released as long as there is an open session.

Every time you initialize an ODWEK session, by using the ODServer.initialize()
method, an internal client counter is incremented. Each time you call an
ODServer.terminate() method to terminate the session, the internal counter is
decremented. This way, the application keeps track of the number of sessions it
must maintain. If the internal client counter reaches zero, ODWEK is ensured
that no sessions want to access the shared resources again. Therefore, it
releases all shared resources and the used memory.

6.6 Timeout

In this section, we discuss the inactivity timeout, which is defined to Content
Manager OnDemand and can be used to interrupt sessions. We also discuss
methods by which you can create your own timeout.

Important: If you do not end any ODServer session properly (with an
ODServer.terminate() method), then the client counter cannot reach zero, and
the shared resources are never released. The shared resources stay in
memory until you restart the application server. It is critical that you properly
end each session by using ODServer.terminate() method.
 Chapter 6. Connection pooling and connection handling 137

6.6.1 Inactivity timeout

The inactivity timeout keeps track of the amount of time that has expired since
the last application call to the OnDemand server. You can set the inactivity
timeout in the inactivity timeout configuration dialog box (Figure 6-5) on the
System Parameters tab of the administration client. You can set the inactivity
timeout for individual users. You can set it to never time out, use the system
value, or time out within a defined length of time.

Figure 6-5 Configuring the inactivity time out in the administration client

The inactivity timeout does not force a connection termination or logoff. The
timeout is internally maintained by the API code at client level and is an indication
that the logon session for the user has expired due to inactivity.

When an inactivity timeout occurs, an exception of type ODException is thrown.
The connection session itself is not affected by this. You are not required to call
the ODServer.terminate() and ODServer.initialize() methods. However, because
the user’s logon session has expired, you are required to re-login the user. To
accomplish this, you must call the ODServer.logoff() method first to properly
terminate the user’s previous logon session. Then your application can call the
ODServer.logon() method to login the user again.

The inactivity timeout can be used to help ensure your application knows when to
properly terminate the API objects so that it does not cause memory issues. As
mentioned in 6.1, “Connection pooling overview” on page 112, it is important to
call the ODServer.terminate() method after a session is not required anymore.
Issuing the ODServer.terminate() method decrements an internal Content
Manager OnDemand counter, allowing the ODWEK Java APIs to recognize when
there are no more required connections. That is when the counter is at zero.
When this occurs, the ODWEK Java APIs release any unneeded shared
resources from memory.

Resetting the inactivity timeout counter: You can reset the inactivity
timeout counter through any API operation that communicates with the
OnDemand server.
138 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The inactivity timeout allows your exception handling code to check if you still
need the connection session (based on how your client interface works). If you
do not need the connection session, call the ODServer.logoff() and
ODServer.terminate() methods to finalize and terminate the unused connection.

When implementing connection pooling, consider how the inactivity timeout is
used:

� Setting the inactivity timeout period to Never Time Out allows the Content
Manager OnDemand connections to remain active until the OnDemand
server is shut down. In this case, make sure that no ODServer object is lost
and that it is terminated when appropriate.

� When enabling an inactivity timeout even on the pooled connections, you
must write your own code to keep the connection alive. You are required to
handle the session termination in the exception-handling code.

� Starting with ODWEK version 8.4.0.2, the ODServer.keepServerAlive()
method is added to reset the timeout counter. You can use this method to
prevent a user session from being timed out.

6.6.2 Other timeouts

Other than the inactivity timeout, which is a user- and session-based timeout,
Content Manager OnDemand does not incorporate any other timeout concepts.
Specifically, there is no operation-based timeout concept for breaking operations
that last too long. Because of this, from the Content Manager OnDemand
perspective, any operation in ODWEK theoretically executes until the operation is
completed or stops when an error is returned.

Depending on how you design your application, a timeout can be enforced by the
Web application server. For example, you can configure a session timeout to
cancel the execution of a Web application after a defined time. In this case, check
to see what happens within the Java application at the time that the Web
application server enforces the timeout:

� If a Java exception is thrown, make sure that your application is informed that
your request is no longer needed.

� If the timeout occurs within a search or retrieve operation, call the
ODServer.cancel() method. See 6.6.3, “Implementing an application timeout
by using the ODServer.cancel() method” on page 140.

� If the timeout renders the current session invalid or no longer in use,
terminate it correctly. See 6.5.2, “Logging off and terminating a client
connection” on page 135.
 Chapter 6. Connection pooling and connection handling 139

6.6.3 Implementing an application timeout by using the
ODServer.cancel() method

By using the ODServer.cancel() method, you can implement an application
timeout on operations, for example, search and retrieve, that might run for a long
period of time. The ODServer.cancel() method can cancel both the search and
retrieve methods. Calling the ODServer.cancel() method during any other
operation has no effect.

Calling the ODServer.cancel() method has the following effects:

� Search (ODFolder.search)

Calling a cancel during a search causes the current search to be aborted. A
partial hitlist that contains all hits that are found up to the point is returned as
the search result.

� Retrieve (ODFolder.retrieve, ODHit.getDocument, ODHit.getResources,
ODHit.retrieveSegment)

Calling a cancel during a retrieve process causes the retrieval process to be
aborted and an ODException to be thrown.

In a Web application, when retrieving large documents that cause extended
wait times (for example over 5 or 10 seconds), consider using one of the
following methods:

– The ODHitProperties.getLength() method to obtain the length of the
document (in bytes) before retrieving it

– Informing the user of a possible long retrieval process (if the number of
bytes is large)

This method helps to improve user experience and prevents the user from
canceling the retrieval process in the middle of the operation.

If you are developing custom client applications, consider offering a Cancel
button or link in your application to enable users to cancel these two types of
operations.

If you are developing non-interactive applications, consider wrapping search or
retrieve calls with timeout functions. By doing so, the application calls the cancel
method if the search or retrieve operation does not return within a defined period
of time. You can accomplish this wrapping by using an extra thread that calls the
ODServer.cancel() method when the operation does not return with a specified
time frame.
140 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

6.6.4 Recommended timeout implementation for a Web application

In Web applications, users do not synchronously communicate with the
application. Instead, all interactions are done by requesting content through the
use of a Web browser. Users tend to ignore this fact and act as though they are
using a standard application, which may lead to problematic situations. We
describe one such situation in the following section.

Situation: Perceived non-responsive application
If a Web application performs a search that takes a long time and the user clicks
the Stop button on the browser window, the user expects the search to be
cancelled. In reality, the Stop button causes the browser to stop retrieving data.
Because there is no direct interaction with the application, the search in Content
Manager OnDemand continues.

If the user wants to perform another search, a new search request is issued for
the same OnDemand session. Because the ODWEK Java APIs are
synchronized on the session object, only one search operation can be performed
in one session. Therefore, when the user clicks the Stop button, the first search
still carries on for the OnDemand session. The new search (or any other
operation) that is issued by the same user is blocked until the first search is
finished. From the user’s perspective, the result is a non-responsive application.

To avoid this behavior, your application must be able to detect a running search
or retrieve operations. For every call made to a session, check if a search or
retrieve operation is currently in progress. If such an operation is in progress,
consider canceling it before executing the next search or retrieve operation.

A solution: Use an operation-ongoing flag
Detecting an ongoing search or retrieval operation can be implemented by
introducing a flag in the session object. The flag is set before the search or
retrieve operation starts and is reset when the operation is completed. All search
or retrieve requests check the flag before making calls to the API. If the flag is
set, then the user has either stopped the browser and issued a new request or
the user is performing a parallel action.

Multiple tab functionality: Many browsers offer the ability of opening multiple
tabs. Users can use this functionality to issue parallel requests in the same
session. For example, if a user is viewing a hitlist and wants to retrieve two
different documents in two new tabs, then two retrieve calls are made in
parallel.
 Chapter 6. Connection pooling and connection handling 141

Cancelling the search or retrieve operation that is currently in progress in order to
start a new request might lead to strange effects from the user’s perspective. As
described in the previous example, opening two documents at the same time
causes the first document to return an error and the second document to be
retrieved.

You can solve this problem by using an operation-ongoing flag. When the first
search is performed, the flag is set to be true. If another search is requested and
the operation-ongoing flag is already set to true, then you can display a window
that informs the user of the ongoing operation. Instead of simply canceling the
existing running operation and starting a new one, the window should offer the
user the ability to cancel the existing running operation, in favor of the new
request, or cancel the new request.

If the page contains a self-reloading mechanism, which reloads the page every
second and checks every time if a flag is still set, then you can also satisfy users
who work with multiple tabs. In the example mentioned previously, now the first
document retrieval runs, and the second tab shows the information page until the
first retrieval is finished. Afterward, Content Manager OnDemand retrieves the
second document automatically.
142 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 7. Globalization

In this chapter, we discuss globalization in association with IBM Content
Manager OnDemand (OnDemand) and OnDemand Web Enablement Kit
(ODWEK). Many of the Content Manager OnDemand implementations do not
run in a homogenous environment. Multiple clients that use the same application
may be running with different languages, locale, and code page settings. Even
with a homogenous environment, the Content Manager OnDemand
implementation might use languages and code page settings that are different
than standard default.

To ensure successful implementation of the Content Manager OnDemand
system, you must understand and take into consideration the usage of different
encoding schemes and conversions.

This chapter covers the following topics:

� Globalization overview
� Content Manager OnDemand character conversion architecture
� Code page conversion in ODWEK
� The ICU conversion library
� Using Unicode as the database code page
� ODWEK language configuration
� Integrating custom code pages
� Globalizing applications by using ICU

7

© Copyright IBM Corp. 2008. All rights reserved. 143

7.1 Globalization overview

In computing, globalization is the provision of a single software solution that has
multicultural support and a user interface and documentation that is available in
one or more languages. Multicultural support, in this context, is the ability of a
single software solution to be translatable and to support the cultural conventions
of multiple languages and geographic regions. Cultural conventions include the
use of various writing systems, sort orders, different formats for date, time,
numbers, and currency, different keyboard layouts, and others. It is similar to the
term National Language Support. In this book, we focus our attention on
multicultural support.

Content Manager OnDemand is designed for the global market for worldwide
distribution. Content Manager OnDemand can be configured to work in different
locales to support various languages. The OnDemand server runs in Unicode so
that client interfaces can be displayed in various languages.

ODWEK uses Unicode Transformation Format 8 (UTF-8), which is the world-wide
Web standard for its internal encoding that enables it to have multicultural
support of different languages. The languages that are supported in the ODWEK
client interface are bundled as resources in the client application. Therefore, they
are bound to the client installation. Multiple clients running in different languages
can access the same OnDemand server concurrently. The Content Manager
OnDemand system handles various languages and character sets by using code
pages and translation facilities that translate data from one code page into
another.

Unicode is an international industry standard that enables computers to
represent and manipulate text characters for most written languages. Unicode
consists of a set of more than 100,000 characters and text elements, each of
which is defined with a unique code. Unicode is closely aligned with international
standard ISO/IEC 10646, which is also known as the Universal Character Set
(UCS).

Each code page represents a mapping of the Unicode characters for a specified
language and locale, ranging from one byte to multiple bytes per character
(single byte character set (SBCS), double byte character set (DBCS), and
multiple byte character set (MBCS)).

For example, ISO 8859-1 is one of the most common code pages that is used to
represent western European languages. In ISO 8859-1, the first 127 characters

Code page: A code page is a defined character map. Content Manager
OnDemand uses the Unicode character model for code pages.
144 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

are the standard ASCII characters. They are followed in positions 128 through
256 by many of the signs and characters that are used in western European
languages.

Different countries and languages use different code pages. Custom font and
character sets, such as those used in Advanced Function Presentation
(AFP)-applications, might also have their own code pages.

If a Content Manager OnDemand system uses a single code page, then no code
page translation is required. However, consider an example where line data
spools are loaded from an external system that runs an Extended Binary Coded
Decimal Interchange Code (EBCDIC) 500 code page and the Windows clients
use Windows-1252 code page. In this case, without code page conversion, users
cannot read the displayed data on their client application because the data
stream bytes are mapped with different values in different code pages.

A portion of the Windows-1252 code page is shown in Figure 7-1, and portion of
the EBCDIC 500 code page is shown in Figure 7-2 on page 146. For both code
pages, each character is shown with its Unicode equivalent underneath and its
decimal code at the bottom.

For example, the small letter “a” has a Unicode value of 97 in Windows-1252
code page. However, the same value 97 on the EBCDIC 500 code page
represents the forward slash character (/). The small letter “a” on the EBCDIC
500 code page is represented by 129. Without code page conversion, the data
that is loaded from the external system using EBCDIC 500 code page is not
correctly represented by the Windows client application, where the Windows
client application uses the Windows-1252 code page.

Figure 7-1 Partial Windows-1252 code page

—0 —1 —2 —3 —4 —5 —6 —7 —8 —9 —A —B —C —D —E —F
` a b c d e f g h i j k l m n o

6- 60 61 62 63 64 65 66 67 68 69 006A 006B 006C 006D 006E 006F
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
p q r s t u v w x y z { | } ~ DEL

7- 70 71 72 73 74 75 76 77 78 79 007A 007B 007C 007D 007E 007F
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

€ ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ Ž
8- 20AC 201A 192 201E 2026 2020 2021 02C6 2030 160 2039 152 017D

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 Chapter 7. Globalization 145

Figure 7-2 Partial EBCDIC code page

7.2 Content Manager OnDemand character conversion
architecture

From a code-page perspective, the Content Manager OnDemand system
contains two types of data:

� Reports and documents

All report and document data types, such as line data, AFP, and images, are
included. This data is stored into Content Manager OnDemand either through
a load process by using ARSLOAD (manual or automated) or by using the
ODWEK Java APIs. The data is stored on the Object Server.

� Indexes and annotations

The indexes are created during the load process and enable users to search
reports and documents in the Content Manager OnDemand system. The
annotations are added by system users and include either additional
information or events that are related to the documents. Both the index and
annotation data are stored in the database that is used by the Content
Manager OnDemand Library Server.

Figure 7-3 on page 147 shows the Content Manager OnDemand and ODWEK
data encoding architecture. It includes areas in which different code pages are
used for these two types of data and where the code page conversions occur.
The diagram illustrates the Content Manager OnDemand instance, the ODWEK
instance, the Web browser, and the data encoding between the different
components. The cogged (toothed) wheels represent the points within the
system where the data conversions occur. As a general rule, all data interfaces to
the server are in UTF-16 data, except for document data, which is transferred in
its native code page.

—0 —1 —2 —3 —4 —5 —6 —7 —8 —9 —A —B —C —D —E —F
- / ¦ , % _ > ?

6- 002D 002F 00A6 002C 25 005F 003E 003F
96 97 106 107 108 109 110 111

` : # @ ' = "
7- 60 003A 23 40 27 003D 22

121 122 123 124 125 126 127
a b c d e f g h i ±

8- 61 62 63 64 65 66 67 68 69 00B1
129 130 131 132 133 134 135 136 137 143140 141 142

120

128 138 139

116 117 118 119112 113 114 115

102 103 104 10598 99 100 101
146 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 7-3 The Content Manager OnDemand and ODWEK data encoding architecture

7.2.1 Index data and annotations conversions

At the load time, the index data is stored in the Content Manager OnDemand
database tables, by using the database code page, on the Library Server. The
arsload process produces the indexes and can run on a different machine by
using a different code page. Thus, the indexes that are generated by the arsload
process might need conversion before they are stored in the Content Manager
OnDemand database. The document data is always stored in the Content
Manager OnDemand archive in its native form. This means that there is no data
conversion for document data.

Annotation

Indexes

Document

Data

Database

DB code page
set at

DB creation

OD instanceODWEK Instance

Document

Data

Indexes

Annotation

Error messages
ODConfig - language

Web Browser
UTF-8

Displayed
Document

Data

Indexes

Annotation

Error messages

No

conversion

UTF-8

OD instance
code page matches

DB code page

ODWEK Java – UTF-16

ODWEK Native – UTF-8

UTF-8 UTF-16

UTF-16

Transforms
and/or

converters

Viewers
and/or

Plug-ins Binary, AFP,
line (ASCII,
EBCDIC),

PDF…

More information: To fully understand the concept of how Content Manager
OnDemand deals with data conversion, read Appendix J, “National Language
Support” in the DB2 Content Manager OnDemand for Multiplatforms Ver 8.4:
Installation and Configuration Guide, SC18-9232.
 Chapter 7. Globalization 147

At retrieval time, the indexes and annotation data are converted to UTF-16 for
transport. The indexes and annotations are then converted to the client code
page by the client.

The database code page is set at database creation time and cannot be
changed. When creating an Content Manager OnDemand instance, its code
page must match the database code page. Therefore, no data conversion is
required between these two components.

7.2.2 UTF conversion

UTF-16 is a variable-length UTF, which encodes each Unicode character into two
or four bytes. It can be used to represent almost any character from any code
page.

TCP/IP traffic that is composed of indexes, annotations, and control data (such
as user-login, folders, and other internal data) and is transferred between a
server and client (regardless of client type, ODWEK, or Windows) is always
transferred in UTF-16. All index and annotation data are converted from the
native database and server code page to UTF-16 for data transmission. Later the
UTF-16 data is converted into other code pages by the client, for example, to
UTF-8 for ODWEK or to the Windows locale for a Windows client.

The UTF-16 conversion is required since the server does not know which code
page a client is using. Therefore, the server cannot send the data in the client’s
code page directly. Additionally, the client might not know the code page that the
Content Manager OnDemand instance and database are using. By standardizing
the transmission code page, both the client and server can be more efficient in
handling conversions.

To the OnDemand server, ODWEK is just another client. Since Web browsers
transmit and display UTF-8 data, ODWEK is designed to work completely in
UTF-8. This allows ODWEK and the Web browsers to directly exchange data by
using UTF-8 without undergoing any further code page translations. Data that is
exchanged with the OnDemand server is converted automatically from UTF-8 to
UTF-16 and vice versa.

The Java layer of the ODWEK environment uses UTF-16, because UTF-16 is the
only native Java code page. The conversion between Java’s UTF-16 code page
and ODWEK’s native UTF-8 code page is done automatically within the ODWEK
Java APIs.

Note: The OnDemand server runs in the same code page as the Content
Manager OnDemand database.
148 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

7.2.3 Document data conversions

Document data is generally stored untouched in its native format. When the data
is loaded by using the Content Manager OnDemand load mechanisms (arsload,
Store API, Monitors, Indexer), no data conversion is applied. The data is stored
as is, in its native code page and format.

The only moment in time in which conversions on data come into play is at the
presentation level. If required, conversions and handling of custom font mappings
(for AFP) are done on the client. A line data document that is archived on an
EBCDIC computer cannot be displayed on a Windows computer without either a
code page conversion or a viewer that is capable of displaying the EBCDIC code
page on the client.

Depending on the data and type of the client, different processes occur on the
client computer system. The standard Windows client incorporates a line data
viewer component and viewing capabilities for AFP documents. Both modules
internally map the code pages and display the characters in the way they should
be displayed. For binary document data, and data that is in a format or code
page unknown to the viewers, the native document data is passed to the
associated application for further processing.

7.3 Code page conversion in ODWEK

ODWEK code page conversion behavior is somewhat different from that of the
standard Content Manager OnDemand Windows client. ODWEK is a mid-tier
system. It contains an additional presentation layer, usually a browser, but it can
also be a stand-alone Java application by using the ODWEK Java APIs.

7.3.1 API conversions

ODWEK natively runs in UTF-8. Therefore, all indexes and annotation data that is
sent from the OnDemand server must be converted from UTF-16 to UTF-8.

When implementing a Java application by using the ODWEK Java APIs, you
must be aware of the code conversions that are taking place. Java internally
operates in UTF-16. Data that is returned from the ODWEK Java API functions
are automatically converted from UTF-8 to UTF-16 by Java. When you pass
strings from Java to the ODWEK methods, you do not need to perform any
additional tasks. The UTF-16 data is converted by the native ODWEK code to
UTF-8.
 Chapter 7. Globalization 149

See Figure 7-3 on page 147 to see the data code pages that are exchanged
between the ODWEK code and a browser.

7.3.2 Browser conversions

When sending data to the browser, ODWEK does not do any other conversions
on indexes or annotations. Therefore, a browser that displays index or annotation
data that is received through the ODWEK Java APIs must be capable of handling
UTF-8 Unicode data.

If you are delivering index data to any external applications by using your
ODWEK-based Java application, make sure that those applications can handle
Unicode data. Otherwise, you must convert the data manually. The same
implications apply if you save any index or annotation data to a file. If you do not
do any explicit conversion, the data is written as a Unicode data stream.

Web browsers usually are capable of displaying and sending UTF-8 data.
Therefore, this does not present itself as an issue when implementing Web
applications.

7.3.3 Document data conversions

For the actual document data, conversion can be handled in the following
different ways:

� When you request raw native document data, ODWEK returns the data in its
unaltered form, in the same code page in which it was archived.

� When you request that the line data to be displayed as an applet, ODWEK
internally sends the UTF-8 ASCII data to the applet, and you receive the
standard HTML containing applet invocation code.

� When you request an ASCII conversion, ODWEK returns a UTF-8 ASCII
converted representation of the original AFP or line data document.

� For most other document types, ODWEK behaves in the same manner as the
Content Manager OnDemand Windows client. It passes the data back in its
native format.

For more details about document data conversions in ODWEK and how you can
request data in different formats, see Chapter 10, “Applets, plug-ins, and
transforms” on page 197.
150 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

7.4 The ICU conversion library

Content Manager OnDemand performs conversion or mapping from different
code pages to other code pages by using a standard component called
International Components for Unicode (ICU). ICU is an open source project that
was developed by IBM and other companies. It is a library that is available for
Java and C and is used for multicultural support. ICU provides services such as
character conversion between different code pages, language-sensitive collation,
and locale and resource management support.

In earlier versions of Content Manager OnDemand, the ICONV library
conversion engine was used. Content Manager OnDemand was updated to ICU
in version 7.1.2.1 (AFP viewer components in Version 7.1.2.5). ICONV is a
character encoding library that is primarily distributed on UNIX® environments as
part of the GNU C library in most Linux distributions.

ICU is used by Content Manager OnDemand at different locations for code page
conversion and text operations. Figure 7-4 shows the components within the
Content Manager OnDemand architecture that the ICU library uses to convert
data.

Figure 7-4 Content Manager OnDemand components that use the ICU library

Each component uses ICU for different use cases, but all do code page
conversions, which enables communication with other parts of the Content
Manager OnDemand infrastructure:

� The OnDemand server uses ICU for index and annotation conversions. All
TCP/IP traffic is in UTF-16, but the index and annotation data are stored in the
database code page format. Therefore, ICU is used for data conversion
between the database instance code page and UTF-16.

OnDemand

Windows client

ODWEK

AFP Plug-in
 Chapter 7. Globalization 151

� ODWEK uses ICU to convert the index and annotation TCP/IP data, which is
in UTF-16, to the internal data format used in ODWEK, which is UTF-8.
Additionally, if you are using line data and the line data Java applet, then the
actual data is converted from its native code page to UTF-8, which is used by
the applet. All other documents are passed through without conversions.

� The standard Content Manager OnDemand Windows client uses its ICU
facility to convert AFP and line data to the local Windows code page for
viewing by using internal viewers.

� The AFP plug-in, which works similar to the AFP viewer that is integrated
within the Content Manager OnDemand Windows client, has its own ICU
library for converting AFP data to the local Windows code page.

7.5 Using Unicode as the database code page

Generally, when you develop OnDemand applications by using ODWEK, your
database is already created. The code page of the database is set, and you
cannot change it. Therefore, the discussion of using Unicode as the database
code page or not using it is not relevant at this point. However, since this chapter
covers globalization, we include the discussion for your reference. This
information might be useful for future implementations.

In most Content Manager OnDemand implementations, the OnDemand server
and the Content Manager OnDemand database are configured to use the
operating system locale. The operating system locale is either a single-byte or a
double-byte code page (for example, a Windows-1252 code page). Since
modern databases are capable of working directly in Unicode, the ability to
configure the OnDemand server instance to use Unicode has been added to the
system.

You can choose to run an OnDemand server instance by using Unicode
encoding UTF-8 or UTF-16 as long as you ensure that the database that you use
for the Content Manager OnDemand instance uses the same Unicode encoding.

Tip: Using Unicode as the database code page can help to solve some of the
issues that you might experience when dealing with multiple code pages and
languages.
152 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

When Content Manager OnDemand and database Unicode
encoding are needed
In most scenarios, it is not necessary to use Unicode for the server and database
encoding. If you are working in an environment in which data from different code
pages must be handled, Unicode encoding might help to store the data correctly.

For example, an OnDemand server instance uses a Japanese code page
because the users and applications that are working on this instance are in
Japan. Additionally, you must archive European documents that contain the euro
sign character (€) in their indexes. The problem is that the Japanese code page
does not contain the € character. Without using Unicode, the solution is to set up
two different OnDemand server instances, one running in a Japanese code page
and the other one running in a European code page. However, in this case when
your Japanese users want to add annotations (in Japanese) to the European
documents, you might have problems. In such a scenario, use Unicode.

Unicode and application group field length
When a database uses Unicode instead of a single-byte or multiple byte code
page, be aware of the possible impact on the length of the application group field.

Unicode encodings, such as UTF-8 or UTF-16, represent characters as a
variable number of bytes. For example, UTF-8 uses one to four bytes to store a
character. A character within the standard ASCII range of characters, such as the
Latin letters (a-z and A-Z), is stored by using a single byte. Umlauts (for example
“ä”) are stored by using two bytes (in this case 0xC2 0xAE). The € character is
stored by using three bytes (0xE2 0x82 0xAC). Some Asian characters are
stored by using four bytes.

The different byte-length for each character can lead to issues concerning the
maximum length of the database application group fields in Content Manager
OnDemand. Each application group field in Content Manager OnDemand
corresponds to a field in a database table. When creating an application group
string field, you specify the maximum character length of this field. Internally at
the database level, the field length is not enforced by the number of characters.
Instead, it is calculated based on the number of bytes.

For example, a string field with a maximum length of 10 in a Unicode database
can hold 10 standard ASCII characters. In the worst case, it can hold only two
4 byte characters. When loading index data into Content Manager OnDemand,
all characters that cannot be stored because the field length is exceeded are
stripped off.

Therefore, if an OnDemand server instance and database are set up to work in
Unicode, the string field length must be set to a sufficient length.
 Chapter 7. Globalization 153

7.6 ODWEK language configuration

The ODWEK Java APIs do not need to be configured with code pages or
character sets. Internally, ODWEK uses Unicode UTF-8 encoding. The
surrounding Java API code uses Unicode UTF-16. All TCP/IP communication
between the OnDemand server and ODWEK is in UTF-16. The ICU conversion
engine automatically handles the data conversion.

In this section, we discuss how to set language for ODWEK output and what you
need to pay attention to when dealing with multiple languages.

Supported languages
The multicultural support that is provided by ODWEK is the same as the
multicultural support that is provided by other components of Content Manager
OnDemand. You can specify a language in which all messages are displayed.
Table 7-1 shows the list of available languages that can be used with ODWEK.

Table 7-1 Languages supported by ODWEK

Important: If you work with other pieces of ODWEK, especially the CGI
module, you have to specify the code page of the OnDemand server and
Content Manager OnDemand database in the arswww.ini file. This setting is
not required for the ODWEK Java APIs.

Language code Region or country ISO and Windows code page

ARA Egypt ISO8859-6 / 1256

CHS China IBM-eucCN / eucCN / GBK

CHT Taiwan IBM-eucTW / eucTW / Big5

CZE Czech ISO8859–2 / 1250

DAN Denmark ISO8859-1 / 1252

DEU Germany ISO8859–1 / 1252

ENU English (US) ISO8859–1 / 1252

ESP™ Spain ISO8859–1 / 1252

FIN Finland ISO8859–1 / 1252

FRA France ISO8859–1 / 1252

FRC Canada ISO8859–1 / 1252
154 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The value that is used to configure ODWEK is the language code (the first
column in Table 7-1). The third column in Table 7-1 provides additional
information about the code page that is internally used when data is represented
in the selected language. For the double-byte languages (CHS, CHT, JPN, and
KOR), the code pages are used by AIX, Solaris™, and Windows. Because this is
handled internally, you do not need to configure the code page information,
according to the ODWEK language settings.

Configuring the ODWEK language
The language that is used by ODWEK is configured like all other configuration
settings by using the ODConfig object. The constructor of the ODConfig class
requires String parameter language. You must specify one of the language codes
listed in column one of Table 7-1 on page 154. If you do not specify configuration

HRV Croatian ISO8859–2 / 1250

HUN Hungarian ISO8859–2 / 1250

ITA Italy ISO8859–1 / 1252

JPN Japan IBM-eucJP / eucJP / IBM-943

KOR Korea IBM-eucKR / eucKR / 1363

NLD Netherlands ISO8859–1 / 1252

NOR Norway ISO8859–1 / 1252

PLK Polish ISO8859–2 / 1250

PTB Portugal / Brazil ISO8859–1 / 1252

RUS Russia 1251

SKY Slovakian ISO8859–2 / 1250

SLO Slovenian ISO8859–2 / 1250

SVE Sweden ISO8859–1 / 1252

System i installations: Due to the architecture of System i software, the
language locales that are supported might differ from Table 7-1. See the
“Locales,” “Specifying the arswww.ini file,” “[CONFIGURATION]”, and
“LANGUAGE” sections in IBM Content Manager OnDemand for i5/OS®
Common Server ODWEK Installation and Configuration Guide, SC27-1163.

Language code Region or country ISO and Windows code page
 Chapter 7. Globalization 155

values (by using the parameterless constructor), the default locale ENU
(English/USA) is used.

Special attention for multi-language applications
You cannot use different languages in your application by initializing different
sessions with different language locales. When a Content Manager OnDemand
session is initialized by using an ODConfig object for the first time, the language
is set for the entire Web application. For subsequent session initializations, the
language setting is ignored.

If you must have multiple ODWEK message languages, deploy your application
as multiple Web applications. However, before doing deploying the application,
consider whether the language used by ODWEK for messages is really of
interest to your users. Your users might never see any of the messages if you do
not use ODWEK applets or expose other ODWEK material directly to the users.

7.7 Integrating custom code pages

If you use custom code pages in your AFP or line data document, or if you
modified a code page because your business application or your printing system
requires it, Content Manager OnDemand does not know the correct code page to
use. The same situation occurs if you use a code page that is not known to
Content Manager OnDemand.

In such cases, configure the ICU conversion engines in your Content Manager
OnDemand system to correctly handle your custom code page.

7.7.1 Locations that require configuration

You must update the code page settings for the following client applications:

� Content Manager OnDemand Windows client
� The AFP plug-in
� ODWEK
� The stand-alone AFP viewer

Content Manager OnDemand Windows client
The ICU engine of the Windows client is responsible for rendering the AFP and
line data documents that are viewed by the client. If users are running the
Windows client, configure your custom code pages there.
156 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

AFP plug-in
If your Web application is running in an environment where the AFP plug-in is
deployed, then you must configure custom code pages.

ODWEK
ODWEK uses the ICU engine for two data conversions.

The first data conversion is for UTF-16 data (indexes and annotations as they are
transferred by using the TCP/IP connection to the server) to UTF-8, which is
used by the internal native part of ODWEK.

The second conversion is for line data documents from their native code page in
which they are stored in the server to UTF-8 when they are passed to ODWEK.
This conversion is required when an application uses the line data Java applet.
Therefore, you must configure the custom code page data in the ODWEK ICU if
you want to use the line data Java applet.

Stand-alone AFP viewer
If your Web application works in an environment where the AFP plug-in is not
used or is only partially used and the stand-alone AFP viewer application is used
in all other cases, then configure your custom AFP code pages in the viewer
application. For more information about configuring custom code page
mappings, continue with the following sections.

7.7.2 ICU and ICONV

In version 7.1.2.1, Content Manager OnDemand upgraded its internal
multicultural support library from using the ICONV character set conversion
engine to the ICU library 3.0. However, the AFP workbench viewer, which is used
by the Content Manager OnDemand windows client, did not upgraded until
version 7.1.2.5. In Content Manager OnDemand version 8.4.0.0, the ICU library
was updated throughout the product from ICU version 3.0 to ICU version 3.6.

AFP workbench viewer: The Content Manager OnDemand Windows client
uses the AFP workbench viewer, which is installed automatically during the
client setup. However, as the components of the workbench viewer are directly
integrated into the client, the ICU installation of the client is used to render
AFP documents. You do not have to configure the AFP workbench viewer
installation if you view custom code pages in the Content Manager
OnDemand Windows client.
 Chapter 7. Globalization 157

If you already configured the ICONV engine for your custom code page data, you
must reconfigure it for ICU, because the ICONV code page integrations works
differently from ICU. If you already created custom code page data for ICU
version 3.0, you must recompile the data when you migrate to Content Manager
OnDemand version 8.4, because the ICU data files of ICU version 3.6 are not
compatible with ICU version 3.0.

7.7.3 Customizing code page mappings for ICU

To customize code page mappings for Content Manager OnDemand Client
Version 8.4 or later by using ICU version 3.6 data formats, see the “Customizing
code page mappings for the OnDemand Client version 8.4.0.0 and later”
technote at the following address:

http://www.ibm.com/support/docview.wss?rs=129&context=SSEPCD&dc=DB520&d
c=DB560&uid=swg21290484&loc=en_US&cs=UTF-8&lang=en&rss=ct129db2

You can also see the Content Manager OnDemand for Multiplatforms Support
page at the following address:

http://www.ibm.com/software/data/ondemand/mp/support.html

On this page, in the search field, type the following search string:

Customizing code page mappings for the OnDemand Client

Several articles are returned from the search. Select the article that covers the
OnDemand client version that you currently work with.

7.8 Globalizing applications by using ICU

If you want to enable your application to be multicultural support, consider using
the ICU components. The ICU library is available for Java. The library is licensed
under a nonrestrictive open source license that allows its use with both
commercial software and other open source or free software.
158 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.ibm.com/software/data/ondemand/mp/support.html
http://www.ibm.com/support/docview.wss?rs=129&context=SSEPCD&dc=DB520&dc=DB560&uid=swg21290484&loc=en_US&cs=UTF-8&lang=en&rss=ct129db2

Although portions of the Java framework in the packages java.text and java.util
are already based on ICU code, ICU provides the following, among other,
additional functionality:

� Code page conversions, which is the function ICU is used for in the Content
Manager OnDemand infrastructure

ICU conversion tables are based on the charset data that is provided by IBM.
It can be considered one of the most complete collections of charset
conversions available.

� String functions such as locale-based comparing and sorting

The national conventions used by ICU are based on the Common Locale
Data Repository (CLDR) project that is maintained by Unicode.

� Date and time formatting and calendar support based on the regional or
locale settings

This support includes translating month and day names into the selected
language, choosing appropriate abbreviations and ordering fields correctly,
and dealing with different calendars and time zones.

� Text analysis and regular expression support for Unicode data, as well as line
wrapping and text boundary functions

You can download the ICU library and binaries for various platforms from the
following Web page:

http://www.icu-project.org

For the Javadoc documentation for ICU4J, go to the following Web page:

http://www.icu-project.org/apiref/icu4j
 Chapter 7. Globalization 159

http://www.icu-project.org
http://www.icu-project.org/apiref/icu4j

160 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 8. Folder searching

In this chapter, we provide an overview of the techniques for performing Content
Manager OnDemand (OnDemand) document searches by using OnDemand
Web Enablement Kit (ODWEK) APIs. You can use the APIs in a variety of ways to
search for stored documents. How the APIs are called depends on the nature of
the desired search results.

This chapter covers the following topics:

� Criteria and SQL searches
� Sort fundamentals
� Search results
� Callbacks

8

© Copyright IBM Corp. 2008. All rights reserved. 161

8.1 Criteria and SQL searches

The ODWEK Java APIs provide two ways to search for documents. One way is
called criteria search, which is also known as a parametric search. The other
way is an SQL search.

8.1.1 Criteria search

A criteria search is a search that is performed on an OnDemand folder by setting
search criteria field values and operators. The ODFolder object is searched by
retrieving one or more ODCriteria objects (OnDemand folder fields) and setting
the search values. A valid search operator must also be selected for each
ODCriteria object. Each selected ODCriteria object has at least one search
value. If the search operator is ODConstant.OPBetween (between) or
ODConstant.OPNotBetween (not between), then the second search value must
be set for the ODCriteria object.

In addition to the performance advantage, when performing a criteria search, the
OnDemand application group database fields do not need to be queried. The
criteria search is well structured and simple to use. All values in the criteria
search are of type String. ODWEK converts the values to the proper format
before it executes the search.

ODWEK uses dynamic statement caching for non-SQL based ODFolder.search
API calls, which improves the performance of criteria search over the SQL
search.

The SQL search requires advanced OnDemand and database knowledge to
achieve correct results and good performance. The SQL search is also more
complicated and requires use of the right data type for each application group
field to be searched.

Follow these rules for preparing a criteria search:

1. Instantiate an ODFolder object with a valid OnDemand folder name.

2. Obtain a string array of ODCriteria names by using a call to the
ODFolder.getCriteriaQueryOrder() method.

This method returns the folder fields in the query order that the OnDemand
administrator wants the search criteria to be entered and laid out.

Optimized search methods: The criteria search methods are optimized to
provide the best possible performance. Use criteria search whenever possible.
162 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

3. For each ODCriteria String name that is returned:

a. Instantiate the ODCriteria object by issuing the
ODFolder.getCriteria(criteria_name) method.

b. Obtain a list of valid search operators to display.

c. Display or set the selected search operator to a valid search operator.

odCriteria.setOperator(oper);

d. Set one or two search values depending on the search operator.

e. Perform the ODFolder object search.

Before performing a criteria search, consider the following points:

� Make sure the ODCriteria object is a folder field that can be queried as
defined by the OnDemand administrator by calling the
ODCriteria.isQueryable() method.

� Restrict the list of valid search operators to those as defined by the
OnDemand administrator.

Example 8-1 shows the code snippet for getting a list of valid operators for the
ODCriteria object.

Example 8-1 Code snippet to get a valid operator

int opers[] = odCriteria.getValidOperators();
String[] validOperatorNames = new String[opers.length];
for (int i = 0; i < opers.length; i++) {

validOperatorNames[i] = ODUtils.operatorName(opers[i]);
}
...
public static String operatorName(int oper) {

switch (oper) {
case ODConstant.OPEqual:

return ("Equal");
case ODConstant.OPNotEqual:

return ("NotEqual");
...

� For any Date field, make sure that the date pattern conforms to the default
format for the folder field as defined by the OnDemand administrator.

The default format for a Date field is %m/%d/%y or mm/dd/yy. Before the search
page is written, the application must try to get the OnDemand folder date
pattern, convert it to something more meaningful for users, for example,
dd/mm/yyyy, and make a notation by the Date entry fields. Any date string that
 Chapter 8. Folder searching 163

is received by the application must be converted to the pattern for each Date
field that is specified for the folder before a search is performed.

Use the following code to obtain the default format:

String criteriaFormat = odCriteria.getDefaultFmt();

� Make sure that the search values are set for all required ODCriteria objects as
defined by the OnDemand administrator for each folder field.

Use the following code to check whether the ODCriteria object is required:

if (odCriteria.isRequired()) {
...
}

� The default operator setting for multiple ODCriteria search objects is AND. If
multiple ODCriteria search objects are used, by default, they are ANDed
together when the search is performed.

The search can OR multiple ODCriteria search objects by calling and setting
the ODFolder.setOrSearchCriteria() method to true. If an OR condition is
required, the folder field chosen by the OnDemand administrator as the
segment date is always ANDed with the rest of the collection of objects.

� Before presenting a search result list to a user, make sure that the display
order of each ODCriteria name matches how the OnDemand administrator
defined it. A value of zero (0) means that it is not eligible to display.

Use the following code to check for the display order:

String[] displayOrderedFieldNames = odFolder.getDisplayOrder();

8.1.2 SQL search

You can write your application to use an SQL search. An SQL search involves
setting the WHERE clause and invoking the ODFolder.search() method with the
SQL string and additional parameters.

Always use the criteria search instead of an SQL search whenever possible.
However, there might be times when a complex search is required, and an SQL
search is the only way to provide correct search results.

Tip: As mentioned earlier, an SQL search requires advanced knowledge of
OnDemand and the database to achieve correct results and good
performance. Use the SQL search only when the criteria search is not
sufficient for your search.
164 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

You can choose to search any field or predicate combination as long as you know
the application group field names. A criteria search uses folder field names, and
an SQL search uses application group field names.

Example 8-2 shows examples of WHERE clauses.

Example 8-2 WHERE clauses

WHERE balance BETWEEN 2000 AND 2020
WHERE name = 'IBM GIFT SHOP'
WHERE name = 'MARK''S SHOP'
WHERE name <> 'IBM GIFT SHOP'
WHERE crd_date > 10/03/95
WHERE name LIKE '%'
WHERE name > 'N' AND balance BETWEEN 2000 AND 2020
WHERE crd_date BETWEEN 01/01/2006 AND 12/31/2006
WHERE balance <= 100
WHERE name > 'N' AND (balance < 100 OR balance > 2020)

The application can dynamically query the OnDemand application group to
obtain a list of field names as shown in Example 8-3.

Example 8-3 Application group query code snippet

List<String> listFields = new ArrayList<String>();
ODApplicationGroup applGroup =
odServer.getApplicationGroup(applGrpName);

for (Enumeration fields_enum = applGroup.getFields();
fields_enum.hasMoreElements();) {

ODApplicationGroupField applField = (ODApplicationGroupField)
fields_enum.nextElement();

listFields.add(applField.getName());
}
return listFields;

Each application group field can be displayed for the user to enter data values.
After the matching values are received by the application, the query string can be
created. The data type for each application group field must be known in order to
create a correct SQL WHERE clause. The data type can be determined by
calling the ODApplicationGroupField.getType() method.
 Chapter 8. Folder searching 165

An OnDemand folder can have one or more application groups mapped to it.
There can be performance implications when a folder that is searched contains
more than one application group. Setting the application group name can be
accomplished by using the following API example:

odfolder.setApplGroupForSearchWithSQL("BaxterBayBank");

If the OnDemand folder has multiple application groups and this method is not
called, then OnDemand performs a search across all application groups that are
mapped to the folder.

When dealing with date values in the SQL search, the ODWEK Java APIs can
handle either the default date format or a specified date format as shown in the
following example:

String whereClause = "WHERE lname = 'DOE'";
Vector searchResults = folder.search(whereClause,"10/03/95",
"10/03/96","%m/%d/%y");

lname is the application group database field name. The two dates are the start
and end of a date range for OnDemand to search using the date format that is
specified as the last parameter in the method. An SQL search offers a more
flexible search than a criteria search provides. When using a criteria search, you
can query any of the folder fields that are available and specify the search
concatenation between the selected fields to set as an OR condition or an AND
condition. By using an SQL search, you can specifying the OR and AND
conditions between each field or group of fields as desired.

Before performing an SQL search, keep in mind the following points:

� Use caution when doing an SQL search. Advanced knowledge of OnDemand
and the database is required in most cases. Otherwise, you might not receive
the best possible performance that the criteria search provides. Use a criteria
search whenever possible.

� Identify the application group or groups that will be searched. Determine how
many application groups are mapped to the Ondemand folder that you want
to search by calling the ODFolder.getApplGroupNames() method. If there is
more than one group, try to examine whether all of the application groups or
just one group needs to be searched.

� Determine the application group field names that are needed to create the
SQL query string. You can do this dynamically by using the APIs or a
predefined method such as a properties or XML file.

� Determine the date range search, and set the date patterns according to the
OnDemand date format that is specified by the OnDemand administrator.
166 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Before presenting a search results list to a user, make sure that the display
order of each ODCriteria field matches the OnDemand administrator’s folder
field definitions. A value of zero (0) means that it is not eligible to display.

Use the following code to obtain the display order:

String[] displayOrderedFieldNames = odFolder.getDisplayOrder();

8.2 Sort fundamentals

When we speak about sorting, we address how the search result list is sorted
and presented to the application. Sorting search results by the application is a
seldom-used feature of the APIs and has inherent performance overhead for
almost all of the API sorting techniques. Several API methods can be invoked to
sort the result list in various ways. We discuss some of these techniques in this
section.

The OnDemand administrator has the ability to define the default sort orders of
the folder fields as they are displayed in the result list. This is not to be confused
with the display order or query order sequences that are also defined for each
folder field. We explain sorting by values within each folder field (or application
group field).

In most cases, how a search result collection is sorted is closely tied to the
number of maximum hits (maxhits) that can be returned for an OnDemand folder.
The number of maxhits can be obtained by invoking the ODFolder.getMaxHits()
method after a given ODFolder object is opened. This call returns either the
maxhits value that is specified when the ODConfig object is instantiated or the
value that is specified by the OnDemand administrator for the folder, depending
on the lesser value. The number of maxhits can also be dynamically changed by
invoking the ODFolder.setMaxHits() method.

For criteria searches, the search results are sorted as how the folder field sort
order is specified, either by the API or by the OnDemand administrator. The
application can explicitly set the sort order for each ODCriteria object by invoking
the ODCriteria.setSortOrder() method. The value can be 0 to n, where 0 means
that no sorting is specified. If all folder fields have their sort order settings equal
to 0, then the search results are returned in the database order, which is based
on random loads and optimizations.

No sorting: By default, no sorting is done in the ODWEK search routines,
even if the OnDemand administrator has set a sort order on the folder fields.
 Chapter 8. Folder searching 167

The application can also specify where the sorting of the results occurs. The
ODFolder.setSortLocation() method can specify the following sort order:

� ODConstant.OD_SORT_LOCATION_NONE

The results (up to maxhits) are returned in no sorted database order.

� ODConstant.OD_SORT_LOCATION_MIDTIER

The results (up to maxhits) are returned in no sorted database order and then
are sorted by ODWEK native code.

� ODConstant.OD_SORT_LOCATION_SERVER

All search results are sorted and then are returned on the OnDemand server,
up to the maxhits in effect.

Let us assume that we specify the sort location as
OD_SORT_LOCATION_MIDTIER and set maxhits to 200. When a search is
performed and the actual number of results that met the criteria is 3000, the
following actions occur:

1. The database query retrieves the first 200 rows that it finds that match the
search criteria and then cancels the rest of the query. The results are
optimized for database query speed and are returned in random order.

2. ODWEK (mid-tier) receives these 200 hits back and then sorts them.

3. A sorted list is presented, but you are not guaranteed to have the first 200 hits
of the all possible hits that met the criteria.

If we apply the same assumptions as in the previous example, but change the
sort location to OD_SORT_LOCATION_SERVER, then the following actions
occur:

1. The database query is set to take the overhead to obtain all 3000 rows that
match the search criteria,

2. The database sorts all 3000 rows.

3. The database returns only the first 200 rows from the sorted list to
OnDemand.

4. ODWEK Java APIs pass the hitlist as is, with no additional sorting.

Depending on your application requirement, use the appropriate
ODFolder.setSortLocation() method.
168 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

8.3 Search results

A search result list consists of the ODHit objects that represent an OnDemand
document. The application uses the ODHit object to retrieve the documents as a
byte array that can either be streamed directly to the requesting client or be
written to a file on a shared file system.

8.3.1 Query and display order

Your application must check whether the OnDemand folder field can be queried,
which can occur in several ways. After opening the ODFolder object:

� Call the ODFolder.getQueryOrder() method to get a string array of the folder
field names in the order that they are defined by the OnDemand administrator
for the folder. The string array has only the folder fields that have a non-zero
query order value defined.

� After a list of ODCriteria objects is obtained from the selected ODFolder
object, call the ODCriteria.getQueryOrder() method to get the value as
defined by the OnDemand administrator. A value of zero means that the folder
field is not eligible to be queried or searched.

� Call the ODCriteria.isQueryable() method. The method returns true if the
folder field has a non-zero query value defined, or it returns false if the value
is zero.

Your application must also check whether the OnDemand folder field can be
displayed, which can be done in ways that are similar to checking whether the
field can be queried. After opening the ODFolder object:

� Call the ODFolder.getDisplayOrder() method to get a string array of the folder
field names in the order in which they are defined by the OnDemand
administrator for the folder. The string array has only the folder fields that have
a non-zero display order value defined.

� After a list of ODCriteria objects is obtained from the selected ODFolder
object, call the ODCriteria.getDisplayOrder() method to obtain the value as
defined by the OnDemand administrator. A value of zero means that the folder
field is not eligible to be displayed in the results list.

� Call the ODCriteria.isDisplayable() method. The method returns true if the
folder field has a non-zero display value defined, or it returns false if the value
is zero.
 Chapter 8. Folder searching 169

8.3.2 Search result size

When your application allows users to perform their own searches, use care
within the application to monitor the potential impact of the search. Users can
inadvertently perform searches that create long running tasks on the OnDemand
server.

The OnDemand administrator can set the maximum number of results that are
returned during a folder search. Your application must honor this configuration
setting or a lesser value when monitoring the impact of the search by users. For
example, a call to the ODFolder.getMaxHits() method returns results based on
either how the OnDemand administrator has the maximum hits value defined or
how the ODConfig object property value is configured during the instantiation of
the ODServer object, whichever is the lesser value.

After a client submits the search criteria to the application, a call to the
ODFolder.searchCountHits() method can be made to determine the impact of the
search. IBM DB2® has optimized APIs that are used to only get the count back
for a specific query, but does not pass any data back. Therefore, overhead is
avoided at both the OnDemand server and the mid-tier of setting up the hit
structures. A decision in the application can be made based on the number of
hits returned. For example, it can refuse the client search request or honor the
request at another time of day.

If the maxhits size is not specifically set in the ODConfig object or the ODFolder
object, or by the OnDemand administrator, ODWEK defaults the number of
maxhits to 200.

8.3.3 Searching by date

The OnDemand administrator has the responsibility to define application groups
for a collection of reports that will be loaded and indexed. One of the key
database fields to be defined is a date field that represents either the actual date
posted within the report content or the date that the report content is loaded into
OnDemand. This field can also be designated as a segment field to OnDemand
to improve overall performance when searching across the application group
data tables.

Your application must add the date criteria as part of the client searches to
eliminate potential performance issues on the OnDemand server. OnDemand
converts all date formats into a common internal format when performing
searches. Your application should check how a date field should be formatted
when using it in a search. For example, the OnDemand administrator might
define a date pattern for a folder date field as %m-%d-%y, which should be
170 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

presented to the client as a search string pattern of mm-dd-yy. If no format is
defined for the folder date field, it defaults to %m/%d/%y.

A call to the ODCriteria.getDefaultFmt() method returns the folder date pattern
such as %m-%d-%y. Your application should ensure that the date search values
follow the same pattern when performing a search.

8.3.4 Selecting a document from the search result list

After a folder search is performed, ODWEK returns the search result list as a
vector of ODHit objects. Each object represents an OnDemand document. To
retrieve a document from OnDemand by using the APIs, the ODHit object must
be instantiated and then a call must be made to one of the ODHit.retrieve()
methods to get the document returned as a byte array or file.

The document ID (docID) is a property within the ODHit object. It is used by
ODWEK to retrieve the document content to the API. See the following example
of a docID:

v7126-5011-5012-5014-BAA2-4FAAA-0-2652-0-1094-85-79-2-1-0-^A & T PIANO
CO00000015213077277.860000

Different techniques are available to recreate the ODHit object that is used to
retrieve the document. One technique is to persist the docID and recreate the
ODHit object from the ODFolder object that has been persisted:

String docId = request.getParameter(“docId”);
ODFolder odFolder = (ODFolder) session.getAttribute(“odFolder”);
ODHit odHit = odFolder.recreateHit(docId);

This technique may not be desirable for applications that do not want to keep the
docID persistent, perhaps in the browser search results HTML page.

Another technique is to obtain the ODHit object by its relative location within a
collection of ODHit objects that has been persisted by the application or within a
collection of ODHit objects that is recreated by calling the ODFolder.getHits()
method. This method returns a list of ODHit objects from the last successful
ODFolder search:

String hitPosition = request.getParameter(“hitPosition”);
ODFolder odFolder = (ODFolder) session.getAttribute(“odFolder”);
Vector odHits = odFolder.getHits();
ODHit odHit = (ODHit) odHits.get(Integer.parseInt(hitPosition));
 Chapter 8. Folder searching 171

8.4 Callbacks

With callbacks, you can handle search results on an item-by-item basis.

8.4.1 Why use callbacks

The methods that are described in the previous sections of this chapter use the
default result handling behavior of the folder search API. The default behavior is
simply to cache the results of the most recent successful search and make them
available as a vector of ODHit objects after the search completes.

As of ODWEK version 8.4, the full query results are cached in the folder object,
just as for a non-callback search. However, this caching behavior might change
in future versions of the API to allow more memory-efficient result handling.

At present, searching with a callback provides the following benefits when you
handle the result hits one by one:

� Provide users with a more dynamic experience by reporting and acting on
partial results immediately.

� Cancel a running search.

8.4.2 Searching with callbacks

By using the ODWEK Java APIs, you can implement a custom result handler in
the form of a callback object. You then call an ODFolder.search() method that
takes your callback as a parameter. As the search executes, the API calls your
custom handler for each hit as it is returned from the server.

Apart from invoking your custom callback logic, the behavior of callback searches
match their non-callback counterparts. After you define a custom callback class,
pass an instance of it to the ODFolder.search() method that matches your
desired search type.

To implement a custom callback, extend the template class ODCallback, and
override one of the following two methods that are provided for handling search
results:

public boolean HitCallback (
java.lang.String docId,
char type,
java.lang.String[] values)

public boolean HitCallback (
172 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

java.lang.String docId,
char type,
int hit_location,
java.lang.String[] values)

These two methods are the same except for the int hit_location parameter. The
ODCallback class is not abstract. Therefore, you must only implement the
method for the particular callback that you want to handle. All ODFolder search
methods except the following one invoke the callback method without
hit_location:

java.util.Vector search (
ODCallback odCallback,
boolean use_docloc_hit_callback)

Passing true for the boolean parameter causes the API to invoke the alternative
HitCallback() method instead. The API passes a hit_location value that is one of
the DocLocationXxx values that is defined in ODConstant. These values indicate
the physical storage tier in which the referenced document resides. See the
Javadoc documentation for ODConstant to view the possible values.

Despite the java.util.Vector return type of search() method signatures, callback
searches return a vector of zero length, which the application code should
ignore.

In addition to ODFolder's search() methods, there is an additional set of
ODFolder methods named searchWithCallback(). Unlike the search() methods,
searchWithCallback() calls are asynchronous. That is, they return immediately
when called, and the query continues to execute on a different thread until
completed or cancelled by the callback.

8.4.3 Callback search example

Example 8-4 shows a program that uses a custom callback to process search
results. Each result hit is printed to the console as it is returned from the server,
and the user is asked whether to continue searching for documents. The API
passes result field values to the callback as a string[] of values in display order.

Example 8-4 Callback search example program

import com.ibm.edms.od.ODCallback;
import com.ibm.edms.od.ODConstant;
import com.ibm.edms.od.ODCriteria;
import com.ibm.edms.od.ODFolder;
import com.ibm.edms.od.ODServer;
 Chapter 8. Folder searching 173

/**
 * Demonstrates folder search using a custom callback object.
 */
public class CallbackSearchExample
{

static ODServer odServer = null;

public static void main (String[] args) throws Exception
{

connect (
"CallbackSearchExample",
"mydocserver", 1445,
"myusername", "mypassword"

);

try
{

ODFolder folder = odServer.openFolder ("myfoldername");
MyCallback callback = getCallback (folder);

ODCriteria crit = folder.getCriteria ("FirstCriterion");
crit.setOperand (ODConstant.OPEqual);
crit.setSearchValue ("somesearchvalue");

crit = folder.getCriteria ("SecondCriterion");
crit.setOperand (ODConstant.OPLike);
crit.setSearchValue ("%othersearchvalue%");

folder.search (callback);
folder.close ();

}
catch (Exception e) { e.printStackTrace (); }
finally
{

disconnect ();
}

}

static void connect
(

String applicationName,
String server,
int port,
String usr,
String pwd
174 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

) throws Exception
{

odServer = new ODServer (new ODConfig ());
odServer.initialize (applicationName);
odServer.setPort (port);
odServer.setServer (server);
odServer.setUserId (usr);
odServer.setPassword (pwd);
odServer.setConnectType (ODConstant.CONNECT_TYPE_TCPIP);
odServer.logon ();

}

static void disconnect () throws Exception
{

if (odServer != null)
{

odServer.logoff ();
odServer.terminate ();
odServer = null;

}
}

/**
 * Factory method
 *
 * @param folder An open ODFolder
 * @return A callback that prints displayable hit fields
 * in correct display order for the given
 * folder
 */
public static MyCallback getCallback (ODFolder folder)
{

String[] displayOrder = folder.getDisplayOrder ();
String[] queryOrder = folder.getQueryOrder ();

int[] showIndex = new int[displayOrder.length];
display: for (int i=0; i<displayOrder.length; i++)
{

ODCriteria criterion = folder.getCriteria (displayOrder[i]);
showIndex[i] = -1; // -1 --> don't display

if (criterion != null && criterion.isDisplayable ())
{

for (int j=0; j<queryOrder.length; j++)
if (queryOrder[j].equals (displayOrder[i]))
 Chapter 8. Folder searching 175

{
showIndex[i] = j;
continue display;

}
}

}
return new MyCallback (showIndex);

}

/**
 * Custom callback class that prints search results
 * to the console. Display values for hit fields
 * are printed in the order given to the constructor.
 */
public static class MyCallback extends ODCallback
{

int[] displayOrder = null;

public MyCallback (int[] showIndex)
{

displayOrder = new int[showIndex.length];
System.arraycopy (

showIndex, 0, displayOrder, 0, showIndex.length);
}

public boolean HitCallback (
java.lang.String docId,
char type,
java.lang.String[] values)

throws java.lang.Exception
{

// print index field values in display order
for (int i=0; i<displayOrder.length; i++)

if (displayOrder[i] != -1)
System.out.print (values[displayOrder[i]] + " ");

System.out.println ();

System.out.print ("Continue searching (y/n)? ");
String response = null;
BufferedReader in =

new BufferedReader (new InputStreamReader (System.in));

try
{

response = in.readLine ();
176 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

}
catch (IOException e)
{

e.printStackTrace ();
System.err.println (

"Error reading user input; search cancelled.");
return false;

}

if (response != null &&
response.toUpperCase ().startsWith ("Y"))

{
return true; // true --> continue searching

}
else return false; // false --> cancel search

}
}

}

 Chapter 8. Folder searching 177

178 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 9. Document retrieval

In this chapter, we discuss the way in which documents are retrieved by using
OnDemand Web Enablement Kit (ODWEK) and how you use the plug-ins and
transformations when retrieving documents. We pay special attention to
Advanced Function Presentation (AFP) resources and the handling of large
objects.

We cover the following topics in this chapter:

� The importance of a retrieval strategy
� Retrieval API overview
� AFP resource retrieval and custom caching
� Segmented retrieval and large object support
� Avoiding memory issues for large files
� Getting document type information
� Retrieving converted data

9

© Copyright IBM Corp. 2008. All rights reserved. 179

9.1 The importance of a retrieval strategy

Retrieving documents is a basic functionality of IBM Content Manager
OnDemand (OnDemand) and is used frequently when users double-click hitlist
items. The ODWEK Java APIs provide several methods for document retrieval.
Most retrieval jobs can be done by calling the ODHit.retrieve() method, which
retrieves the documents content and returns it as a byte array.

Retrieval can be complex when dealing with different data types and you have to
present the data to users. For example, if you deal with line data, you do not want
to show users a large retrieved spool as a big flow of Extended Binary Coded
Decimal Interchange Code (EBCDIC) data in a browser. Instead, you want to use
a line data viewer that is opened within the browser and let the viewer display the
spool. Alternatively, you can use InfoPrint’s AFP2WEB functionality to transform
an AFP spool into a PDF document for viewing.

In addition to these conversions, special circumstances might require different
handling and calling of different methods other than just a simple retrieve()
method.

9.1.1 AFP documents

AFP documents do not consist of only single objects. They are a compilation of
document data and resources such as fonts.

If you retrieve a complete AFP document, then the AFP resources are loaded
into shared memory and are served from there for each request. If you deal with
several different AFP documents or if you have large resources, this might not be
optimal behavior. Likewise, if you retrieve multiple AFP documents to be
processed in another application, you might not want the system to automatically
load all the AFP resources. In these scenarios, you might want to deal with the
AFP resources directly.

The OnDemand APIs provide methods to retrieve documents and rely on the
resources being loaded into shared native memory. In addition, it is also possible
to retrieve raw document streams and resource streams separately and have
them written directly to file.

For more details about working with resources, see 9.3, “AFP resource retrieval
and custom caching” on page 185.
180 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

9.1.2 Large objects versus small objects

You must treat large objects differently than small objects. Large documents must
be differentiated in objects that have been loaded by using large object support,
as explained in the following section, and large binary objects.

When retrieving documents that are large binary objects, for example, large
PDF-files or large user-defined data types, it is important to consider memory
usage. When you do a standard retrieval in a native format by calling the
ODHit.retrieve() method, the system downloads the data from the OnDemand
server and stores it in native memory to be delivered to the client. When working
with large documents and many users, the system might run out of contiguous
native heap. This issue can be addressed by bypassing memory and retrieving to
file. See 9.5, “Avoiding memory issues for large files” on page 190, for more
information.

9.1.3 Requiring only a small part of a large object

If you need only a small part of a large object, for example, a page from an large
spool, you can use the ODWEK Java APIs to send a document in chunks.

Large spools that need to be transmitted in chunks have been archived by using
large object support. OnDemand large object support is a feature that can be
enabled to have large reports processed more efficiently by dividing it into
segments. For example, a report that typically contains more than 1000 pages is
divided into smaller chunks of 100 pages, for example. Each time a user views
the document, only the requested chunk is retrieved and transferred. The API
provides methods for the retrieval of specified segments.

For more details about dealing with segmented retrieval in general, see 9.4,
“Segmented retrieval and large object support” on page 187. For details about
how to enable the Line Data Applet in dealing with segmented objects, see 10.2,
“ODWEK Java applets” on page 200.

9.1.4 Delivering documents

When designing an application, you can decide how a document shall be
delivered by ODWEK, for example, as raw data stream, wrapped within an
applet, converted to PDF, or viewed by using plug-in. The ODWEK Java APIs
provide integrated data conversion for some types of documents. When
retrieving a document, you can specify the format in which the data should be
delivered. One way that is always possible is to have the document in its native
raw format in which it is archived.
 Chapter 9. Document retrieval 181

If you retrieve line data, for example, you can specify to use the included line data
applet or have the spool converted to ASCII. When viewing AFP documents, you
might want to have them directly converted into PDF by using the AFP2WEB
Transform.

For more information about conversion and transformation, see 9.7, “Retrieving
converted data” on page 193.

9.2 Retrieval API overview

The ODWEK Java APIs provide several methods for retrieving documents.
Retrieval methods can be separated into two areas:

� Methods that retrieve documents
� Methods that retrieve resources (for AFP documents)

There are three ways to retrieve data by using the retrieval methods:

� Retrieval of the entire document
� Segmented retrieval of large-object documents in chunks
� Retrieval of the data to file instead of memory

All three ways are applicable for document retrieval. For resources, they are
never segmented. Therefore, the segmented retrieval does not apply.

Most retrieval methods are placed in the ODHit class, which represents a
document hit in a searched hitlist. Calling one of the retrieve methods within an
ODHit object delivers the document that is represented by this ODHit instance.

In this section, we list and briefly explain all retrieval methods in the ODWEK
Java APIs. For a detailed description and how to use them, see 9.3, “AFP
resource retrieval and custom caching” on page 185, and 9.4, “Segmented
retrieval and large object support” on page 187.

9.2.1 Retrieval APIs in the ODHit class

The retrieval methods that are in the ODHit class can be separated into three
groups, which are methods that retrieve raw native document data, methods that
support transformations (and applets), and methods that retrieve resources:
182 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Methods that retrieve documents in raw format:

– byte[] getDocument()

This method retrieves documents that are represented by the ODHit object
in its native raw format as an array of bytes. For documents that have the
large object flag enabled, only the first segment is returned.

– getDocument(java.lang.String filename, boolean allsegs)

This method retrieves the document in its native raw format and directly
writes the data to a file. The allsegs parameter only applies to documents
that have the large object flag enabled. For those documents, the
parameter can be controlled if only the first segment or the entire
document is retrieved.

� Standard retrieval methods that support retrieval in different formats by using
applets, transformations, or plug-ins:

– byte[] retrieve(java.lang.String viewer)

This method retrieves the complete document that is represented by the
ODHit object by using the conversion format that is specified, for example
APPLET, NATIVE, and PLUGIN. For documents that have the large object
flag enabled, only the first segment is returned.

– retrieve(java.lang.String viewer, java.lang.String filename)

This method works in the same way as the previous method, but writes the
resulting data to a file instead of returning it as byte array. If large object
support is enabled, only the first segment is written to file.

– byte[] retrieveSegment(int segment)

For documents that are retrieved in segments, this method provides
access to the remaining segments after the first segment is retrieved by
using the retrieve method.

Tip: The getDocument methods always return the document data in native
format. No conversion or transform is applied to the data, and no applet
code can be returned. If you want to enable data conversions, use the
retrieve method instead.

Tip: You can specify an empty string as viewer parameter (retrieve(“”)).
In this case, the viewer setting that is set in the ODConfig class during
the initialization of the ODServer session is used. For more information
about the ODConfig class initialization parameters, see “ODConfig
parameters” on page 133.
 Chapter 9. Document retrieval 183

– retrieveSegment(int segment, java.lang.String filename)

This method works similar to the previous method, except that it does not
return the data as byte array. Instead, it writes the data to the file that is
specified.

� Methods that deal with AFP resources:

If an AFP document is retrieved by using the getDocument() methods, you
must retrieve the resources separately, which can be done by using the
following methods:

– byte[] getResources()

This method retrieves the AFP resource data for the document that is
represented by this ODHit object and returns it as byte array.

– getResources(java.lang.String filename)

This method is similar to the previous method, except that it does not
return the data as byte array. It writes the resource data directly to a file.

Example 9-1 shows how to use some of the retrieval methods that are provided
by the ODHit class. For detailed information about how to use the
retrieveSegment methods, see 9.4, “Segmented retrieval and large object
support” on page 187.

Example 9-1 Retrieving documents

//Initialize using default configuration
ODConfig config = new ODConfig();
odServer = new ODServer(config);
odServer.initialize("/Applethandler");

/Connect to a server, open a folder and search
odServer.logon("9.156.238.77", "swelter", "qw1ert");
odFolder = odServer.openFolder("CustomerXX");
hits = odFolder.search();

if(hits.size() > 0) {
//We are going to take the first hit
odHit = (ODHit) hits.elementAt(0);

//retrieve the document using default configured viewer:
byte[] docdata = odHit.retrieve("");

//retrive a LineDataApplet code for the document
//Note that this will only for spools
byte[] appletcode = odHit.retrieve(ODConstant.APPLET);
184 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

//retrieve the native document and store it to a file:
odHit.getDocument("C:\\file", true);

}
odFolder.close();
odServer.logoff();
odServer.terminate();

Example 9-1 does not include any exception handling or information about the
initial configuration, which might lead to unforeseen results. See Chapter 6,
“Connection pooling and connection handling” on page 111, for details about why
exception handling is necessary and how to initialize and terminate connections.

9.3 AFP resource retrieval and custom caching

When working with AFP documents, a document does not consist of only a
single object. Instead it is composed of resource data, such as fonts and
overlays, and the actual data stream. When OnDemand archives AFP data,
these resources are stored apart from the actual content. When retrieving
documents that require specific resources for the first time, these resources are
automatically loaded into shared native memory. When retrieving additional
documents that use the same resources, the resources are directly accessed
from shared memory.

Accessing the resources from shared memory enables a fast and efficient way to
work with AFP documents, but it can have a significant effect on memory
consumption. As mentioned in 6.5.3, “Allocation and release of resources and
sessions” on page 136, shared resources are not released until all ODWEK client
sessions (all ODServer objects including their dependent classes) are
terminated. In environments in which you must deal with a large number of
different reports, you might have a lot of different AFP resources that are loaded
as shared memory in the machine that is running the Web application server.
Because these resources can contain graphics, it is possible that the resource
data for each report consist of several megabytes, which can lead to an
increasing consumption of native memory over time.

Multiple resource groups: A single application can have multiple resource
groups stored. Between loads to a single application, if the resources change
in any way, for example they have different fonts or a new image, then a new
resource group is loaded to that application.
 Chapter 9. Document retrieval 185

If you work in such an environment, consider implementing a resource caching
mechanism. By using the ODWEK Java APIs, you have the ability to retrieve
document data and resource data separately. Table 9-1 lists the necessary API
methods that are used to implement a custom caching mechanism.

Table 9-1 API functionality used in implementing custom resource handling

A custom caching implementation can be implemented by storing the resources
of all AFP documents that are requested by the user as files on the local file
system of the Web server. If the resource of a requested document is already
present as file, then it is served from disk. Otherwise the resource is retrieved
from the server and stored on disk for subsequent requests.

The primary issue when implementing a custom resource caching system is to
retrieve the resource data separately from the document data stream. You can
retrieve the resource data by calling the getResources() method in the ODHit
class. This method either returns a byte array that contains the resource data or
writes the resources directly to a file.

If you consider implementing a caching-mechanism that uses files as storage for
resources rather than memory or other storage, we recommend that you use the
getResources(String filename) variation of the method. This variation bypasses
memory and directly writes the raw data to the file system.

Attention: You must ensure that your application correctly terminates all
ODServer sessions and connections. For more information about how to
correctly terminate an ODServer session and how ODWEK deals with shared
resources, see Chapter 6, “Connection pooling and connection handling” on
page 111.

Functionality or action API methods that are used

Search hitlist and select a document. ODFolder.search(...)

Check if the document is an AFP
document.

ODFolder.getDocType() returning
ODConstant.FileTypeAFP

Get the internal ID of the resource data
that is being used by this document.

ODHit.getResourceID()

Get the resource data that is necessary. ODHit.getResources() or
ODHit.getResources(String filename)

Get the data stream of the document. ODHit.getDocument() or
ODHit.getDocument(String filename,
boolean allsegs)
186 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Having stored resource data is only the first part. You must also determine which
resource you have in your cache, which you can do by using the getResourceID()
method of the ODHit class. This method returns a string that uniquely identifies
the resource that is being used by this document. The resource ID is a string that
is constructed out of server name (IP), application ID, and AFP resource ID. Two
ODHit objects that return the same resource ID use identical AFP resource data.
Non-AFP documents or documents without any resources return null as a
resource ID.

If you develop an application that deals more than just AFP documents, then
check whether an ODHit really represents an AFP document, which you can do
by using the ODHit.getDocType() method. This method returns a char. If the
returned char equals the constant ODConstant.FileTypeAFP, then the document
represented by this ODHit is an AFP document. You can continue to get the
resourceID and check if you already stored resource data for this AFP. If you
have stored the data, use the cached one. If you have not stored the data,
retrieve the resources and store them.

9.4 Segmented retrieval and large object support

Large object support in Content Manager OnDemand provides enhanced
usability and better retrieval performance for reports that contain large
documents. For example, consider a report that contains statements that exceed
1000 pages. By using large object support, the statements can be divided into
parts, for example, 100 pages.

When a user retrieves a statement, OnDemand retrieves and decompresses the
first part of the statement. When the user moves from page to page of a
statement, OnDemand automatically retrieves the part of the statement that
contains the requested page as needed. Large object support can only be
enabled with the AFP Conversion and Indexing Facility (ACIF), OS/390®, or
OS/400® indexer.

When large object support is enabled, implementing Web applications with the
ODWEK Java APIs implies the usage of segmented retrieval. If an object is
archived with large object support enabled, the behavior of the ODHit.retrieve()
and ODHit.getDocument() methods changes as outlined in Table 9-2 on
page 188.
 Chapter 9. Document retrieval 187

Table 9-2 Changes in API behavior when dealing with large objects

With the change in the behavior of the retrieval methods, additional methods are
required to get the segments other than the first segment:

� byte[] retrieveSegment(int segment)

This method retrieves a specified segment through its segment number.

� retrieveSegment(int segment, String filename)

This method retrieves a specified segment (identified by segment number)
directly to file, by bypassing native memory allocation.

� getNumSegments()

This method returns the amount of segments for the document.

� getNumPagesInSegment() and getNumPagesInLastSegment()

This method returns the number of pages of which each segment consists.

No getDocument method can return a specified segment. Only the
getDocument(String filename, boolean allsegs) method allows the retrieval of
a multi-segment document into a file by setting the allsegs parameter to true.

When dealing with large object spools, we are limited to the use of the
retrieve(…) and retrieveSegment(…) methods. This use implies no real limitation
as long as the retrieve methods require a viewer parameter to be specified.

API function in ODHit class Standard behavior (not a large
object)

Behavior when dealing with
large objects

byte[] getDocument() Returns the entire document in
native format.

Returns only the first segment of
the document in native format.

getDocument(String filename,
boolean allsegs)

Writes the entire document to file.
The allsegs parameter is
ignored.

Depending on allsegs, either the
entire document or just the first
segment is written to file.

byte[] retrieve(String viewer)
for APPLET as viewer on line
data

An applet HTML code is
returned. The applet loads the
data in one part.

An applet HTML code is
returned. The applet loads the
segments as they are needed.

byte[] retrieve(String viewer)
for HTML or PLUGIN as viewer
for AFP data

AFP2HTML applet code or
plug-in raw data is returned for
the entire document.

AFP2HTML applet is capable of
dynamically loading segments.
Plug-in handles segments on its
own.

byte[] retrieve(String viewer)
for other conversions handled by
transforms (for example PDF)

The entire document data
(converted) is returned.

ODWEK passes either a single
document or a segment.
188 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

9.4.1 Retrieving segmented documents

In 9.7, “Retrieving converted data” on page 193, we describe the different
possibilities and conversions in detail. Regarding large objects and segments,
the conversions change their behavior as shown in Table 9-2 on page 188.

Retrieving segmented documents in native format
If you implement an application in which you want to access different segments
of a document in native raw format, you can use the retrieve() and
retrieveSegment() methods and specify the ODConstant.NATIVE constant as a
viewer parameter. To get the data segments, you make subsequent calls to the
retrieveSegment() method to obtain other segments of the spool.

You must ensure that the retrieve(String viewer) method is always called first. For
example, if you know that you need only the tenth segment, you must retrieve the
first one by using retrieve(String viewer).Then you can retrieve the tenth segment
by using the retrieveSegment() method.

Using the viewers on segmented documents
When viewing documents by using one of the OnDemand-provided browser
viewers, such as the AFP browser plug-in, the AFP2HTML Java applet, or the
line data Java applet, the viewers handle large objects by themselves. You do not
have to do any retrieveSegment() calls in this case.

Like the OnDemand Windows client, the plug-in and the Java applets
automatically retrieve only the pages that are viewed by the user if the document
is a segmented large object. The viewer displays the first page, and then the user
decides which segments the viewer must retrieve afterwards by scrolling to other
pages.

Retrieving converted large objects
If you do not want to get the document in native format, but instead want to apply
one of the available conversions to the document, the segmented document is
handled by the converters and viewers.

For more details about the two applets and how to implement the callback class,
see 10.2, “ODWEK Java applets” on page 200. For more information about
dealing with the AFP2WEB Transform, see 10.3, “AFP2WEB Transform” on
page 205.
 Chapter 9. Document retrieval 189

9.4.2 Obtaining segment information

If you use the getNumSegments(), getNumPagesInSegment(), and
getNumPagesInLastSegment() methods to query information about a large
object document, make sure that you use them in the right order. If you call one
of the methods before you retrieve the first segment of the document, they all
return zero. You must make a call to the ODHit.retrieve() method first. Depending
on the viewer settings, this method either retrieves the first segment or hands off
the data to a transformation.

After you call the ODHit.retrieve() method, ODWEK internally has the data about
the number of segments and pages that are available. Therefore, only calling the
getNumSegments(), getNumPagesInSegment(), or
getNumPagesInLastSegment() method after ODHit.retrieve returns the correct
data.

9.5 Avoiding memory issues for large files

When you deal with large PDF documents or other large binary files, you cannot
use the benefits of segmented retrieval, which is possible with large object
support. Large object support is available only for documents that are loaded by
using the ACIF or the OS/400 indexer. For more details, see 9.4, “Segmented
retrieval and large object support” on page 187.

When you retrieve a document directly into a Java byte array by using either the
ODHit.retrieve() or the ODHit.getDocument() methods, the documents are
loaded into native memory of the server that is running ODWEK. Because each
document requires a contiguous block of memory for being loaded, you can
reach memory limits if too many documents or documents that are too large are
retrieved.

The ODHit.retrieve() and ODHit.getDocument() methods also provide a way to
write the document data to file instead of returning it as a byte array. In this case,
the native part of the API can write the document data directly to a file. Therefore,
less memory is allocated, and fragmentation problems can be prevented.

Tip: To determine whether a document is a large object, you can use the
ODHit.isLargeObject() method. If this method returns true, then calling the
ODHit.retrieve() method returns either the first segment of data or lets the
document handle it by a transform or conversion. After that, you can call the
ODHit.getNumSegments() method, for example, to get more information about
the segmentation.
190 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

You can determine the size of a document before retrieving it by using the
ODHitProperties object, which can be obtained by calling the
ODHit.getProperties() method. The ODHitProperties object provides information
such as application (group) name, load name, application group ID, and other
internal information. It also has an ODHitProperties.getLength() method that
returns the uncompressed length in bytes of the document.

You can use the length information to decide how to retrieve the document in
your application. If it is a small document, you can save the overhead of writing it
to file. For big documents, you must have the data written to file and then pass
out the data by using the httpResponse stream without holding much data in
memory.

9.6 Getting document type information

The ODWEK Java APIs provide several methods for getting information about
the document to be retrieved. For example, you can retrieve the application group
name by using ODHit.getApplGrpName, retrieve the application name by using
ODHit.getAppName, retrieve the location of the document by using
ODHit.getDocLocation, and retrieve the internal DocID by using ODHit.getDocID.

As mentioned in 9.5, “Avoiding memory issues for large files” on page 190, you
can obtain an ODHitProperties object through the ODHit.getProperties() method.
The ODHitProperties class provides additional information such as application
group ID, application ID, resource ID, load data, table name, and compressed
and uncompressed document length.

Performance: When working with binary documents, you generally do not
have to use the ODHit.retrieve() method. The advantage of the retrieve()
method is the data conversions that are offered. See 9.7, “Retrieving
converted data” on page 193 for information about the conversions.

Because the conversions are designed to handle line data and AFP
documents, if you do not deal with these document types, use the
ODHit.getDocument() method instead.
 Chapter 9. Document retrieval 191

If you want to take different retrieval actions, based on the type of a document,
consider using one of the following document-type related methods that are
provided in the ODHit class:

� getDocType()

This method returns the type of the document in correspondence to what is
configured as a document type in the application by using the OnDemand
Administrator. The return can be any of the types AFP, BMP, GIF, JFIF, LINE,
META, NONE, PCX, PDF, PNG, TIFF, USRDEF, SCS_EXT, DJDE, SCS (all
represented by ODConstant.FileType* constants).

� getFileExt()

This method returns a string that contains the extension that is set for a
user-defined document type as stored on the OnDemand server.
Alternatively, if the predefined document types are used, a corresponding
extension is returned such as afp for AFP documents or lin for line data.

� getMimeType()

This method returns the MIME type of the selected document. For example,
for an AFP, it returns application/afp; for a TIFF image, it returns image/tif;
and for a PDF, it returns application/pdf. This information is available when
the ODHit object is created and does not require any further internal calls to
the server.

� getViewExt()

This method returns the extension of a document after conversion. If you
retrieve an AFP document by using the AFP2PDF Transform, this method
returns pdf. You can also call this method by giving a viewer parameter that
corresponds to the viewer parameter that is used in the ODHit.retrieve()
method to get the extension for different viewers and converters.

� getViewMimeType()

This method returns the MIME type of the document after it is retrieved by
using a conversion. For example, if you retrieve an AFP as a PDF by using an
AFP2PDF Transform, this method returns application/pdf.

If you query data that is set to USERDEFINED as a document type in the
application, the extension that is returned by the getFileExt() method is the
configured one. The MIME type that is returned is application/ondemand
extension-field=EXT, where EXT is replaced by the extension that you have
configured. For example, for an application that is configured as USERDEFINED
with the .xls extension, you see the results as shown in Example 9-2 on
page 193.
192 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Example 9-2 Document information about USERDEF documents

getDocType: U (which is ODConstant.FileTypeUSRDEF)
getFileExt: xls
getMimeType: application/ondemand extension-field=xls
getViewerType: 1 (which is ODConstant.VIEWER_BROWSER)
getViewExt: xls
getViewMimeType: application/unknown

Using the data type information
By using the information that is provided by the ODHit class about the data type
of the document, you can implement type-sensitive document handling:

1. Check for the document type by using the getDocType() method.

2. Evaluate the returned constant. By doing so, you can run different actions for
different document types as in the following examples:

– For images, you can call a custom servlet handling the image data.

– For line data and AFP documents, you can use the default conversion
(ODConfig) or an explicit conversion.

3. Handle user-defined documents (ODConstand.FileTypeUSRDEF) in regard
to the extension that is configured in the application.

If you develop a Web application, you must send documents with the correct
MIME type and a file name ending in the correct file extension that the
browser can recognize. You can use the getFileExt() method to get the
extension of a user-defined document type and construct a MIME type, such
as application/[file extension], which is recognized by most browsers.

Another way to handle different document types is to retrieve the document by
using the preconfigured viewers by using the ODConfig configuration. Then
decide on the MIME type of the converted format (getViewMimeType()) after
retrieving the document. Alternatively, you can use the extension of the
converted document (getViewExt()) to decide what to do with the document.

9.7 Retrieving converted data

As mentioned in 9.2, “Retrieval API overview” on page 182, the ODWEK Java
APIs contain a set of methods to retrieve data and resources in their native raw
format. They also contain another set of methods to retrieve data with the
capability of applying conversions to the data while they are retrieved.
 Chapter 9. Document retrieval 193

The following methods support data conversion:

� byte[] retrieve(java.lang.String viewer)

� void retrieve(java.lang.String viewer, java.lang.String filename)

� byte[] retrieveSegment(int segment)

For large object spools only.

� void retrieveSegment(int segment, java.lang.String filename)

For large object spools only

The two retrieve() methods require a string parameter called viewer. Depending
on the value that you specify, the data is converted to different formats or
displayed by using a special viewer. The effect on the data that you receive as a
return value depends on the type of viewer conversion that you choose. The
available conversions can be separated into three groups:

� Viewers

Viewers do not transfer document data in any way. Instead they have
information for calling a specific viewer that is transferred. OnDemand has
three viewers delivered with ODWEK:

– A line data Java applet to display line data
– An AFP2HTML Java applet to display AFP documents in the Web browser
– An AFP browser plug-in

� Transformations

Data conversions are done on the documents. OnDemand supports the
AFP2WEB technology and the Xenos transforms. By using AFP2WEB, AFP
documents can be converted to other formats such as HTML or PDF. Xenos
allows more configurable conversations from various formats including
metacode, line data, and AFP to HTML, line data, XML, PDF, and so on. See
10.3, “AFP2WEB Transform” on page 205, and 10.4, “Xenos transforms” on
page 211, for details.

The retrieveSegment() methods: The retrieveSegment() methods can be
called only after first calling one of the retrieve() methods. Because the
retrieve() methods pass the viewer parameter, the retrieveSegment() methods
do not need to specify the viewer information. The retrieveSegment() methods
carry on the conversion that is specified in the first retrieve() method call.

For more information about large object support and segmented retrieval of
spools, see 9.4, “Segmented retrieval and large object support” on page 187.
194 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� Native retrieval

Retrieve data in the same format as it is stored. This viewer type is the only
one that is supported by all data types.

9.7.1 Supported data conversions and viewers

All possible values for the viewer parameter are defined as constants in the
ODConstant class. The following list provides a complete reference of all valid
values that can be used as viewer or conversion:

� ODConstant.APPLET

If you specify ODConstant.APPLET as viewer on line data documents, the
returned data is HTML code that invokes the line data Java applet for line data
spools. This viewer type cannot be used for any other data except line data.

� ODConstant.ASCII

This value performs an ASCII conversion on the document to retrieve. It can
be used for line data and AFP documents. The text that is returned is a
representation of the original spool concerning text and layout, but it is
converted and limited to an ASCII code page.

� ODConstant.HTML

The ODConstant.HTML viewer conversion can only be used with AFP
documents. The AFP document itself is converted to HTML by using the
AFP2WEB Transform. Depending on the configuration of the AFP2WEB
Transform, either the rendered HTML data is returned or the data is handled
by using the AFP2HTML Java applet.

� ODConstant.NATIVE

By specifying the ODConstant.NATIVE value, the document is returned in
native raw format just as the getDocument() method does.

� ODConstant.PDF

This value invokes an AFP2WEB transformation for an AFP document. In this
case, the document is converted to a PDF document and returned.

� ODConstant.PLUGIN

You can use this value when dealing with AFP documents only. It instructs the
browser to use the AFP plug-in when displaying the AFP document.
 Chapter 9. Document retrieval 195

� ODConstant.XENOS

This value causes OnDemand to invoke the Xenos transformation.

� ODConstant.XML

This value invokes an AFP2WEB transformation for an AFP document. In this
case, the document is converted to an XML data document and returned.

For detailed information about how the applets, plug-ins, and transformations are
used, see Chapter 10, “Applets, plug-ins, and transforms” on page 197.
196 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 10. Applets, plug-ins, and
transforms

In this chapter, we describe the Java applet and browser plug-ins that are
supplied with OnDemand Web Enablement Kit (ODWEK). In addition, we discuss
transforms that can be integrated with ODWEK and how to configure ODWEK to
use them.

We discuss the following topics in this chapter:

� ODWEK plug-ins

– AFP plug-in
– Image viewer plug-in

� ODWEK Java applets

– Line data applet
– AFP2HTML applet

� AFP2WEB Transform

� Xenos transforms

10
© Copyright IBM Corp. 2008. All rights reserved. 197

10.1 ODWEK plug-ins

ODWEK delivers several viewing applications to support Web applications that
access IBM Content Manager OnDemand. Browser plug-ins are available for
Microsoft Internet Explorer® and Netscape Navigator, as well as Java applets
that can be used within any Java-capable browser and operating system.
Because standard Microsoft Windows installations do not contain Advanced
Function Presentation (AFP) viewing components and because you might want
to provide enhanced usability for users when viewing line data, images, or AFP
documents, consider using the provided applets or plug-ins.

The following list of plug-ins and applets is included in ODWEK:

� AFP plug-in

This plug-in provides AFP document viewing capability in Web browsers.

� Image plug-in

This plug-in provides enhanced support for image viewing in Web browsers. It
includes support for PCX, BMP, and all other OnDemand image formats.

� Line data applet

This applet provides line data spool display capabilities.

� AFP2HTML applet

This applet provides AFP viewing capabilities by displaying AFP-HTML
documents that are converted by AFP2WEB.

10.1.1 AFP plug-in

The AFP plug-in is a viewer for AFP documents that embeds into Web browsers.
Like all other plug-ins, the AFP plug-in needs to be installed on all client
computers that need to use it. The setup file is in the plug-ins subdirectory of
your ODWEK installation. For more details about the directory structure and the
functionality of the files that ship with ODWEK, see 1.5.3, “ODWEK Java API
distribution files” on page 15.

If the AFP plug-in is installed on the client Web browser, it can be used to directly
display all AFP documents in the browser.

Compatibility: The plug-in viewers that are provided by IBM require Netscape
Navigator 7.1 or later or Microsoft Internet Explorer 6.0 or later.
198 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

If it is possible to distribute the plug-in to all client computers that require access
to AFP documents, we recommend this option for display because it requires no
conversion of data.

After users install the AFP plug-in, use the ODHit.retrieve(ODConstant.PLUGIN)
method to retrieve the document, because the data stream is compressed and
additional information for the plug-in viewer is passed. If you deal with large
segmented AFP documents, data transfer is optimized because only necessary
segments are retrieved by the plug-in. Also, all data that is transferred between
OnDemand and the plug-in is compressed, which increases performance,
especially on low bandwidth connections.

Figure 10-1 shows an AFP document as viewed in Microsoft Internet Explorer
with the AFP plug-in.

Figure 10-1 Document view with the AFP plug-in

10.1.2 Image viewer plug-in

Like the AFP plug-in, the image viewer plug-in is installed on the user’s Web
browser on the client side. Its purpose is to enhance the image fidelity for users
within the Web application. Most Web browsers are not capable of displaying
TIFF, PCX, or BMP pictures, where the image viewer plug-in is capable of
displaying all types of images that are supported by OnDemand (BMP, GIF,
JFIF/JPG, PCX, and TIF). The image plug-in also provides additional
functionality for viewing images such as zooming, rotating, adjusting the contrast
or brightness, navigating through different pages, and scaling to gray to enhance
text display.
 Chapter 10. Applets, plug-ins, and transforms 199

Unlike the AFP viewer plug-in, the image viewer plug-in may not be necessary to
deploy in certain environments. If you do not use image formats, such as PCX,
and rely on JPG, GIF, or TIF, you might want to let the browser or the operating
system handle the image files. All browsers are capable of displaying GIF and
JPG images, and operating systems, such as Windows XP, are capable of
viewing TIF or BMP images already.

10.2 ODWEK Java applets

The Java applets that ship with ODWEK provide significant help in the usability of
Web applications. Where plug-ins must be deployed on client computers, applets
are maintained on the Web server and are downloaded by the client Web
browsers on demand.

The two applets that are available with ODWEK serve two document types:

� Line data applet

The line data applet is developed to display line data. The applet itself
provides no conversion. However, with the applet, you can enable Web users
to view line data the same way as in the OnDemand Windows client. In
addition to viewing a line data document, the applet also provides annotation
functions. You can enable users to view and create annotations for the line
data in a Web-based application.

� AFP2HTML applet

The AFP2HTML applet works in a different way than the AFP plug-in. AFP
documents are transformed to HTML by using the AFP2WEB Transform. After
the transformation, the HTML content is displayed in the Web browser. If you
want to provide additional features, such as segmented document retrieval,
you can configure to display the converted AFP by using the AFP2HTML
instead of letting the browser deal with the rendered AFP HTML.

Using the applets for viewing line data and AFP documents offers the following
advantages:

� Users have nearly the same functionality with Web browsers as when they
use standard OnDemand Windows clients.

� There is no need for any client installation. You do not need to install the
applet anywhere, like you must do with the AFP viewer plug-in.

� The applets support segmented retrieval for large object documents. Only the
segment that is currently being viewed by the user is retrieved from
OnDemand. Other segments are retrieved whenever they are needed.
200 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

For more information about large object support and segmented retrieval, see
9.3, “AFP resource retrieval and custom caching” on page 185.

� The applets require Java version 1.4.1 on the client Web browser. Java is
available for a variety of operating systems, including Windows, MacOS, and
Linux.

In your Java application, provide a method that can be called by the applet. This
method must pass the requests of the applets further on to the ODWEK Java
APIs.

Figure 10-2 shows the link between the applet, your Web application, and
ODWEK.

Figure 10-2 Communication scheme of the ODWEK Java applets

When a user requests a document from the Web application and the document
retrieval code in the application decides to send the document as an applet, then
ODWEK returns the HTML code, which embeds the applet invocation. With this
HTML code, the browser can execute the applet in its Java virtual machine
(JVM).

The data itself is requested by the applet through a callback methodology that
must be implemented by the Web application. The callback method passes the
requests to the ODWEK Java APIs. Within ODWEK, the applet requests are
handled, and then the callback method delivers the results to the applet.
Therefore, for the data stream, the callback method that your application
implements is just a proxy that passes requests and data through.

Callbacks: Callbacks are not used for just applets. The AFP plug-in uses
them as well for large object documents.

Web browser

JVM

Applet

Web application

WebSphere or other Web technologies

Document retrieval

Applet callbacks

ODWEK Java APIs
 Chapter 10. Applets, plug-ins, and transforms 201

10.2.1 Configuring and using the ODWEK applets

As outlined in Figure 10-2, the ODWEK Java applets and the AFP plug-in require
a callback methodology in your Web application if you want to use them. To
implement this callback mechanism, you must provide a servlet that can be
called by the applets and that passes the applets’ queries to the OnDemand
server.

The first step in implementing the applet callback servlet is to inform ODWEK
about where to find the servlet. You do this in the initialization code of your
application.

When calling the ODServer.initialize() method, specify a parameter called
applicationName. This application name is the path to the applet callback servlet.
For example, if you write an applet callback class called ODViewerCallback and
make it available as http://webserver/MyApp/ODViewerCallback, then initialize
the ODServer sessions by using
ODServer.initialize("/MyApp/ODViewerCallback").

The callback code of the ODViewerCallback servlet itself it straightforward. Pass
the applet’s request to the ODWEK Java APIs. The APIs provide the
ODServer.viewerPassthru method, which is dedicated to this task. Therefore, the
entire task that needs to be done is to get the request from the applet and invoke
the viewerPassthru() method on your OnDemand session. Example 10-1 shows
how to implement the applet callback code.

Example 10-1 Sample code to implement an applet callback

public void processRequest(HttpServletRequest request,
HttpServletResponse response) {

try {
 ODServer odServer = null;
 byte[] results = null;
 HttpSession wwwsession = request.getSession(true);

 synchronized (wwwsession) {

odServer = (ODServer) wwwsession.getAttribute("MyODSession");
results = odServer.viewerPassthru(request.getQueryString());

 }
 OutputStream outputStream = response.getOutputStream();
 outputStream.write(results);

202 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

} catch (Exception ex) {
...

}
}

As you can see, the ODServer object is obtained from the session object, in
which it is stored as MyODSession in the initialization and login code for this
example. By placing this code in a servlet class and modifying how you get the
ODServer object, you finish the implementation of the applet callback code. If
you then use this servlet as the applicationName parameter in the
ODServer.initialize() method, you meet all requirements for using the viewers.

The servlet is automatically used for all viewers that call back to OnDemand.

10.2.2 Line data applet

When using the line data applet, you do not need to fulfill any special
prerequisites except to have a callback servlet that passes the requests to
OnDemand.

Synchronization: Example 10-1 contains a synchronized code block.
Synchronization is required when dealing with ODWEK sessions. See 6.4.2,
“Synchronization” on page 129, for more information.

The retrieve() method: When using the Java applets, you cannot use the
retrieve() method with the file parameter.
ODHit.retrieve(ODConstant.APPLET, “c:\\file.ext”) leads to an
exception. You can only use the following retrieve() method, which directly
returns the HTML as a byte array:

byte[] x = ODHit.retrieve(ODConstant.APPLET).

This applies to both line data and AFP2HTML applets.

Compatibility: All applets that are supplied by ODWEK require a Java
capable browser. All browsers that are currently available, for example
Microsoft Internet Explorer, Netscape Navigator, and Mozilla Firefox, support
Java. In addition, the applets require Java version 1.4.1 or higher.
 Chapter 10. Applets, plug-ins, and transforms 203

The applet, as shown in Figure 10-3, provides significant enhancements to the
user in comparison to just passing the spools in the ASCII format
(ODConstant.ASCII) to the browser:

� The user can view and add text annotations to the document.

� The applet provides a view on the spool that is identical to the view in the
OnDemand Windows client. Document fidelity can be achieved in browser
environments.

� The applet is capable of segmented retrieval, therefore, optimizing the
document load for large objects.

� The applet provides some useful functionality, such as zooming, for better
usage.

Figure 10-3 Line data viewer applet

10.2.3 AFP2HTML applet

The AFP2HTML applet is not just a viewing applet for AFP documents. It
provides functionality to view a specially rendered HTML version of AFP
documents. The job of rendering AFP documents to HTML documents is done by
the AFP2WEB Transform. It works when AFP2WEB is correctly installed and
configured. AFP2WEB is a special asset that can be integrated into ODWEK.
204 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

See 10.3, “AFP2WEB Transform” on page 205, for more information about
AFP2WEB and how it can be configured.

After you have configured the AFP2WEB environment, to use the AFP2HTML
applet, implement the callback servlet, if you have not already done this for the
line data applet. Then retrieve the documents by using the
ODHit.retrieve(ODConstant.HTML) method.

10.3 AFP2WEB Transform

The AFP2WEB technology is a transformation asset that can transform AFP data
streams into HTML, PDF, and XML for Web browser viewing. ODWEK can use
the AFP2WEB technology to transform AFP documents before they are sent to
users. By transforming the documents, you can write Web applications that serve
users who cannot use the AFP viewer or the AFP plug-in.

The AFP2HTML applet, which displays AFP documents by using a Java applet in
the browser, also uses the AFP2WEB Transform to process information.
Because the return of the AFP2WEB Transform is valid HTML, you can omit the
AFP2HTML applet and directly pass on the HTML to the browser depending on
how the transform is configured.

10.3.1 Configuring the AFP2WEB Transform

The binaries for using the AFP2WEB Transform to process AFP documents into
PDF or HTML documents by using ODWEK are included in the ODWEK
installation.

Extracting the binaries
In your ODWEK installation directory, there are two subdirectories:

� afp2pdf contains the binaries for transforming AFP to PDF.
� afp2web contains the binaries for transforming AFP to HTML.

AFP2WEB licensing information: AFP2WEB is an asset of InfoPrint
Solutions Company, formerly IBM Printing Systems Division. It is bundled for
usage with Content Manager OnDemand. See your IBM representative for
more information about the AFP2WEB Transform and further licensing details.

Note: The use of the AFP2WEB product requires additional entitlement.
 Chapter 10. Applets, plug-ins, and transforms 205

Both directories contain a compressed archive that must be extracted before the
transforms can be used. You can extract the archives directly into their
directories. You can also extract the binaries to any other place on the file
system. Make sure that the directories are accessible by ODWEK. Also make
sure that you extract the two transformations into two separate directories. They
do not work when they are both integrated into one directory.

After you extract the AFP2WEB and AFP2PDF Transforms, they are ready to
use. You can test the functionality by calling the executable by using an AFP
document such as the one provided in the installation directories (insure.afp).

To test, enter either of the following statements on a command line, which results
respectively in an insure.pdf and an insure.html file:

afp2pdf insure.afp
afp2web insure.afp

Configuration files
You must configure the transform that you want to use in ODWEK. You do this by
using an INI file that is already present in the ODWEK directory. Open and modify
the INI file that applies to the transformation that you want to use:

� afp2html.ini (AFP to HTML Transform uses afp2web binaries)
� afp2pdf.ini (AFP to PDF Transform uses afp2pdf binaries)
� afp2xml.ini (AFP to XML Transform)

Each INI file is built in the same way. For each application group and application
pair in OnDemand, you can set different configuration values. In addition, a
default section exists that applies to all applications that are not configured
explicitly.

For each application, create an INI file section in the notation
[applicationgroup-application], where application group and application are
separated by a hyphen (-). For application groups that contain multiple
applications, you must have an explicit section for each application. Otherwise,
the default configuration applies to a non-mentioned application.

To set the configuration values for the default configuration, you must have a
[default] section. The configuration that you enter is used for all applications
that are not explicitly configured. In some environments, it might be sufficient to
have just the [default] section and nothing else, which causes all applications
to use the same configuration.
206 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Example 10-2 shows an afp2html.ini file. It is taken from the sample default
configuration that ships with ODWEK.

Example 10-2 Sample afp2html.ini file

[CREDIT-CREDIT]
UseApplet=FALSE
ScaleFactor=1.0
CreateGIF=TRUE
ShadeFlag=FALSE
SuppressFonts=FALSE
FontMapFile=
ImageMapFile=c:\inetpub\scripts\ondemand\imagemap.cfg

[default]
UseApplet=TRUE
ScaleFactor=1.0
CreateGIF=TRUE
ShadeFlag=FALSE
SuppressFonts=FALSE
FontMapFile=
ImageMapFile=c:\inetpub\scripts\ondemand\imagemap.cfg

The sample file contains one explicit configuration for the application CREDIT of
the application group CREDIT. For all other applications, the configuration values
of the [default] section apply.

Configuring AFP2HTML and AFP2XML
The afp2html.ini and afp2xml.ini files both have the same configuration options,
which can be set for each section. Table 10-1 outlines a short description of each
option.

Table 10-1 AFP2HTML and AFP2XML configuration file settings

Configuration option Description

ScaleFactor Scales the output with the given scale factor. The default value
is 1.0. The default size is derived from the Zoom setting on the
Logical Views page in the OnDemand application.

CreateGIF Indicates whether to create a GIF file for images.

UseApplet Defines whether to use the ODWEK AFP2HTML Java applet
to view rendered HTML pages or return the converted HTML
output itself.
 Chapter 10. Applets, plug-ins, and transforms 207

For more detailed information about the configuration values that you can set in
the INI files, see Appendixes F and G in the IBM DB2 Content Manager
OnDemand for Multiplatforms Ver 8.4: Web Enablement Kit Implementation
Guide, SC18-9231.

Configuring AFP2PDF
For the AFP2PDF transformation, only a subset of the AFP2WEB options is
applicable. That is ImageMapFile and AllObjects, which are described in
Table 10-1 on page 207.

AllObjects Determines how ODWEK processes documents that are
stored as large objects in OnDemand. The default value is
zero (0), which means that ODWEK retrieves only the first
segment of a document. If you specify one (1), ODWEK
retrieves all of the segments and converts them before
sending the document to the client.

ShadeFlag Indicates whether to create shaded areas for all images.

SuppressFonts Determines whether the AFP text strings are transformed. If
you specify SuppressFonts=TRUE, any text that uses a font
listed in the font map file is not transformed.

FontMapFile Identifies the full path name of the font map file. The font map
file contains a list of fonts that require special processing. See
the AFP2WEB Transform documentation for details about the
font map file.

ImageMapFile Identifies the image mapping file. The image mapping file can
be used to remove images from the output, improve the look
of shaded images, and substitute existing images for images
that are created by the AFP2WEB Transform. Mapping
images that are common across your AFP documents, for
example, a company logo, reduces the time that is required to
transform documents.

UseApplet option: The UseApplet configuration setting controls whether
ODWEK uses its AFP2HTML Java applet. When it is set to TRUE, the
ODHit.retrieve() method returns an HTML code for executing the AFP2HTML
applet when using the ODConstant.HTML viewer conversion. If you do not
want to use the Java applet and instead want the actual HTML output that is
generated by AFP2HTML, set the UseApplet option to FALSE.

Configuration option Description
208 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

In addition to these two common options, there is the OptionsFile option. The
OptionsFile parameter identifies the full path name of the file that contains the
transform options that are used by the AFP2PDF Transform. The transform
options are used for AFP documents that require special processing. See the
AFP2PDF Transform documentation for details about the transform options file.

Further reference and documentation
Further information and documentation is available that describes AFP2WEB in
general, how to use the AFP2WEB command line executables and Java APIs,
and how to integrate AFP2WEB into other applications. You can refer to the
documentation and sample files in the java_api subdirectory of the AFP2HTML
and AFP2PDF installation. Alternatively, you can refer to the product
documentation, which you can obtain from InfoPrint Solutions Company.

10.3.2 Integrating the AFP2WEB Transform in ODWEK

After you have a valid and working installation and optionally customized the
configuration INI files, you must integrate the AFP2WEB Transform into ODWEK.
You do so by configuring ODWEK session and indicating the location of your
installation and of your configuration file.

The configuration of the ODWEK session is done by using a set of properties that
are set in the constructor of the ODConfig class. In addition to the standard
parameters that are mandatory, you can create an instance of an ODConfig
object by specifying an additional parameter of type Properties. In this Properties
object, place the data that ODWEK must know about each transformation:

� Installation directory
� Path to the INI configuration file

Example 10-3 shows how to create an ODConfig object. You can then use this
ODConfig object to initialize the ODServer object.

Example 10-3 ODConfig initialization for using the AFP2WEB Transform

Properties props = new Properties();

props.put(
ODConfig.AFP2PDF_CONFIG_FILE, "c:\\opt\\afp2pdf\\afp2pdf.ini");

props.put(
ODConfig.AFP2PDF_INSTALL_DIR, "c:\\opt\\afp2pdf");

props.put(
ODConfig.AFP2HTML_CONFIG_FILE, "c:\\opt\\afp2web\\afp2html.ini");

props.put(
ODConfig.AFP2HTML_INSTALL_DIR, "c:\\opt\\afp2web");
 Chapter 10. Applets, plug-ins, and transforms 209

ODConfig odConfig = new ODConfig(
ODConstant.PDF,
ODConstant.APPLET,
null,
500,
"c:\\temp",
"ENU",
"c:\\temp",
"c:\\temp\\trace",
4,
props

);

ODServer serversession = new ODServer(odConfig);

For each transformation, a configuration constant is available for CONFIG_FILE
and INSTALL_DIR, which both must be added to the Properties object. The
resulting ODConfig object is used in the constructor of the ODServer class.

To use the AFP2WEB Transform, you can use the following viewer conversions
as a parameter for the ODHit.retrieve() method. See 9.7, “Retrieving converted
data” on page 193, for a more detailed description of how to use the viewer
conversion constants.

� ODConstant.HTML converts the AFP to HTML.

� ODConstant.PDF converts to PDF.

� ODConstant.XML converts to XML.

AFP2HTML conversion: When using the default configuration in the
AFP2HTML configuration INI file, the ODHit.retrieve() method returns
HTML code for executing the AFP2HTML applet when using the
ODConstant.HTML viewer conversion. If you do not want to use the Java
applet and instead want the actual HTML output that is generated by
AFP2HTML, alter the afp2html.ini and change the UseApplet option to
FALSE.
210 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

10.4 Xenos transforms

Xenos transforms can be used to apply transformations to AFP, line data, and
Metacode documents when retrieving them from an OnDemand server. For
example, you can use ODWEK to retrieve a Metacode document from the
system, call the Xenos transform to convert the Metacode document, and send
the converted output to the browser. The Xenos conversion is used with
ODConstant.XENOS when calling the ODHit.retrieve() method.

When retrieving documents from the system by using ODWEK, you can use the
Xenos transforms to perform the following tasks:

� Convert AFP documents to HTML, PDF, or XML files.
� Convert line data documents to AFP, HTML, PDF, or XML files.
� Convert Metacode documents to AFP, HTML, PDF, or XML files.

10.4.1 Configuring ODWEK to use Xenos transforms

The Xenos transform is configured by using an INI file called arsxenos.ini. The
file is placed in the ODWEK installation directory by default. You do not need to
keep the default name or the location, because the API is instructed about the
location of the INI file by the ODConfig object.

The arsxenos.ini file
The Xenos transforms can convert AFP documents into HTML, PDF, or XML
output, and line data documents or Metacode documents into AFP, HTML, PDF,
or XML output, that can be viewed from a Web browser. An administrator must
specify the configuration options for the documents that Xenos transforms
process.

The structure of the arsxenos.ini file is similar to the configuration files that are
used for the AFP2WEB Transform. For each application and application group, a
section must be created in the format [applicationgroup-application]. For all
applications that do not have specific sections, the [default] section applies.
Example 10-4 on page 212 shows a configuration for the CREDIT application
group and the CSTATEMENTS application.

Important: Before you attempt to use the Xenos transforms on your system,
you must obtain the transform programs, license, and documentation. See
your IBM representative for more information. Also see your IBM
representative for information about education and other types of help and
support for installing and configuring the transform programs and processing
input files with the transform programs.
 Chapter 10. Applets, plug-ins, and transforms 211

Example 10-4 The arsxenos.ini configuration section

[CREDIT-CSTATEMENTS]
ParmFile=/usr/lpp/ars/www/afp2pdf/sample.par
ScriptFile=/usr/lpp/ars/www/noindex.dms
LicenseFile=/usr/lpp/ars/www/dmlic.txt
OutputType=pdf
AllObjects=0
WarningLevel=4

The following options must be set:

� ParmFile

This option specifies the full path to the file that contains the parameters that
are used by Xenos to convert the documents.

� ScriptFile

This option denotes the full path to the file that contains the script statements
that are used by Xenos to create the output file.

� LicenseFile

This option specifies the full path of a valid Xenos license file.

� OutputType

This option specifies the output document type after a Xenos conversion. If
the input document is AFP, you can set the output type to HTML, PDF, or
XML. If the input document is line data or Metacode document, you can set
this parameter to AFP, HTML, PDF, or XML.

� AllObjects

This option determines how ODWEK processes documents that are stored as
large objects in OnDemand. If you specify zero (0), then ODWEK retrieves
only the first segment of a document. If you specify one (1), then ODWEK
retrieves all of the segments and converts them before sending the document
to the viewer.

Delay for large object support: If you enable large object support for very
large documents, users might experience a significant delay before they
can view the document.
212 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

� WarningLevel

This option determines how ODWEK handles the return codes from the
Xenos transform. The Xenos transform sets a return code after each
document is converted. Use this parameter to specify the maximum return
code that ODWEK considers to be good and send the converted document to
the viewer. For example, if you specify a value of four (4), then the return code
that is set by the Xenos transform must be four or less. Otherwise, ODWEK
does not send the converted document to the viewer. The default value is
zero.

The main part of configuring Xenos is done in the ParamFile and ScriptFile by
using conversion parameters and script statements. For information and samples
about how these files should look like, see Appendix E, “Xenos transforms” in the
IBM DB2 Content Manager OnDemand for Multiplatforms Ver 8.4: Web
Enablement Kit Implementation Guide, SC18-9231, or the Xenos product
documentation.

Configuring ODWEK for Xenos using ODConfig
Integrating a configured Xenos environment into an ODWEK-based Web
application is much the same as integrating the AFP2WEB Transform. The
difference is that your application must tell ODWEK where the arsxenos.ini
configuration file is and the installation directory of Xenos.

The configuration of the ODWEK session is done by using a set of properties that
are set in the constructor of the ODConfig class. In addition to the standard
parameters, which are mandatory, you can create an instance of an ODConfig
object by specifying an additional parameter of the Properties type.
Example 10-5 shows how an ODConfig object be displayed. If you want to use
the AFP2WEB Transform as well, you must include the AFP2PDF or AFP2HTML
configuration values such as shown in Example 10-1 on page 207.

Example 10-5 ODConfig properties configuration for Xenos

Properties props = new Properties();

props.put(ODConfig.XENOS_CONFIG_FILE, "c:\\xenos\\arsxenos.ini");
props.put(ODConfig.XENOS_INSTALL_DIR, "c:\\xenos");

DConfig odConfig = new ODConfig(
ODConstant.PDF,
ODConstant.APPLET,
null,
500,
"c:\\temp",
"ENU",
 Chapter 10. Applets, plug-ins, and transforms 213

"c:\\temp",
"c:\\temp\\trace",
4,
props

);

ODServer serversession = new ODServer(odConfig);

Further information
You can find information about how to integrate configure and use Xenos with
OnDemand and ODWEK in Appendix E, “Xenos transforms” in the IBM DB2
Content Manager OnDemand for Multiplatforms Ver 8.4: Web Enablement Kit
Implementation Guide, SC18-9231.
214 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 11. Document storing and
updating

In this chapter, we deal with aspects of the OnDemand Web Enablement Kit
(ODWEK) Java APIs that are not covered in the earlier chapters of this book.

We discuss the following topics in this chapter:

� Updating document indexes
� Storing documents
� Deleting documents

11
© Copyright IBM Corp. 2008. All rights reserved. 215

11.1 Updating document indexes

For a normal Web application that is delivered internally to users in a company or
externally to users on the Internet, you do not want to have users update the
index values of a document. However, there might be cases in which the update
API must be used in an application.

11.1.1 Use cases for the update API

One example of using the update API might be for late indexing. For example,
your application has to scan documents that come with barcodes. At the time of
archiving the documents, you do not have additional information about them
except the barcodes. In the evening or during an off shift, you can create a
program that runs through the data in OnDemand and fill in all other values by
using a database lookup on the barcodes.

Another example of using the update API might be for documents that are
archived with references to SAP® business objects. Instead of writing a user exit
program that is invoked during the load process, you can create a Java
application that later queries additional data from SAP and updates the index
values in OnDemand.

Depending on how you use OnDemand, you can also implement some custom
applications by using the ODWEK Java APIs where you might want to change
index values on a regular basis. For example, you might want to use a flag field to
represent the current state of a document in a workflow.

11.1.2 Update methods in the ODWEK Java APIs

The ODWEK Java APIs provide the following two methods for updating database
values for a document:

� ODFolder.updateValuesForHits(Vector hits, Hashtable newValues)

Use this method from the ODFolder class if you want to update multiple
documents at the same time and if you want to assign the same values to all
of these documents.

� ODHit.updateValuesForHit(Hashtable newValues)

Use this method from the ODHit class, if you want to work directly with the
document that is represented by the ODHit instance. The database index
values of this document are updated by using this method.
216 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Both methods work by using a hash table, which contains field name and field
value pairs. The field names that are used here are not the names of the
database fields that you have set when creating the application group. Instead
you must specify the field names as they are used in the folder through which this
document is accessed. All fields and values should be specified to avoid errors.

Even when using the ODHit.updateValuesForHit() method, it internally passes
the data to the ODFolder.updateValuesForHit() method. At this level, the fields of
the application group are not known. Only the names that you gave the fields in
the folder are known. Therefore, you must specify folder field names when you
want to update database values.

The value to which you want to update a database field must be specified as a
string. Despite the fact that a hash table can take all Java data types, storing a
data type other than string in the hash table results in an exception. The strings
are evaluated and converted automatically into the data type that is required by
the application group. Similar techniques for converting strings are used in the
generic indexer.

11.1.3 Hints and tips

Consider the hints in the following sections when writing applications that use the
update functionality.

Date formats
When altering database values of the date format, you must specify the date in a
standard U.S. format. That is, a date and time in the range '01/01/70' to '09/17/59'
is required. Two-digit years less than 70 are interpreted as year 20nn.

Changing the DocID
ODWEK creates a unique DocID for each document. You can access it by using
the ODHit.getDocId() method. The DocID can be used to internally reference the
document or to directly retrieve the document without any new search required
by using the ODFolder.retrieve() method.

Note: The date format, which is configured in the load information of the
application (by using OnDemand administrator), is not evaluated here. You
must use the U.S. date format.
 Chapter 11. Document storing and updating 217

The DocID is a constructed value that consists of server information, a load ID,
resource data, and database field information. A sample DocID looks like the
following example:

v7126-5018-5021-5030-EAA1-477FAA-0-0-0-26354-78-78-0-2-0-^ JPG NEW
VALUE 1639883824 0.128.JPG 13882 13987

Each time you update database values by using the updateValuesForHit()
methods, the second part of the DocID of the updated documents changes. If
you use the DocID in any way in your application, make sure that you get the
updated value using by the ODHit.getDocId() method after performing the
database index update.

Permissions
If you update the document database values, the user ID that you use must have
the Document Update permission set in the application group.

The permission is set by selecting the Update check box of the Document
section on the Permissions tab of the application group properties in the
Administrator.

You can check whether the user ID that you logged in with has the permissions to
update database index values for a document by calling the
ODHit.hasPermToUpdateDoc() method. This method returns a Boolean value
that indicates whether the user can perform an updateValuesforHit() method.

Use of the DocID: Because the DocID is constructed every time an ODHit is
created (or the index field values of the hit are changed), do not use it as a
persistent never changing value. Instead use it only as a short-term document
reference.

Also, the DocID is an IBM internal data type, and it can change at anytime. Do
not attempt to parse data from this structure. If data stored within the DocID is
required by your application, see ODHitProperties.

Permission to update documents: Even if your user ID is a system
administrator, you do not have permission to update documents. You must
explicitly add this permission for each application group on the user ID or user
group that you use in the application.
218 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

11.2 Storing documents

OnDemand provides monitored directories and the ARSLOAD command to load
data into the archive. Therefore, storing or archiving documents into an
OnDemand system is usually a task that is not done by using the ODWEK Java
APIs. However, in some use cases, you might need to directly store documents
into Content Manager OnDemand by using the ODWEK Java APIs as an ad hoc
method.

11.2.1 The storeDocument() method

The storeDocument() method provided by ODWEK to store documents is in the
ODFolder class:

ODFolder.storeDocument(String path,
String appl_grp_name,
String appl_name,
String[] values)

Because the method is in the ODFolder class, you must first open a folder that
maps the application group into which you want to store data. The parameters
that are required by the storeDocument() method are self-explaining:

� path specifies the path to the file in the local file system on which the
application is running.

� appl_grp_name specifies the application group name.

� appl_name specifies the application name.

� values[] specifies an array of strings that contain the database field values
for the new document.

The array that contains the index values for the new document is a
one-dimensional string array. The order in which the values are sorted in the
array is relevant for the method. You must specify the values for the application
group fields in the same order as they are displayed on the Field definition tab of
the application group.

If you do not know which fields are needed in which order, you can evaluate the
return of the ODFolder.getStoreDocFields() method. This method returns a
two-dimensional array for the application or application group. The returning
array contains either the application group field name (database field name) or
the folder field name, in the same order in which you must create your array of
new values for the storeDocument() method.
 Chapter 11. Document storing and updating 219

For example, consider an application group that has three fields:
ARCHIVEDATE, CUSTNO, and RPTID. The fields are mapped to the three folder
fields Archive date, Customer number, and Report ID. Calling the
getStoreDocFields() method on this application group returns the array shown in
Example 11-1.

Example 11-1 Sample output for getStoreDocFields

Object[][] Fields = folder.getStoreDocFields("APPGRP", "APP");

Will result in:
Fields[0][0] = ARCHIVEDATE
Fields[0][1] = Archive date
Fields[1][0] = CUSTNO
Fields[1][1] = Customer number
Fields[2][0] = RPTID
Fields[2][1] = Report ID

When creating the array of the index fields for the new document, set the value
for ARCHIVEDATE first, then for CUSTNO, and then for RPTID.

11.2.2 How the storeDocument() method works

The storeDocument() method works differently than the load mechanism in
OnDemand. Calling a storeDocument() method stores the file into the specified
application, but is not regarded as a load.

Load ID and system log
You do not receive a load ID for this process, and the system log contains a
message that is different than what you normally get with a usual load. For each
document that is stored by using the storeDocument() message, you see
message #82, which is similar to the following example:

ApplGroup ObjStore: Name(PCFILES) Agid(5018) NodeName(QUSROND1) Nid(2)
Server(-LOCAL-) ObjName(551FAA) Time(3.425)

Load parameters and date format
The storeDocument() method does not use any indexer or load parameters. All
default values, character removals, or date masks that you specify on the Load
Information tab of the application group properties are ignored, because the
storeDocument() method bypasses any load process.

If you must enter date values, do not specify them in the mask that you set on the
Load Information tab. Instead provide the values in the form %m/%d/%y in the
220 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

range from ‘01/01/70’ to ‘09/17/59’ where years less than 70 are interpreted as
year 20nn. However, you can enter special characters such as t for the current
date.

All other data is treated similar to the way in which the generic indexer converts
strings into the corresponding database data type.

Expiration type
Because the storeDocument() method does not use a real load process, you
cannot use this method on all application groups. For each application group, an
expiration type is configured. The expiration type determines how the system
expires and deletes data from the application group and can be of the following
types:

� LOAD

LOAD is the default expiration type. The system deletes an input file at a time
from the application group. If the database organization is single load per
database table, the system deletes a segment (table of index data and
associated documents) at a time.

� STORAGE MANAGER

The Object Access Method (OAM) or Virtual Storage Access Method (VSAM)
storage manager deletes the data. The storage manager works with the
ARSEXPIR program.

� SEGMENT

The system deletes a segment (table) of data at a time from the application
group.

� DOCUMENT

The system deletes a document from the application group depending on the
value of the Expire Data field.

Because no load process exists in storing a document, you cannot store any
documents into an application group that has the expiration type set to LOAD.
The application group must be set to either SEGMENT or DOCUMENT in order
to enable the storeDocument() method. Calling the storeDocument() method with
an expiration type of LOAD raises an ODException with the following message:

The server failed while storing a document.

Note: The date format, which is configured in the load information of the
application (by using OnDemand administrator), is not evaluated here. You
must use the U.S. date format.
 Chapter 11. Document storing and updating 221

11.3 Deleting documents

The ODWEK Java API that deletes documents is probably the least used API.
Because OnDemand is designed as a long-term archiving system where deletion
of documents is done through expiration times, deleting a document is not a
function that is likely to be offered through an API or a custom application.

ODWEK contains the deleteDocs() method in the ODFolder class. This method
requires a vector of ODHit objects. The purpose of the method is to remove the
documents from the OnDemand database. The API is not designed to remove
documents physically, which is a process that is often not possible, because data
is aggregated into blocks and stored under control of WORM-media or an IBM
Tivoli® Storage Manager system.

By calling the deleteDocs() method on documents, the database rows for these
documents are deleted. The documents are no longer searchable, retrievable, or
displayed on any hitlists. Also, because the exact position on the data blocks
cannot be recovered, the document cannot be recovered in any way.

Permissions
By default, user IDs do not have permission to delete documents even if they are
system administrators. You must manually set the permission in the application
group for each user ID or user group. The permission is set by using the Update
check box of the Document section on the Permissions tab of the application
group properties.

You can check whether the user ID that you are logged in with has the
permissions to update database index values for a document by calling the
ODHit.hasPermToDeleteDoc() method. This method returns a Boolean value
that indicates whether the user can perform an ODFolder.deleteDocs() call.
222 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 12. Memory and performance

Each OnDemand Web Enablement Kit (ODWEK)-based application is unique for
tuning purposes because resource usage depends upon application design, the
API features used, and the amount and pattern of API activity. In this chapter, we
examine the performance tuning of applications that are written by using the
ODWEK Java APIs with an emphasis on memory management.

We discuss the following topics in this chapter:

� Scope of performance tuning
� Memory
� Java heap
� The Java stack
� Garbage collection
� Startup parameters
� Other performance areas

12
© Copyright IBM Corp. 2008. All rights reserved. 223

12.1 Scope of performance tuning

The following subsystems most affect a given application’s performance:

� CPU
� Memory (real and virtual)
� I/O (disk I/O, channels, and data paths)
� DASD (disk, optical, tape, other storage media including software interfaces)
� Network I/O (stacks and interfaces)

General tuning of these subsystems is beyond the scope of this book. However, it
is important to plan enough capacity in each subsystem to support your
application’s anticipated usage. Also note that new Java releases frequently
incorporate performance enhancements. Therefore, keeping your Java platform
updated is an important element of performance management.

As Figure 12-1 shows, managing a multi-tiered environment involves managing
these resources on all participating systems and network devices. Depending on
the usage and application architecture, the ODWEK Java APIs run on any of the
three tiers that are shown.

Figure 12-1 System performance tuning scope

intranetintranet

CPU

Memory
(real, virtual)

I/O
(channels, disk I/O)

DASD

Network I/O

ServerClients Middleware/mid-tier

InternetInternet
224 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

12.2 Memory

The interface that is presented to applications by core Java libraries is a standard
set by Sun™ Microsystems, but the internal workings of Java virtual machine
(JVM) implementations differ by operating system, JVM release, and vendor. In
the following sections, we avoid details or methods that are specific to particular
platforms and Java implementations.

Virtual memory
The operating system maps portions of physical RAM and hard disk into a virtual
address space, which applications see as one contiguous area of accessible
memory. The physical location of program data changes as the operating system
caches unneeded data to disk and loads currently needed data into random
access memory (RAM). This is done in units called pages. This page-swapping
system of virtual memory allows a group of running programs to consume more
memory than there is physical real memory (RAM).

Figure 12-2 on page 227 illustrates the concept of virtual address space for a
Java application. The size of the address space depends upon the hardware and
operating system. The 32-bit systems can address a theoretical 4 GB of memory
(232 one-byte addresses). The 64-bit systems can address terabytes to exabytes
of memory depending on the number of bytes per address.

The fraction of this address space that is available for use is often much less than
the theoretical maximum. Recent 32-bit Windows versions, for example, allow
programs to allocate up to 2 GB of memory, reserving 2 GB for the operating
system. Overhead and allocation inefficiencies reduce the usable amount to less
than 2 GB. Some 32-bit UNIX types allow programs to allocate roughly 3.75 GB.

Note: JVMs are continually enhanced. See the documentation for your
particular JVM for details concerning its internal operation.

Users of the IBM Java 5.0 implementation can consult the Java Diagnostics
Guide 5.0 at the following Web address for JVM profiling and troubleshooting
information:

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topi
c=/com.ibm.java.doc.diagnostics.50/diag/problem_determination/aix_me
mory.html
 Chapter 12. Memory and performance 225

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=/com.ibm.java.doc.diagnostics.50/diag/problem_determination/aix_memory.html

Memory allocation
The JVM allocates native resources on behalf of running Java applications.
Directly or indirectly, all Java programs consume four categories of allocated
memory: native heap, native stack, Java heap, and Java stack.

The native heap comprises memory that the operating system allocates to a
process. The amount of memory available corresponds to the usable portion of
the virtual address space. The Java heap is allocated from this space.

A native stack is allocated by the operating system for each running thread. Each
Java thread has a corresponding native thread and resources that are requested
from the operating system by the JVM. Native libraries that are invoked through
the Java Native Interface (JNI™) can create their own threads independently of
Java.

The JVM requests Java heap memory from the operating system. The JVM
makes this space available for the storage of data that pertains to Java class and
array instances. The Java heap consumes a fraction of the total memory that is
available to the running JVM process or rather a fraction of the native heap.

A Java stack is maintained for each of a Java program’s executing threads. It
stores thread-specific and method-local variables. A frame is allocated and
pushed onto this stack when the executing code enters a Java method and is
removed from the stack when a method returns.

Although it is common to speak of the Java and native heaps as though they
were separate entities, the Java heap is simply that portion of the available native
heap space that has been reserved by the JVM for this purpose. Most JVMs
require that the entire Java heap be allocated as one contiguous (that is,
unbroken) range of native memory addresses. Operating systems load native
libraries and other data into various portions of the process’ address space,
which fragments the address space. When this happens, the maximum Java
heap size is reduced to the largest remaining contiguous block.
226 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Figure 12-2 shows the memory usage by Java applications.

Figure 12-2 Memory usage by Java program

The native API library in ODWEK, which is written in C, provides standardized
access to the Content Manager OnDemand (OnDemand) server over TCP/IP.
This mode of access is common to all Content Manager OnDemand clients.

ODWEK-based applications are Java programs that access native code by using
the JNI. As such, depending on the implementation, they might place additional
demands on the native heap separately from the JVM and Java heap. Optimizing
the memory usage of an ODWEK-based application involves maximizing the
amount of physical real memory (RAM) that is available to the running process. It
also involves balancing the fraction of this memory given to the Java heap
against the fraction that is remaining for use by the ODWEK native code.
Reducing the Java heap size frees memory for use by native components.

Allocated Java Heap
- Created at JVM startup, managed by the garbage collector
- Data storage for class and array instances

Allocated Native Heap
Native memory is acquired by calling a native library function
such as C’s malloc(). If the call succeeds, a process is given
the requested amount of virtual memory by the operating
system.

Java stacks
One per Java thread

For each Java thread,
there is a system
thread (TCB).

Native stacks
One per system thread

Contains automatic
(local) variables.

JVM executable
JVM native code and libraries

Native library A
For example, the ODWEK API native library

malloc()

malloc()

Native library B

This space is available to native code,
but placement of a native library B
prevents allocation to the Java heap,
because, for most JVMs, the Java heap
must remain contiguous.

Memory Usage by
Java Applications
The illustration at right represents the virtual
memory space for a running process. The
operating system maintains a mapping of
allocated portions of the virtual address space to
physical storage such as RAM and disk pages.
The shaded portions have not been allocated, and
this unallocated space usually predominates when
application activity is low.

The placement in memory of the executable code
of the JVM, other native libraries, and resources,
such as native stacks, depends upon the
hardware and operating system. The placement
also depends upon the sizes of any additional
native libraries and their default base addresses.

The placement in memory of Java resources,
such as class definitions, JIT code, and Java
stacks, depends upon the JVM implementation.

Kernel memory
Reserved for operating system use

Virtual Memory Address Space
 Chapter 12. Memory and performance 227

12.2.1 Optimizing native memory

Strategies for optimizing native memory vary by hardware platform and operating
system. In the following section, we discuss a few areas to consider.

Virtual memory
Virtual memory’s swapping of pages to disk degrades performance dramatically.
If possible, do not allocate more memory than there is physical real memory
(RAM) in the system. In addition, avoid running other memory-intensive
applications on middle-tier machines that run ODWEK applications. Set equal
sizes for the operating system’s minimum and maximum page file sizes to
minimize page-file management.

Native libraries
The more native libraries that are loaded by a JVM process, the more likely it is
that the process’ native memory is fragmented. When possible, run ODWEK-
enabled applications in their own JVM process. Also, avoid loading other native
libraries into your ODWEK applications JVM process.

On Windows systems, if other shared libraries (dynamic link library (DLLs)) must
share a JVM process with ODWEK, sometimes it is possible to “rebase” those
other DLLs (not the ODWEK DLLs). By doing this, they occupy “out-of-the-way”
addresses in a virtual address space of a process. The object of rebasing DLLs
is to force them to occupy either very high or very low addresses, thus preserving
the maximum contiguous block in the middle.

Working with large amounts of native memory means working with a smaller
Java heap. In the following sections, we take a closer look at the Java heap
allocation and garbage collection and how to tune both.

12.3 Java heap

The Java heap, which is illustrated in Figure 12-3 on page 229, is allocated as a
contiguous block of system memory when the JVM starts. The Java heap is used
mainly to store instances of Java arrays and classes. Java programs can create
new objects as long as there is enough free memory for them in the Java heap or
the heap can be expanded enough to accommodate them.

Allocating memory: When allocating memory, make sure that enough native
memory remains unallocated to the Java heap to accommodate the volume of
data that flows through the native layer of the APIs.
228 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

There is a single Java heap per JVM, and a single JVM is instantiated per
process. Thus, the Java heap is shared by all threads that are running within a
process.

Figure 12-3 Java heap allocation

Note: The developer must ensure that access to object instances by multiple
threads does not result in unexpected behavior. See 6.4, “Thread safety” on
page 128.

Java Heap

Minimum size

Current size

Maximum size

Object 3

Object 2

Object 1

System memory

Object n
 Chapter 12. Memory and performance 229

The default size of the Java heap differs by operating system. Table 12-1 gives
the default values for some popular operating systems. These default sizes are
subject to change. Check the documentation for your environment and Java
version. These sizes and other preferences are adjusted by startup (command
line) parameters, which are discussed in 12.6, “Startup parameters” on
page 236.

Table 12-1 Default heap sizes

12.4 The Java stack

Each thread that is created has its own private Java stack. This stack includes all
thread-specific variables, local variables, intermediate results, method invocation,
and return data.

Stack memory is allocated in frames, each of which represents one method call.
Nested method calls have the effect of pushing multiple frames onto the stack,
which is why a stack trace partially exposes a program’s flow of execution. Some
JVM implementations support parameters that control initial stack size.

Memory allocation failures that involve a thread’s stack throw the following types
of errors:

� If a thread requires a larger Java stack than the maximum stack size, then the
JVM throws a StackOverflowError.

� If the JVM has insufficient memory to create or expand the Java stack, then
the JVM throws an OutOfMemoryError.

Operating system Initial
heap size

Maximum heap size

Windows 4 MB Half the real storage with a minimum of
16 MB and a maximum of 2 GB-1 byte

Linux 4 MB Half the real storage with a minimum of
16 MB and a maximum of 512 MB-1 byte

Solaris (32 bit) 3670 KB 64 MB

AIX 4 MB 64 MB

zOS 1 MB 64 MB

IBM i (formerly IBM i5/OS)
Classic Java

16 MB 240 GB

IBM i (formerly i5/OS) Java J9 9 MB 2 GB
230 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

12.5 Garbage collection

Applications continually create and release object references. At some point,
attempts to allocate new object instances begin to fail. Or a usage threshold is
reached, and the JVM attempts to deallocate unused objects and return memory
to the Java heap. The Garbage Collector is the agent that is responsible for
deallocating unused memory and compacting the used memory in the Java
heap. This process increases the contiguous free memory in the Java heap.

When a given object can no longer be reached through references that are held
by active object instances, the JVM marks the unreferenced object as unneeded,
that is, as garbage. The garbage collection process removes garbage objects
that are marked as garbage from the heap and compacts the memory that is
used by the remaining objects.

12.5.1 Garbage collection phases

There are several implementations of garbage collection, which vary in
sophistication. You can use different internal architectures with the objective of
optimizing performance for different types of application workload, memory
configuration, and number of processors.

A single-threaded (serial) Garbage Collector is the most widely used architecture
and can satisfy the memory management needs of most applications. We
discuss the garbage collection method in this chapter. Popular tuning parameters
are explored in 12.6, “Startup parameters” on page 236.

It is rare that significant garbage collection delays occur after tuning the serial
Garbage Collector. However if garbage collection performance problems persist,
consider using a more sophisticated garbage collection implementation. Large,
multi-threaded applications that run on multiple processors and use large
amounts of memory can benefit. See your Java vendor’s documentation for other
garbage collection options.

As illustrated in Figure 12-4 on page 232, garbage collection is a three-step
process:

� In the mark phase, all referenced objects are identified, and each object is
scanned for references to other objects. The result is a vector that contains all
reachable objects.

� An allocated-object vector is maintained by the JVM at object creation time. In
the sweep phase, the reachable-object vector is compared with the
allocated-object vector, and unreachable objects are deallocated.
 Chapter 12. Memory and performance 231

� The compaction phase removes unused memory segments from between
allocated blocks, resulting in a larger amount of contiguous available memory.

Figure 12-4 Garbage collection process: Mark, sweep, and compact

12.5.2 Garbage collection performance

No command explicitly deallocates memory for a Java object instance. Java code
can request garbage collection by calling the System.gc() method. Depending
upon the garbage collection implementation, System.gc() causes Garbage
Collector to run immediately or at some point in the near future. When Garbage
Collector runs, it takes a certain minimum amount of time. Unnecessary
System.gc() calls can degrade performance. The precise effect depends upon
the garbage collection implementation and your application’s object creation and
release behavior.

While the Garbage Collector is running, the JVM appears to be frozen. This is
because the JVM must lock all objects in memory, preventing access to them
while Garbage Collector runs. The duration of the garbage collection process is a
function of the number of objects in the heap, especially the number of live
objects. The larger the heap is, the more likely more objects will exist, and
therefore, the longer the garbage collection process will run. The number of
processors also affects garbage collection time. That is more processors require
a longer collection time.

Object 2
(not in use)

Object 1
(in use)

Object 3
(in use)

JVM heap
before GC

Garbage Collection

Object 1
(in use)

Object 3
(in use)

In
 u

se
fre

e

JVM heap
after GC

Vector
allocated
objects

Compacted
objects

Vector
Reachable

objects
Object 1

(in use)

Object 3
(in use)

Mark Sweep Compact

compare compact
232 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

As illustrated in Figure 12-5, garbage collection (GC) for a large heap runs longer
but less frequently. Garbage collection on a small heap runs faster but more
often. While large and small are relative terms, the ideal size depends on your
use of the ODWEK Java APIs.

Figure 12-5 Garbage collection frequency and its impact on wait time and throughput

Garbage collection performance is quantified by throughput, wait time, memory
usage, and memory availability.

Throughput
Throughput is the percentage of time spent on activities other than collecting
garbage over a long time period. Throughput includes time spent in allocation of
memory and other memory management activities.

Wait time
Wait time is the percentage of time that an application appears unresponsive
because garbage collection is running.

Memory usage
Memory usage counts the memory that is allocated while a process is running.
Limited physical memory negatively affects system scalability.

Tuning the garbage collection process: Tuning the garbage collection
process is a priority for applications that maintain large heaps or run on
multiple processors.

Time

GC GCGC

GCGCGC GC GC GC GC GC

More frequent shorter duration garbage collections

Less frequent longer duration garbage collections

Time

Wait times

Throughput
 Chapter 12. Memory and performance 233

Memory availability
Memory availability refers to the difference between the time an object becomes
unreferenced and the time the memory becomes available for reuse. The
memory that is used by unreferenced objects is released only after a garbage
collection cycle has completed. The longer the period is between garbage
collection cycles and the larger the heap is, the longer memory is consumed by
unreferenced objects.

When the heap is exhausted, Java throws an OutOfMemoryError:

java.lang.OutOfMemoryError <<no stack trace available>>

A practical heap allocation strategy is to set the heap size large enough that you
do not run out of memory. However, do not set the heap size so large that there is
room to store too many marked-as-garbage objects before a garbage collection
occurs.

Generational garbage collection
Simple garbage collection examines every live object in the heap. Generational
garbage collection uses the observation that some objects have short lifetimes,
other objects have long lifetimes, and still others survive for the lifetime of the
JVM. To take advantage of this, the heap is divided into three separate areas as
illustrated in Figure 12-6. These areas are called the young, tenured and
permanent generation spaces.

Figure 12-6 JVM heap generations

When objects are first created, they are allocated in the young generation space.
As these objects age, they move to the tenured generation space. Objects that
describe classes and methods are stored in the permanent generation space.

Young

Tenured

Permanent

Objects that are initially allocated

Objects that are old enough

Objects that describe classes and methods
234 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Minor collections, which run only against the young generation space, execute
faster than collections that run against the entire heap. Ideally, minor collections
involve the removal of many objects. Major collections run against the tenured
generation space. They run less frequently and take longer than minor
collections, and typically remove fewer objects. The size of the permanent
generation space is important for applications that dynamically generate and
load a large number of classes. If the permanent generation space does not have
enough memory, then an OutOfMemoryError is thrown.

At JVM initialization, only the initial (minimum) size of the Java heap is allocated.
The maximum size of the Java heap memory is virtually reserved but not
allocated. The young, tenured, and permanent spaces each consist of allocated
and virtual memory.

Generation sizing involves trading off throughput, wait time, memory usage, and
memory availability. Figure 12-7 presents a decision matrix for the sizing of the
young and tenured generation spaces.

Figure 12-7 Heap generation sizes

Generation size is a function of the number of objects of specified size and
lifetime. For example, consider a middle-tier application that serves documents to
many concurrent users. Many documents are held at once in memory for
transform and subsequent download to clients before being released. Since
these documents are not reused, a large young generation is implied.

Short Long

Object lifetime

Small

Large

Object
size

Small
young

generation

Large
young

generation

Small
tenured

generation

Large
tenured

generation
 Chapter 12. Memory and performance 235

A batch job that retrieves and processes documents sequentially implies a small
young generation. That is, only a few documents are processed for garbage
collection each cycle, and the application executes at a steady pace. However,
observe that specifying a larger than necessary young generation causes
Garbage Collector to run less often but to run for a longer period. The application
runs in short burst, which may be desirable if other applications can use the
system effectively during the time that your application is not performing garbage
collection.

Acceptable heap generation sizes, garbage collection frequencies, and Garbage
Collector run times all depend on the memory usage pattern of your application.
When the virtual machine’s default configuration is inadequate, you can tune
JVM memory management by using the command line options that we describe
in the following section.

12.6 Startup parameters

Most JVM implementations have optional startup (command line) parameters
that are used to adjust Java memory allocation and garbage collection. In the
following sections, we discuss some of the most popular and commonly
supported parameters. Not all JVM implementations support all of these options.

12.6.1 Supported commands and available options

The commands presented in the following sections are used to determine which
other commands are available for your particular version of the JVM.

-help
The java -help or java -? command produces a list of the supported command
line options as shown in Example 12-1.

Example 12-1 The java -help command

C:\>java -help
Usage: java [-options] class [args...] (to execute a class)
 or java [-options] -jar jarfile [args...] (to execute a JAR file)

where options include:
 -client to select the "client" VM
 -server to select the "server" VM
 -hotspot is a synonym for the "client" VM [deprecated]
 The default VM is client.
236 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

 -cp <class search path of directories and zip/jar files>
 -classpath <class search path of directories and zip/jar files>
 A ; separated list of directories, JAR archives,
 and ZIP archives to search for class files.
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -version:<value>
 require the specified version to run
 -showversion print product version and continue
 -jre-restrict-search | -jre-no-restrict-search
 include/exclude user private JREs in the version
search
 -? -help print this help message
 -X print help on non-standard options
 -ea[:<packagename>...|:<classname>]
 -enableassertions[:<packagename>...|:<classname>]
 enable assertions
 -da[:<packagename>...|:<classname>]
 -disableassertions[:<packagename>...|:<classname>]
 disable assertions
 -esa | -enablesystemassertions
 enable system assertions
 -dsa | -disablesystemassertions
 disable system assertions
 -agentlib:<libname>[=<options>]
 load native agent library <libname>, e.g.
-agentlib:hprof
 see also, -agentlib:jdwp=help and
-agentlib:hprof=help
 -agentpath:<pathname>[=<options>]
 load native agent library by full pathname
 -javaagent:<jarpath>[=<options>]
 load Java programming language agent, see
java.lang.instrument

 -splash:<imagepath>
 show splash screen with specified image
 Chapter 12. Memory and performance 237

-X
The java -X command displays the syntax of the non-standard options as shown
in Example 12-2. The -X options are non-standard and subject to change without
notice.

Example 12-2 The options of the java -X command

C:\Documents and Settings\Administrator>java -X
 -Xmixed mixed mode execution (default)
 -Xint interpreted mode execution only
 -Xbootclasspath:<directories and zip/jar files separated by ;>
 set search path for bootstrap classes and
resources
 -Xbootclasspath/a:<directories and zip/jar files separated by ;>
 append to end of bootstrap class path
 -Xbootclasspath/p:<directories and zip/jar files separated by ;>
 prepend in front of bootstrap class path
 -Xnoclassgc disable class garbage collection
 -Xincgc enable incremental garbage collection
 -Xloggc:<file> log GC status to a file with time stamps
 -Xbatch disable background compilation
 -Xms<size> set initial Java heap size
 -Xmx<size> set maximum Java heap size
 -Xss<size> set java thread stack size
 -Xprof output cpu profiling data
 -Xfuture enable strictest checks, anticipating future
default
 -Xrs reduce use of OS signals by Java/VM (see
documentation)
 -Xcheck:jni perform additional checks for JNI functions
 -Xshare:off do not attempt to use shared class data
 -Xshare:auto use shared class data if possible (default)
 -Xshare:on require using shared class data, otherwise fail.

12.6.2 Performance and analysis commands

The commands that are presented in the following sections are useful for
diagnostic purposes.

-Xprof
The -Xprof option causes the JVM to report CPU activity. A report is generated
for each terminating thread that shows the methods that consumed the most time
while that thread ran.
238 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Example 12-3 shows an example of output that is generated by using the -Xprof
parameter in a batch program that is connected to an OnDemand server over
dial-up. Each thread’s output is delimited by a header that starts, “Flat profile
of...” and provides these details:

� In the first column, the percentage of CPU time spent executing a given
method (or function in the case of a JNI invocation)

� In the second column, the amount of time spent in Java code

� In the third column, the amount of time spent in native code

� In the fourth column, the name of the method or function that is being
executed

The methods are ordered by percentage of CPU time taken to execute, with the
method that took the longest listed first. The global summary at the end of the
profile provides information such as how much time was spent loading classes.

Example 12-3 Sample -Xprof output run on Windows

Flat profile of 82.13 secs (6778 total ticks): Thread-0

 Interpreted + native Method
 97.4% 0 + 6601 com.ibm.edms.od.ArsWWWInterface.apiLogon
 0.9% 0 + 58 com.ibm.edms.od.ArsWWWInterface.apiLogoff
 0.6% 0 + 40 com.ibm.edms.od.ArsWWWInterface.apiGetUserInfo
 0.5% 0 + 31 java.lang.ClassLoader$NativeLibrary.load
 0.4% 0 + 28
com.ibm.edms.od.ArsWWWInterface.apiInitializeNative
 0.1% 0 + 4 java.io.FileOutputStream.writeBytes
 0.0% 0 + 3 java.io.FileOutputStream.open
 0.0% 0 + 3 java.io.WinNTFileSystem.getBooleanAttributes
 0.0% 0 + 1 java.lang.ClassLoader.defineClass1
 0.0% 0 + 1 java.util.zip.ZipFile.read
 0.0% 0 + 1 java.io.FileOutputStream.close0
 0.0% 0 + 1 java.lang.Thread.sleep
 0.0% 1 + 0 java.util.Arrays.copyOf
 0.0% 0 + 1 TThread.run
 99.9% 1 + 6773 Total interpreted

 Thread-local ticks:
 0.0% 2 Class loader
 0.0% 2 Unknown: thread_state

Flat profile of 82.84 secs (6838 total ticks): main

 Interpreted + native Method
 Chapter 12. Memory and performance 239

 12.3% 0 + 7 java.io.FileOutputStream.writeBytes
 8.8% 0 + 5 java.io.WinNTFileSystem.getBooleanAttributes
 8.8% 0 + 5 java.io.WinNTFileSystem.getLength
 7.0% 0 + 4 java.util.zip.ZipFile.open
 3.5% 0 + 2 java.lang.Thread.sleep
 3.5% 0 + 2 java.util.zip.ZipFile.read
 3.5% 0 + 2 java.util.TimeZone.getSystemTimeZoneID
 3.5% 0 + 2 java.io.FileInputStream.readBytes
 1.8% 0 + 1 java.io.FileInputStream.open
 1.8% 1 + 0 java.lang.Math.min
 1.8% 1 + 0 java.util.regex.Pattern.peek
 1.8% 1 + 0 sun.misc.URLClassPath$JarLoader.getJarFile
 1.8% 1 + 0 java.util.ResourceBundle.getBundleImpl
 1.8% 1 + 0 java.io.BufferedReader.readLine
 1.8% 1 + 0 java.lang.String.toLowerCase
 1.8% 1 + 0 sun.misc.FloatingDecimal.<clinit>
 1.8% 1 + 0 Main.main
 66.7% 8 + 30 Total interpreted

 Thread-local ticks:
 99.2% 6781 Blocked (of total)
 33.3% 19 Class loader

Flat profile of 6.43 secs (4 total ticks): DestroyJavaVM

 Interpreted + native Method
 25.0% 1 + 0 java.util.IdentityHashMap.keySet
 25.0% 1 + 0 Total interpreted

 Thread-local ticks:
 50.0% 2 Class loader
 25.0% 1 Unknown: thread_state

Global summary of 89.30 seconds:
100.0% 6844 Received ticks
 0.0% 1 Compilation
 0.3% 23 Class loader
 0.0% 3 Unknown code
240 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

-verbose[:class|gc|jni]
The -verbose:gc option causes the JVM to output information about each
garbage collection event. In Example 12-4, you see two minor garbage
collections and a full garbage collection.

� The number before the arrow shows the total size of all objects before the
garbage collection.

� The number after the arrow gives the total size of all live objects after the
garbage collection.

� The number in parenthesis gives the total available heap space in the young
and tenured generation spaces. The permanent generation is not counted.

The value 0.0042673 secs is the amount of time that it took the Garbage
Collector to run.

Example 12-4 Sample output from the -verbose:gc parameter

[GC 3938K->3918K(5056K), 0.0042673 secs]
[GC 4814K->4791K(5696K), 0.0043874 secs]
[Full GC 4791K->2433K(5696K), 0.0370195 secs]

-XX:+PrintGCDetails
The -XX:+PrintGCDetails option causes the JVM to output detailed information
about each GC event. As illustrated in Example 12-5, this information includes:

� The generation or generations that are affected
� Space allocated to objects before and after garbage collection
� Total available space
� Time taken to perform the garbage collection

After all threads terminate, a heap summary is produced that shows the memory
usage for the overall process.

Example 12-5 Sample output by using the -XX:+PrintGCDetails option

[GC [DefNew: 896K->64K(960K), 0.0191265 secs] 896K->245K(5056K),
0.0192538 secs] [Times: user=0.02 sys=0.00, real=0.02 secs]
[GC [DefNew: 960K->64K(960K), 0.0041025 secs][Tenured:
4456K->1401K(4480K), 0.0278220 secs] 4531K->1401K(5440K), 0.0324628
secs] [Times: user=0.03 sys=0.00, real=0.03 secs]
[GC [DefNew: 896K->896K(960K), 0.0000514 secs][Tenured:
4384K->4639K(5120K), 0.0414162 secs] 5280K->4639K(6080K), 0.0418810
secs] [Times: user=0.04 sys=0.00, real=0.04 secs]
Heap
def new generation total 960K, used 599K [0x26390000, 0x26490000,
0x26490000)
 Chapter 12. Memory and performance 241

eden space 896K, 66% used [0x26390000, 0x26425e10, 0x26470000)
from space 64K, 0% used [0x26480000, 0x26480000, 0x26490000)
to space 64K, 0% used [0x26470000, 0x26470000, 0x26480000)
tenured generation total 5120K, used 4138K [0x26490000, 0x26990000,
0x26990000)
the space 5120K, 80% used [0x26490000, 0x2689aba8, 0x2689ac00,
0x26990000)
compacting perm gen total 12288K, used 295K [0x26990000, 0x27590000,
0x2a990000)
the space 12288K, 2% used [0x26990000, 0x269d9ed8, 0x269da000,
0x27590000)
ro space 8192K, 62% used [0x2a990000, 0x2ae92a28, 0x2ae92c00,
0x2b190000)
rw space 12288K, 52% used [0x2b190000, 0x2b7d86b8, 0x2b7d8800,
0x2bd90000)

–XX:+PrintGCTimeStamps
The –XX:+PrintGCTimeStamps option when used with the -XX:+PrintGCDetails
option produces a time stamp at the start of each garbage collection in addition
to the information provided by -XX:+PrintGCDetails. The time stamps are
relative to the start of process execution and reveal the timing and duration of
garbage collection events. Example 12-6 shows sample output is produced by
using this option.

Example 12-6 Sample output by using -XX:+PrintGCTimeStamps

228.657: [GC 228.657: [DefNew: 896K->64K(960K), 0.0184965 secs]
896K->245K(5056K), 0.0188488 secs] [Times: user=0.02 sys=0.00,
real=0.02 secs]
235.151: [GC 235.151: [DefNew: 960K->64K(960K), 0.0154360 secs]
1141K->1121K(5056K), 0.0160249 secs] [Times: user=0.01 sys=0.00,
real=0.01 secs]
241.684: [GC 241.684: [DefNew: 960K->64K(960K), 0.0075152 secs]
2017K->2008K(5056K), 0.0077535 secs] [Times: user=0.01 sys=0.00,
real=0.01 secs]

12.6.3 Memory allocation commands

When the JVM is initialized the maximum heap space defined by -Xmx is virtually
allocated to the JVM. The -Xms parameter defines the amount of memory that is
physically allocated. As the JVM requires more memory, it is allocated up to the
maximum size determined by -Xmx. The JVM also allocates memory for other
242 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

things, including a stack for each thread. It is normal for the total memory
consumed by the JVM to exceed the value of -Xmx.

-Xms
The -Xms parameter changes the initial (minimum) size of the Java heap memory
allocation from its default value. The default value is listed in Table 12-1 on
page 230. The value is specified in bytes. Typical values are in the MB range.
The following examples show the different syntax for specifying memory:

� -Xms6291456
� -Xms6144k
� -Xms6m

-Xmx
The -Xmx parameter changes the maximum size of the Java heap memory
allocation from its default value. The default value is listed in Table 12-1 on
page 230. The value is specified in bytes. Typical values are in the MB range.
The following examples show the different syntax for specifying memory:

� -Xmx83886080
� -Xmx81920k
� -Xmx80m

-Xmn
The -Xmn parameter indicates the size of the heap for the young generation
space.

-Xss
Each Java thread has two stacks, one for Java code and one for native code. The
-Xss option sets the maximum thread stack size that can be used by the native
code in a thread. Every thread that is spawned during the execution of the
program has the specified value as its native stack size.

-Xss is specified in bytes. The default stack size is 512 KB (-Xss512k).

Heap allocation: Sometimes it is advantageous to allocate the entire heap at
startup, which reduces the number of memory allocations and provides the
largest amount of contigous memory. To do this, set the minimum heap size
specified by -Xms and maximum heap size specified by -Xmx to the same
value.

Value: The value of -Xmn should be less than the value of -Xmx.
 Chapter 12. Memory and performance 243

-XX:MinHeapFreeRatio and -XX:MaxHeapFreeRatio
For the IBM JVM, the options are -Xminf<0-1> and -Xmaxf<0-1>. For the Sun
JVM, they are -XX:MinFreeHeapRatio=<0-100> and
-XXMaxHeapFreeRatio=<0-100>. Use the Java -X command to verify the
parameters for your JVM.

When a garbage collection occurs, the JVM resizes the heap to keep its usage
within the range specified by -Xms and -Xmx. When possible, the new size reflects
a desired fraction of free space, determined by the following parameters:

-XX:MinHeapFreeRatio=<minimum>
-XX:MaxHeapFreeRatio=<maximum>

Memory management involves trading off Garbage Collector run time and run
frequency. If Garbage Collector runs often while always freeing memory, the Java
heap is probably filling too quickly, and the application can benefit from a larger
heap. In addition to using the -Xmx option to specify a larger heap, you can adjust
the heap free ratio so that the every current heap allocation anticipates your
application’s forward needs.

For example, if you specify a minimum free space ratio of 30% (expressed as 0.3
for the IBM JVM or 30 for the Sun JVM), then the virtual memory expands the
heap to try to keep at least 30% of the heap free. By increasing this number
beyond the default setting, you force the virtual memory to increase the heap
size in anticipation of increasing usage.

Setting the initial memory allocations -Xmx and -Xms to the same size prevents
dynamic resizing of the heap, making any FreeRatio setting superfluous.

12.6.4 Customizing the heap size

The heap size significantly impacts garbage collection, and hence, the
performance of Java programs. To avoid heap fragmentation and to prevent
out-of-memory conditions, for most cases, start your tuning process with the
maximum Java heap size parameter (-Xmx) set to 256M and then adjust up or
down as needed.

Even if the minimum (-Xms) heap is small, you must specify the maximum heap
size to ensure that one contiguous area is available should the heap require
expansion.
244 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

To evaluate virtual memory management:

1. Use a load generator program to test the performance of the Web server or
application under the maximum expected load.

2. Use the -verbosegc option to measure time and resources that are consumed
by the garbage collection.

3. Redirect standard error and standard output to a log file as in the following
example:

Java <parameters> -verbosegc >> logfile.txt

4. Review the timestamps of the log outputs. Note the frequency of garbage
collections and the time taken for each. Also note the average memory usage
by checking the heap size after each garbage collection.

Garbage Collector should run in milliseconds, and a full garbage collection
should never exceed several seconds.

If the garbage collection process always frees most of your heap and the process
runs for too long a period, consider reducing the heap size so that Garbage
Collector runs more often. Always remember to retest your application under
maximum load to verify the impact of changes.

If your system spends too much time on garbage collection, it is possible that
your heap size is larger than the available physical memory, causing the
operating system to swap portions of the heap from memory to disk and back.
Your system administrator can help you determine the amount of free physical
memory on your system.

12.6.5 Customizing the object generations

The relative size of the young generation space determines the ratio of minor
collections to full collections. For a given heap size, the larger the young
generation, the less often minor collections occur. A larger young generation
space implies a smaller tenured generation space, which increases the
frequency of major collections. The optimal young generation space to tenured
generation space ratio depends on the distribution of lifetimes for the objects that
are created by your application.

Tip: Setting -Xms and -Xmx to the same value can improve performance by
eliminating the memory allocation and deallocation that are involved in
keeping the heap size within a range.

Attention: Monitor your memory usage. Increase available memory as you
increase the number of processors.
 Chapter 12. Memory and performance 245

Young generation space size can be adjusted by using the NewRatio parameter.
For example, setting -XX:NewRatio=3 means that the ratio between the young
generation space and the tenured generation space is one to three (1:3). That is,
the size of the young generation is one fourth of the total heap.

The NewSize and MaxNewSize parameters control the minimum and maximum
size of the young generation space. Setting parameters equal to one another has
the same effect on the young generation space as setting the -Xms and -Xmx
parameters equal on the total heap.

The design and usage of your ODWEK application determines the ratio of the
size of the young generation space to size of the tenured generation space.
Enough free memory must be reserved in the tenured generation space to
accommodate all the live objects from the young generation space.

12.6.6 ODWEK Java API memory usage

Most instances of native heap exhaustion occur while retrieving documents
because document retrieval is the most memory intensive ODWEK operation. At
least three components within your ODWEK-based application consume
memory:

� The JNI (native) portion of the ODWEK Java APIs
� The Java component of the ODWEK Java APIs
� The Java component of the application

Requests for data from the OnDemand server flow from your application through
the Java component of the ODWEK Java APIs to the native component. The
native component makes the TCP/IP connection to the OnDemand server, sends
requests, and receives the results. Upon receipt of the results, bulk data, such as
Advanced Function Presentation (AFP) resources and document data, are
stored in the native heap.

Adjust the size of the native heap, by allocating a smaller maximum Java heap to
free more native memory or vice versa, according to the size of your documents
and the expected number of concurrent retrievals. This adjustment entails a kind
of balancing act, since the Java component of the ODWEK Java APIs caches
document data in Java arrays. The size of the Java heap must be large enough to
accommodate the data, but in general, memory allocation should be biased in
favor of native space.

Tip: If your application creates large numbers of objects whose life times are
skewed heavily toward either transience or long life, consider tuning the JVM’s
heap generations.
246 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

The sizes of the Java and native stacks, which reflect the number and depth of
active method calls, are most affected by the number of concurrent threads that
are maintained by the Web server or application. The number of threads usually
correlates with the number of concurrent users.

12.7 Other performance areas

Web server and stand-alone applications that use the ODWEK Java APIs
consume considerable system resources. The anticipated operating mode of
ODWEK applications is to serve large numbers of users (tens of thousands) by
extracting large quantities of data (documents) from large archives (spanning
multiple years). Data is preprocessed if needed, converting AFP to HTML, for
example, and presented to users with fast response times (in seconds).

Accomplishing this processing requires planning adequate system capacity and
ensuring the best use of available resources. In the following sections, we look
briefly at subsystems that can become bottlenecks and that can be tuned to
improve performance. Monitoring and tuning procedures differ by platform.
Therefore, the discussion is intended mainly to direct you to areas of interest.

12.7.1 Network

Web server applications establish multiple network connections to the
OnDemand server and to browsers or other clients. Ensure that TCP/IP stacks
and network routes to both are configured for efficiency. Terminology and support
for parameters given in the following sections vary by platform. Therefore, we
present general descriptions, rather than specific instructions.

Number of sockets
Web server applications connect to the OnDemand server and browser clients,
and constantly create and destroy sockets. Verify that your system defines
enough sockets and that your application is not delayed by waiting for in-use
sockets to be freed.

Tip: Consider the following useful guideline for allocating memory:

Native heap size = 2 x (average uncompressed document size) x
(average number of concurrent document requests)

Java heap size = (average document size) x (average number of
concurrent document requests)
 Chapter 12. Memory and performance 247

TCP/IP buffer sizes
Default buffer sizes on most systems are usually smaller than the documents that
are transferred. Set the buffer sizes to “slightly larger” than the size of the
document that is being downloaded or to the largest possible size that is less
than that. The TCP/IP buffer size minimizes flow control overhead and the
number of TCP/IP sends and receives per document.

For example, if the TCP/IP receive buffer is too small, the receive window is
prone to overrun. Upon overrun, the flow control mechanism stops data transfer
until the receive buffer is empty. Flow control can consume significant CPU time
and result in additional network latency.

Keep in mind that TCP/IP buffers can be too large. If applications do not process
data fast enough, paging can increase. The goal is to specify a value that is large
enough to avoid undue flow control overhead, but not so large that the buffer
accumulates more data than the system can process.

nodelayack option
If the nodelayack option is left unset, TCP waits for the buffer to fill before
sending. This option reduces the number of TCP sends and thus decreases
stack overhead. It is good for sending large amounts of data (documents). When
small quantities of data are to be sent, as for requests, you normally want
immediate transmission for improved response time and accept additional CPU
utilization as a cost for the additional flow control.

Setting the nodelayack option causes the data to be sent by TCP/IP as soon as
applications request that it be sent. The combination of a large buffer size and
setting the nodelayack option usually improves overall performance for mixed
small (control) and large (data) transmissions.

Max user port (32768)
The Max user port parameter, when available, determines the highest port
number (and thus the total number of ports) that TCP/IP can assign when an
application requests a port from the system. See 13.2.3, “Performance degrades
with a large number of server connections; the OnDemand server refuses
network connections (Windows only)” on page 262.

Attention: Be extremely careful when considering changing the TCP/IP buffer
size. It cannot be done on a per-application basis. Setting it with an improper
value might cause problems to the entire network traffic.
248 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

MaxConnect Backlog
The MaxConnect Backlog parameter indicates the maximum number of
connections that can be queued when waiting for TCP socket assignment.
Increase this number if many connection attempts are received simultaneously
and you know that they will be serviced relatively quickly before the waiting
connections time out.

Keepalive_interval
The Keepalive_interval option is the default TCP keep-alive interval for
applications that enable the SO_KEEPALIVE socket option. Do not override the
interval by using the TCP_KEEPALIVE option. A typical range is 0-35791 minutes,
with a default of 120. A value of zero (0) disables the keep-alive function so that
sockets for which SO_KEEPALIVE is specified do not perform the TCP keep-alive
function. In this case, sockets that specify an interval by using TCP_KEEPALIVE
continue to send keep-alive probes.

FINWAIT2TIME (also TcpTimedWaitDelay)
FINWAIT2TIME is the number of seconds that a TCP connection should remain
alive waiting for more data to be sent. The default on some systems is five
minutes, which means that many sockets that are no longer in use by
applications remain unavailable for reuse for a period of five minutes.

When thousands of sockets are constantly created and disposed, the delay is an
unnecessary load on the system. Performance testing usually reveals an
appropriate value of considerably less than five minutes.

MTU_size
The maximum transmission unit (MTU) in bytes. The MTU_size value can be up
to 65535. The default value of this field can be as low as 576. Larger units are
more efficient for transmitting large amounts of data, but are more costly to
recover in the event of a transmission error. In general, a smaller MTU works
better on slow or unreliable networks that drop packets frequently, such as over
dial-up or DSL. Larger MTU sizes are appropriate for fast, reliable networks.

Network adapters
Your Web server application transmits a lot of data both from the OnDemand
server and to browser clients. Verify that your network adapters are running both
full duplex and at the maximum transfer rate that is supported by the cards and
your network.
 Chapter 12. Memory and performance 249

12.7.2 Disk

Disk speed and I/O buffering have a dramatic effect on the performance of Web
server applications that heavily depend on disk access, database support, and
extensive messaging. Disk input or output subsystems that are optimized for
performance, for example Redundant Array of Independent Disks (RAID) arrays,
high-speed drives, and dedicated caches, are essential contributors to
application server performance in these environments. Application servers with
smaller disk requirements can benefit from a mirrored disk drive configuration
that improves reliability and has good performance.

Spread the disk processing across as many disks as possible to avoid contention
issues that can occur with one- or two-disk systems. Placing database tables on
separate disks from those that store database logs reduces contention and
improves throughput.

12.7.3 Processor

In the absence of other bottlenecks, increasing the processor speed improves
throughput and response time. A processor with a larger L2 or L3 cache yields
higher throughput than a processor of the same speed with a smaller cache.

Highly multi-threaded applications benefit from systems with multiple processors
because such systems can run multiple threads simultaneously. Many
single-threaded applications can be refactored to spawn multiple threads to
distribute load across multiple processors.

Eliminating unneeded server processes and increasing the amount of processor
time (process priority) associated with the Web server or ODWEK application
can also improve performance.

12.7.4 Physical memory

Increasing memory sufficiently to prevent the operating system from paging the
virtual memory of processes to disk improves performance. Configure a
minimum of 256 MB of memory for each processor and at least 512 MB per
application server instance. Adjust the available memory when the system pages
and the processor utilization is low because of the paging. Memory access speed
often depends on the number and placement of the memory modules. Check the
hardware manual to ensure that your configuration makes the best use of
installed memory.
250 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Chapter 13. Troubleshooting

In this chapter, we describe resources and methods for troubleshooting
OnDemand Web Enablement Kit (ODWEK)-based Java applications.

We discuss the following topics in this chapter:

� ODWEK error reporting and trace logging
� Common problems and their solutions
� Java dump (javacore)
� Other Java diagnostic tools
� Testing tools
� Getting support

13
© Copyright IBM Corp. 2008. All rights reserved. 251

13.1 ODWEK error reporting and trace logging

The ODWEK reports runtime error conditions by throwing an ODException and, if
trace logging is enabled, by writing log entries to the arswww.trace file. The trace
file can be configured to capture considerable detail and is useful for
performance tuning and general troubleshooting.

13.1.1 ODException class

The ODException class extends Java’s Exception class and handles all
exceptions that are thrown by the ODWEK Java APIs. The exceptions that are
thrown by the ODWEK Java APIs should be handled as with any other Java
exception. Exceptions are queried for an error code by calling the getErrorId()
method. Obtain any additional detail message by calling the getErrorMsg()
method.

13.1.2 Trace logging

The arswww.trace file contains time-stamped debugging information that is
generated by the ODWEK Java APIs. The file contains entries from both the Java
and native components. A trace file is helpful for debugging your application and
for identifying performance bottlenecks.

Tip: For information about interpreting Content Manager OnDemand
(OnDemand) error codes, see IBM Content Manager OnDemand: Messages
and Codes, SC27-1379, which contains detailed descriptions. Although the
guide lists the error codes with the server-specific prefix (“ARS”) as used in
the OnDemand System Log, the integer maps correctly to the error ID that is
obtained from an ODException class.
252 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Enabling the ODWEK trace engine
To enable trace logging, specify the appropriate traceDir and traceLevel
parameter values when initializing the ODConfig object that is passed to new
ODServer connections. See Example 13-1.

Example 13-1 Specifying the trace setting when initializing ODConfig

public ODConfig (String afpViewer,
 String lineViewer,
 String metaViewer,
 long maxHits,
 String appletDir,
 String language,
 String tempDir,
 String traceDir,
 int traceLevel)

The traceLevel parameter controls the level of detail and minimum severity of
entries that is written to the arswww.trace file. Table 13-1 describes the output
that each trace level produces.

Table 13-1 Trace level description

Higher levels are used to troubleshoot current ODWEK issues. Lower levels are
used to monitor an ODWEK application that is in a steady state. For example, in
a test environment, setting traceLevel to 1 entails minimal overhead while
informing you of errors.

Trace level Description

0 (default) No logging is enabled.

1 Log only ERROR events.

2 Log only ERROR and WARNING events.

3 Log ERROR, WARNING, and INFO events.

4 Log ALL events.
 Chapter 13. Troubleshooting 253

Trace files are located in the directory given by the traceDir parameter. A new
trace file is created when an application’s first ODServer object is initialized. A
new trace file is also created when the first new ODServer is initialized after all
previous ODServer connections are logged-off and terminated. Any existing
trace file is renamed to arswww.trace<timestamp>. Ensure that adequate disk
space is available on the directory’s file system. The historical trace files must be
deleted manually to avoid exhausting the file system.

13.1.3 Analyzing the trace file

As mentioned, the trace file contains in-depth details of thrown exceptions. At its
most detailed level (level 4), the trace log also records the flow of execution
through the API, including calls to native modules, which can help diagnose
OnDemand server problems.

The subsecond granularity of trace time stamps is useful for debugging
performance problems and unresponsive applications. Timestamp information
can be used to help isolate bottlenecks in your application, the ODWEK Java
API, or OnDemand server request processing. You can see exactly which
methods are in use by your program and the time that is spent by executing each
method.

The output of the arswww.trace file includes the following columns, which are
output in a comma-separated format (CSV):

� PPID: The current working or child process ID
� PID: The parent process ID
� TID: The current thread ID for this request (typically maps to a user session)
� DATE: Date in the month/day/year format
� TIME: Transaction time stamp
� LEVEL: Level of message
� FUNCTION: The native function to which the message applies
� OUTPUT: Detailed message text

Tip: When diagnosing problems, set traceLevel to 4. At level 4, all error details
are written to the trace file. Error traces often relate information that cannot be
obtained from corresponding ODExceptions.

Important: A full trace (level 4) can degrade performance. Always set the
trace level to 1 (ERROR) so that ERROR generation occurs when there is an
error. In addition, always monitor the trace files to catch and respond to errors
as soon as they occur. The ERROR trace level has little or no impact in
production, as long as errors are not occuring.
254 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

If you receive an ENTER or RETURN message, then a numeric value that
represents the ODWEK session ID for the function call is in the OUTPUT field.

The messages can have one of the following possible levels:

� ERROR: Error messages
� WARNING: Warning messages
� INFO: Informational messages that assist problem determination
� ENTER: Function flow messaging
� RETURN: Function flow messaging

Error messages
To check for error messages, search the LEVEL column for ERROR. Examine
the FUNCTION column and determine which function was executing when the
error occurred. Then work your way backward through the trace to determine the
cause of the error, which may be the result of the following common culprits:

� Bad data passed to the function

� Network failure

� Poor response time from the server due to network bottlenecks or server
overload

Check the server log to determine the server’s load.

� Out-of-memory condition

Errors that are thrown by Content Manager OnDemand native components are
written as text in the patterns CSV_RC=<num> and CSV_ID=<Num>. A detail message
is normally provided. See 13.1.5, “Return codes and message IDs” on page 258,
for tables of return codes and message IDs.

Performance
To check for performance issues, compare consecutive time stamps in the TIME
column. Time differences between the most consecutive entries are subsecond
except while data is retrieved from the server. Identify any large time difference
between one time stamp and the next and note the function that is indicated in
the FUNCTION column.

The time that is required to return data from the server might be several seconds
or more. Retrieval performance depends on the OnDemand server’s capacity, the
quantity of data that is returned, network speed, and (if present) the middle tier

Java_com_ibm_edms_od_: Function names with
Java_com_ibm_edms_od_ prepended indicate the base Java Native Interface
(JNI) call that is made from the Java virtual machine (JVM). All other calls are
internal ODWEK library calls.
 Chapter 13. Troubleshooting 255

server’s capacity. It is helpful to determine normal response times for your
systems during off-peak access as a benchmark to assess performance
problems later.

13.1.4 Trace log sample

The raw arswww.trace output for a typical ODHit.retrieve() call with traceLevel set
to 4 is illustrated in Example 13-2. This example shows a single PPDID and TID.
In real life, most traces show multiple TIDs, or rather multiple threads, and the
entries of other threads must be filtered out.

Example 13-2 Snippet from the ODHit.retrieve() call with traceLevel=4

4196,3272,316,12/17/07,13:59:42.145,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,DocID =
v7126-19459-19460-19461-ACF1-1FAAA-0-27629619-0-27629619-
85-68-0-1-0-^^ATEST TIFF
4196,3272,316,12/17/07,13:59:42.145,ENTER,apiP_OpenFolderByName,
4196,3272,316,12/17/07,13:59:42.145,INFO,apiP_OpenFolderByName,Opening
[test-LargeTiff]
4196,3272,316,12/17/07,13:59:42.145,RETURN,apiP_OpenFolderByName,RC=0
4196,3272,316,12/17/07,13:59:42.145,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,Doc Type is 'T'
4196,3272,316,12/17/07,13:59:42.145,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,pViewer = native
4196,3272,316,12/17/07,13:59:42.145,ENTER,Util_updateSessionViewOpts,
4196,3272,316,12/17/07,13:59:42.145,RETURN,Util_updateSessionViewOpts,
4196,3272,316,12/17/07,13:59:42.145,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,Retrieve Data Compressed.
4196,3272,316,12/17/07,13:59:44.999,ENTER,JNIDataCallback,
4196,3272,316,12/17/07,13:59:46.181,RETURN,JNIDataCallback,RC=0
4196,3272,316,12/17/07,13:59:46.191,ENTER,JNIDataCallback,
4196,3272,316,12/17/07,13:59:46.191,RETURN,JNIDataCallback,RC=0
4196,3272,316,12/17/07,13:59:46.291,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,Document segment written to file [27629619] bytes
4196,3272,316,12/17/07,13:59:46.301,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,Document Compression Type is 'D'
4196,3272,316,12/17/07,13:59:46.301,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,DocType = T
4196,3272,316,12/17/07,13:59:46.301,INFO,Java_com_ibm_edms_od_ArsWWWInt
erface_apiRetrieve,AFP Viewer = 8
4196,3272,316,12/17/07,13:59:46.751,RETURN,Java_com_ibm_edms_od_ArsWWWI
nterface_apiRetrieve,1167736032 RC=0
256 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Table 13-2 shows the arswww.trace details for the same retrieve() call that is
given in Example 13-2. To obtain a similar table for your trace, import your file
into Microsoft Excel® as CSV.

Table 13-2 Details of the arswww.trace file for the retrieve() call in Example 13-2

PPID PID TID DATE TIME LEVEL FUNCTION OUTPUT

3272 4196 316 2/17/2007 3:59:42 ENTER Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

1167736032

3272 4196 316 2/17/2007 3:59:42 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

DocID =
v7126-19459-19460-194
61-ACF1-1FAAA-0-2762
9619-0-27629619-85-68
-0-1-0-^TEST TIFF

3272 4196 316 2/17/2007 3:59:42 ENTER apiP_OpenFolderBy
Name

3272 4196 316 2/17/2007 3:59:42 INFO apiP_OpenFolderBy
Name

Opening [test-LargeTiff]

3272 4196 316 2/17/2007 3:59:42 RETURN apiP_OpenFolderBy
Name

RC=0

3272 4196 316 2/17/2007 3:59:42 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

Document type is 'T'

3272 4196 316 2/17/2007 3:59:42 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

Viewer = native

3272 4196 316 2/17/2007 3:59:42 ENTER Util_updateSession
ViewOpts

3272 4196 316 2/17/2007 3:59:42 RETURN Util_updateSession
ViewOpts

3272 4196 316 2/17/2007 3:59:42 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

Retrieve data
compressed.

3272 4196 316 2/17/2007 3:59:45 ENTER JNIDataCallback

3272 4196 316 2/17/2007 3:59:46 RETURN JNIDataCallback RC=0

3272 4196 316 2/17/2007 3:59:46 ENTER JNIDataCallback

3272 4196 316 2/17/2007 3:59:46 RETURN JNIDataCallback RC=0

3272 4196 316 2/17/2007 3:59:46 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

Document segment
written to file [27629619]
bytes
 Chapter 13. Troubleshooting 257

13.1.5 Return codes and message IDs

Errors that are thrown by Content Manager OnDemand native components are
written as trace file text in the patterns CSV_RC=<num> and CSV_ID=<Num>. A detail
message is normally provided. Table 13-3 gives the CSV_RC (return code)
mappings in ODWEK. The error message is typically returned as MSGID=9,
which indicates a miscellaneous error. In certain instances, it provides additional
details for Level 3 support to provide more efficient problem determination.

Table 13-3 Return code mapping

3272 4196 316 2/17/2007 3:59:46 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

Document compression
type is 'D'

3272 4196 316 2/17/2007 3:59:46 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

DocType = T

3272 4196 316 2/17/2007 3:59:46 INFO Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

AFP Viewer = 8

3272 4196 316 2/17/2007 3:59:47 RETURN Java_com_ibm_edms_
od_ArsWWWInterface_
apiRetrieve

167736032 RC=0

PPID PID TID DATE TIME LEVEL FUNCTION OUTPUT

 CSV_RC ERROR

0 CSV_RC_OKAY

1 CSV_RC_OKAY_WITH_MESSAGE

2 CSV_RC_CANCEL

3 CSV_RC_PASSWORD_CHANGE

4 CSV_RC_DOC_UNAVAILABLE

5 CSV_RC_INVALID_SEARCH

6 CSV_RC_NO_PERMISSION

7 CSV_RC_TIMEOUT

8 CSV_RC_DATA_CONVERSION_ERROR

9 CSV_RC_MISC_ERROR

10 CSV_RC_EXISTS
258 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

13.2 Common problems and their solutions

In this section, we cover the following common problems and their solutions:

� Application is unresponsive or JVM out-of-memory error occurs.

� Application terminates with a ‘DLL could not be found’ message.

� Performance degrades with a large number of server connections; the
OnDemand server refuses network connections (Windows only).

� Document retrieval is long-running.

� Folder search does not produce a correct hitlist after upgrading ODWEK.

� Entire document is not retrieved.

13.2.1 Application is unresponsive or JVM out-of-memory error
occurs

In the event of an application becomes unresponsive, you can analyze the Java
dump. See 13.3, “Java dump (javacore)” on page 265.

When the JVM cannot allocate enough Java heap memory for the current
operation, the JVM throws an out-of-memory error and exits.

Common on 32-bit platforms, memory allocation requires tuning when document
sizes regularly exceed 100 MB. In most cases, the problem is caused by failure
to allocate sufficient native memory to retrieve large documents, especially when
several such documents are requested at once.

You might have to lower your maximum Java heap allocation to accommodate a
larger native heap. See Chapter 12, “Memory and performance” on page 223,
especially 12.6, “Startup parameters” on page 236, for more information about
native and Java heap allocation. As a rule-of-thumb, set the native heap size
based on the following equation:

2 x (average document size) x (number of concurrent users)

Applications that run on 32-bit Java platforms might continue to run out of
memory despite allocation and tuning of the maximum possible 32-bit heap.
Consider upgrading such 32-bit installations to 64-bit versions, which support a
much larger address space for both native and Java heaps. A better solution is
for them to modify their application to use the retrieve to file operation, which
completely removes this problem.

When dealing with large AFP resources, also consider implementing custom
AFP resource caching, by which you can avoid holding large AFP resources in
 Chapter 13. Troubleshooting 259

memory, which is the default behavior of ODWEK. See 9.3, “AFP resource
retrieval and custom caching” on page 185, for more information.

If the instability is traced to an operation other than document retrieval, see
13.1.3, “Analyzing the trace file” on page 254. If an application becomes
unresponsive, but there is no javacore or JVM exit, see the following sections in
this chapter:

� “Performance” on page 255

� 13.2.3, “Performance degrades with a large number of server connections;
the OnDemand server refuses network connections (Windows only)” on
page 262

� 13.2.4, “Document retrieval is long-running” on page 263

13.2.2 Application terminates with a ‘DLL could not be found’
message

Application terminates with the message “Dynamic Load Library
'ARS3WAPI32.DLL' could not be found” or JVM throws an UnsatisfiedLinkError.

The ODWEK Java APIs are not 100% Pure Java™. There are both native and
Java code. For the native code, the Java run time (JVM) must be told where to
find these native libraries, just as it must be told where to find the Java classes
that you want to execute. While Java classes are located by using the classpath
setting (command line argument or environment setting), the location of native
shared libraries is specified by the java.library.path virtual memory argument.
This solves the loading of libraries that are loaded by using the
System.loadLibrary Java method call. If any of these libraries have other libraries
that they need to load, such as ICU, then these other libraries can only be found
through the environment path variable.

Tip: Try to recreate the problem by using a stand-alone or command-line test
program. If the stand-alone test does not fail, verify that the failing application
logs off and terminates all ODServer objects. Improperly handled connections
are a frequent cause of resource problems. If documents have large AFP
resources embedded, check whether ODWEK fails to allocate native memory
for AFP resources. See 13.1.3, “Analyzing the trace file” on page 254.
260 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

To specify the java.library.path at the command line, use the -D parameter, as
in the following example (Windows style, with ODWEK installed in the default
directory):

java -cp ".;C:\Program Files\IBM\OnDemand Web Enablement
Kit\api\ODApi.jar" redbook.PingServer -Djava.library.path="C:\Program
Files\IBM\OnDemand Web Enablement Kit"

Users of Eclipse-based development environments (IDEs), including users of
IBM Rational Application Developer and Rational Software Architect, can specify
the -D argument in the Run window, as shown in Figure 13-1. To open the Run
window, select Run → Run.

Figure 13-1 Run window in IBM Rational Software Architect 7.0

Configuration of user libraries or shared libraries for various environments is
beyond the scope of this section. However a user-defined library is the preferred
way to reference the ODWEK executable files. See 2.3, “Setting up a Web
development environment by using Rational Application Developer” on page 43,
for an Eclipse-based example.
 Chapter 13. Troubleshooting 261

13.2.3 Performance degrades with a large number of server
connections; the OnDemand server refuses network connections
(Windows only)

During periods of high usage, in which server connections are repeatedly
opened and terminated, it is possible to exhaust the number of TCP/IP ports that
are available for connections. You can check this by typing the following
command at a command prompt:

netstat -an

Figure 13-2 shows how the result should look.

Figure 13-2 Sample netstat output

If the netstat reports usage of port numbers in the high 4000s, it is possible that
the Windows default of 5000 user ports is exhausted by heavy traffic. When that
happens, network connections to and from the affected machine are rejected.

To resolve this, update the registry values for TcpTimedWaitDelay and MaxerPort
on machines that are subject to high network traffic.

TcpTimedWaitDelay
TcpTimed WaitDelay determines the time that must elapse before TCP/IP can
release a closed connection and reuse its resources. This interval between
closure and release is known as the TIME_WAIT state or twice the maximum
segment lifetime (2MSL) state.

During this time, reopening the connection to the client and server costs less
than establishing a new connection. By reducing the value of this entry, TCP/IP
can release closed connections faster and provide more resources for new
connections. Adjust this parameter if the running application requires rapid
release, the creation of new connections, or an adjustment because of a low
throughput caused by multiple connections in the TIME_WAIT state.

TCP 12.29.39.143:1445 12.29.39.153:4796 ESTABLISHED
TCP 12.29.39.143:1445 12.29.39.153:4845 ESTABLISHED
TCP 12.29.39.143:1445 12.29.39.153:4930 ESTABLISHED
TCP 12.29.39.143:4246 192.168.250.40:1504 TIME_WAIT
TCP 12.29.39.143:4247 192.168.250.40:1504 TIME_WAIT
TCP 12.29.39.143:4248 192.168.250.40:1504 TIME_WAIT
262 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

To view or set TcpTimedWaitDelay:

1. Type the regedit command.

2. Access the registry subkey HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\ Services\TCPIP\Parameters, and create a new
REG_DWORD value named TcpTimedWaitDelay.

3. Set the value to decimal 30, which is hexadecimal 0x0000001e. This sets the
wait time to 30 seconds.

4. Stop and restart the system.

The default value is 0xF0, which sets the wait time to 240 seconds (4 minutes).
We recommend that you use a minimum value of 0x1E, which sets the wait time
to 30 seconds.

MaxUserPort
MaxUserPort determines the highest port number that TCP/IP can assign when
an application requests an available user port from the system.

To view or set MaxUserPort:

1. Type the regedit command.

2. Access the registry subkey HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\ Services\TCPIP\Parameters, and create a new
REG_DWORD value named MaxUserPort.

3. Set this value to at least decimal 32768.

4. Stop and restart the system.

The default value is 0x1388 (5000 decimal) for most Windows versions. We
recommend that you use a value from decimal 32768 to 65534. For more details,
see the following Microsoft document:

http://support.microsoft.com/kb/120642/

13.2.4 Document retrieval is long-running

You can improve ODWEK performance and the user experience when retrieving
large files by using one or more of the methods referenced in the following
sections, depending on your application and data.

Implementing large object support
Implement large object support, so that users retrieve documents in segments as
needed. See 9.4, “Segmented retrieval and large object support” on page 187.
 Chapter 13. Troubleshooting 263

http://support.microsoft.com/kb/120642/

Selecting an appropriate retrieval method
The ODWEK Java API getDocument() and getResource() methods perform
faster than the more commonly-used retrieve() method if a conversion is applied.
Select the fastest retrieval method that is compatible with the document’s format
and storage. See Chapter 9, “Document retrieval” on page 179.

Implementing custom AFP resource caching
Custom AFP resource caching can minimize the network transfer of large AFP
resource data and prevent ODWEK from caching large but infrequently-used
AFP resources in memory. See 9.3, “AFP resource retrieval and custom caching”
on page 185.

Implementing alternative retrieval for large documents
Check the size of documents to be retrieved before retrieving them. For
documents that exceed a threshold size, use a separate thread for retrieval (for
example, retrieve to file versus memory) and call back to the client when the
document is transferred. Make the retrieval operation cancellable and implement
a transfer time-out as desired.

Canceling long-running requests
For any environment, regardless of its speed and sophistication, a document size
and server load threshold exist beyond which clients must wait an impractically
long time for document retrieval. This is especially relevant when requests are
queued or when very large documents are transformed or otherwise processed
on the server before streaming to the client. This threshold is lower for Web
browsers because HTTP requests eventually time out.

ODWEK does not directly support query or data transfer timeouts. However an
application can implement its own timeout feature and use the
ODServer.cancel() method to end long-running server requests. Supported
methods that can be canceled are logon, search, and retrieve. The call must be
made in a separate thread. Providing the cancel functionality enables the
application to respond to the client in a timely manner. Users can also find a
Cancel button convenient. Providing Web clients with this feature helps to avoid
orphaned server requests.

Optimizing the network architecture
The ODWEK Java APIs perform a great deal of client-server network
communication. As such, increasing network speed and improving routing
between distant clients and servers can improve the performance of ODWEK.
264 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

13.2.5 Folder search does not produce a correct hitlist after
upgrading ODWEK

Because an existing ODFolder reference is now reused, open folders retain any
previously set ODCriteria search values. Applications must either close folders
immediately after use or set all of their criteria before each search, setting
unused criteria values to null.

13.2.6 Entire document is not retrieved

If the issue cannot be ascribed to network problems, resource allocation failures,
or other technical problems, check whether large object support has been
enabled for the document’s storage. Initial retrievals from large object-enabled
sources return only the first segment of requested documents.

For more information about document retrieval with large object support enabled,
see 9.4, “Segmented retrieval and large object support” on page 187.

13.3 Java dump (javacore)

When Java processes terminate or hang unexpectedly, the JVM creates a Java
dump file. The file contains diagnostic information that describes the state of the
operating system, the JVM, and the Java application at the time of the failure. For
some JVM implementations, a Java dump is known as a javacore.

The contents of the dump file vary by operating system and JVM implementation,
but generally provide information about threads, memory, the native stack, and
locks. Some JVMs provide environment variables and runtime switches with
which you can customize the Java dump.

Tip: Sometimes it is helpful to display a stack trace at various points in
program execution. You can output the stack trace for the current thread by
calling the Thread.dumpStack() method.
 Chapter 13. Troubleshooting 265

13.3.1 IBM Thread and Monitor Dump Analyzer

The IBM Thread and Monitor Dump Analyzer for Java Technology is a full
function analyzer for JVM dumps. It is capable of analyzing one or more dump
files and provides thread, heap and monitor diagnostic information.

For more information, see IBM Thread and Monitor Dump Analyzer in IBM
alphaWorks® at the following address:

http://www.alphaworks.ibm.com/tech/jca

13.3.2 HeapAnalyzer

HeapAnalyzer is a graphical tool for discovering possible Java heap leaks. It
analyzes a Java heap dump and produces a heap map and a list of heap leak
suspect objects.

Find more information about HeapAnalyzer, see the following alphaWorks page:

http://www.alphaworks.ibm.com/tech/heapanalyzer

13.3.3 HeapRoots

HeapRoots is a another tool for debugging memory leaks in Java applications.
This tool provides commands to analyze heap dumps. Use HeapRoots to
investigate the heap object-by-object and to capture summary information and
statistics about the heap and the objects that are stored.

For more information, see the following alphaWorks page:

http://www.alphaworks.ibm.com/tech/heaproots

13.4 Other Java diagnostic tools

All Java diagnostic tools are sensitive to the JVM level, platform, and operating
system. Generated output and support for given features may vary. These
diagnostic utilities use the JVM tools interface to obtain information about running
Java processes and the status of the JVM.
266 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.alphaworks.ibm.com/tech/jca
http://www.alphaworks.ibm.com/tech/heapanalyzer
http://www.alphaworks.ibm.com/tech/heaproots

13.4.1 The jmap command

The jmap command is a command-line utility that produces a memory map for a
running JVM or Java application. We describe frequently used parameters in the
sections that follow. The jmap command requires the following command-line
usage:

jmap parameter pid

In this command, note the following explanation:

� pid indicates the process to be mapped.
� parameter is optional.

If no parameters are specified, then jmap prints a list of the shared objects that
are loaded.

For more information, see the Sun Web page at the following address:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jmap.html

-histo parameter
The –histo parameter produces a histogram of all the classes in the heap. For
each class in the heap, this parameter shows the class names, instance totals,
and the total number of bytes that are consumed by those objects. Example 13-3
shows a sample of the output of jmap -histo.

Example 13-3 Sample snippet of jmap -histo output

C:\>jmap -histo 4024

num #instances #bytes class name
--
 1: 4016 663976 [Ljava.lang.Object;
 2: 223 209632 [I
 3: 1232 206976 com.ibm.edms.od.ODFolder
 4: 3078 184408 [C
 5: 423 86320 <constMethodKlass>
 6: 3099 74376 java.lang.String
 7: 1864 71304 <symbolKlass>
 8: 1247 70920 [Ljava.util.Hashtable$Entry;
 9: 2464 59136 com.ibm.edms.od.MyArrayList
 10: 34 54528 [B
 11: 1244 49760 java.util.Hashtable
 12: 1334 42688 java.util.LinkedHashMap$Entry
 13: 423 34344 <methodKlass>
 14: 1241 29784 java.util.ArrayList
 Chapter 13. Troubleshooting 267

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jmap.html

 15: 16 24336 <constantPoolKlass>
 16: 15 15712 <constantPoolCacheKlass>
 17: 36 15328 [Ljava.util.HashMap$Entry;
 18: 38 12160 <objArrayKlassKlass>
 19: 16 8016 <instanceKlassKlass>

-heap parameter
The –heap parameter outputs the name and details of the garbage collector, the
heap configuration, and the heap usage summary.

-permstat parameter
The –permstat parameter lists statistics for the objects in the permanent
generation.

13.4.2 The jstat command

The jstat command provides performance and resource consumption
information for an executing Java process. This utility is used to diagnose
performance, heap sizing, and garbage collection issues. To see the options for
your platform, enter jstat -help at the command line. Example 13-4 shows
usage of the command in a Windows environment.

Example 13-4 jstat -help in a Windows environment

Usage: jstat -help|-options
 jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]]

Definitions:
<option> An option reported by the -options option
<vmid> Virtual Machine Identifier. A vmid takes the following form:
 <lvmid>[@<hostname>[:<port>]]
 Where <lvmid> is the local vm identifier for the target
 Java virtual machine, typically a process id;
<hostname> is the name of the host running the target Java virtual
machine; and
<port> is the port number for the rmiregistry on the target host. See
the jvmstat documentation for a more complete description of the
Virtual Machine Identifier.
<lines> Number of samples between header lines.
<interval> Sampling interval. The following forms are allowed:
 <n>["ms"|"s"]
268 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

 Where <n> is an integer and the suffix specifies the
units as milliseconds("ms") or seconds("s"). The default units are
"ms".
<count> Number of samples to take before terminating.
-J<flag> Pass <flag> directly to the runtime system.

For more information about the jstat command, see the Sun Web page at the
following address:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html

13.4.3 Heap Profiler (HPROF)

HPROF is a simple profiler agent that ships with JDK™ 5.0. The output of
HPROF can be directed either to a file or a socket so that diagnostics can be
performed locally or remotely.

The output of HPROF includes CPU usage, heap dumps, monitors, and threads.
For a listing of supported HPROF parameters on your system, enter the following
command:

java -agentlib:hprof=help

Example 13-5 shows the output of the help command in a Windows XP
environment.

Example 13-5 Windows XP example of java -agentlib:hprof=help output

HPROF: Heap and CPU Profiling Agent (JVMTI Demonstration Code)

hprof usage: java -agentlib:hprof=[help]|[<option>=<value>, ...]

Option Name and Value Description Default
--------------------- ----------- -------
heap=dump|sites|all heap profiling all
cpu=samples|times|old CPU usage off
monitor=y|n monitor contention n
format=a|b text(txt) or binary output a
file=<file> write data to file
java.hprof[{.txt}]
net=<host>:<port> send data over a socket off
depth=<size> stack trace depth 4
interval=<ms> sample interval in ms 10
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
 Chapter 13. Troubleshooting 269

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html

doe=y|n dump on exit? y
msa=y|n Solaris micro state accounting n
force=y|n force output to <file> y
verbose=y|n print messages about dumps y

Obsolete Options

gc_okay=y|n

Examples

 - Get sample cpu information every 20 millisec, with a stack depth of
3:
 java -agentlib:hprof=cpu=samples,interval=20,depth=3 classname
 - Get heap usage information based on the allocation sites:
 java -agentlib:hprof=heap=sites classname

Notes

 - The option format=b cannot be used with monitor=y.
 - The option format=b cannot be used with cpu=old|times.
 - Use of the -Xrunhprof interface can still be used, e.g.
 java -Xrunhprof:[help]|[<option>=<value>, ...]
 will behave exactly the same as:
 java -agentlib:hprof=[help]|[<option>=<value>, ...]

Warnings

 - This is demonstration code for the JVMTI interface and use of BCI,
 it is not an official product or formal part of the JDK.
 - The -Xrunhprof interface will be removed in a future release.
 - The option format=b is considered experimental, this format may
change in a future release.

For more information about HPROF, see the Sun Developer Network Web page
at the following address:

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
270 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

13.4.4 Java Heap Analysis Tool (jhat)

Starting with Java SE 6, Heap Analysis Tool (hat) has been replaced with jhat,
which is included with the standard Sun distribution. jhat allows you to browse
the objects in a heap snapshot generated from HPROF, and can identify all
objects referenced by a root object.

For more information, see the Heap Analysis Tool 1.1 (HAT) page on java.net at
the following address:

https://hat.dev.java.net/

Alternatively, see the jhat page at the following address on Sun’s Web site:

http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html

13.4.5 Diagnostic Tool for Java Garbage Collector

The Diagnostic Tool for Java Garbage Collector is used to optimize Garbage
Collector parameters when using the IBM JVM. It reads and analyzes the output
of verbose garbage collection and produces text and graphical analysis output.
The tool includes other advanced features such as the ability to analyze two or
more files simultaneously.

Version 1.3 comes with built-in parsers for IBM JVM versions 1.5.0, 1.4.2, and
1.2.2. Developers can implement custom parsers for unsupported JVM levels.

For more information, see Diagnostic Tool for Java Garbage Collector page in
alphaWorks at the following address:

http://www.alphaworks.ibm.com/tech/gcdiag

13.5 Testing tools

Several testing tools, as explained in the following sections, can help your Java
development.

13.5.1 JUNIT

JUnit is a free unit-testing framework that supports the development of
automated tests for the Java programming language. JUnit was created by Kent
Beck and Erich Gamma and has become an important standard (as many would
say) tool of test-driven development.
 Chapter 13. Troubleshooting 271

http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html
https://hat.dev.java.net/
http://www.alphaworks.ibm.com/tech/gcdiag

JUnit has been ported to many other languages, including PHP (PHPUnit), C#
(NUnit), Python (PyUnit), Fortran (fUnit), Perl (Test:Class and Test:Unit), C++
(CPPUnit), and JavaScript (JSUnit).

For more information about JUNIT, see the Web page at the following address:

http://www.junit.org/home

13.5.2 ConTest

ConcurrentTesting - Advanced Testing for Multi-Threaded Applications (ConTest)
improves the quality of testing by exposing potential problems earlier in the
testing process. ConTest controls the scheduling and execution of program
threads over multiple executions. Each time, it adds different sleep and yield
instructions to exercise program thread synchronization. By using a preferences
file, you can specify which of your classes are tested.

For more information, see the ConTest page at the following address:

http://www.alphaworks.ibm.com/tech/contest

13.5.3 Visual Performance Analyzer

Visual Performance Analyzer (VPA) is an Eclipse-based performance
visualization toolkit. It includes the following major components:

� Profile Analyzer

Profile Analyzer provides graphical and text-based views that allow for the
analysis of performance problems to a particular process, thread, module,
symbol, offset, instruction, or source line.

� Code Analyzer

Code Analyzer examines executable files and displays detailed information
about functions, basic blocks, and assembly instructions.

� Pipeline Analyzer

Pipeline Analyzer displays the pipeline execution of instruction traces
generated by an IBM POWER™ series processor.

� Counter Analyzer

Counter Analyzer accepts hardware performance data from collection tools
such as CPC or HPMCOUNT. The data is provided as XML and is parsed by
this plug-in to allow visualizing and analysis.
272 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.junit.org/home
http://www.alphaworks.ibm.com/tech/contest

� Trace Analyzer

Trace Analyzer visualizes Cell Broadband Engine™ traces that contain
information such as direct memory access (DMA) communication, locking
and unlocking activities, and mailbox messages.

� Control Flow Analyzer

Control Flow Analyzer is a tool that analyzes call trace data that is collected
by such tools as Jprof, which is part of Performance Inspector. The call trace
data contains information about each method call, such as how much time is
spent in every invocation and who calls whom.

For more information, see Visual Performance Analyzer in alphaWorks at the
following address:

http://www.alphaworks.ibm.com/tech/vpa

13.6 Getting support

You can seek help from the ODWEK user community or from the IBM Software
Support team.

13.6.1 OnDemand User Group

The IBM DB2 Content Manager OnDemand User Group draws its membership
from licensed OnDemand users. Their Web site features active forums that address
many Content Manager OnDemand topics including the ODWEK Java APIs.

Visit the ODUG Web site at the following address:

http://odusergroup.org/

13.6.2 Opening a Problem Management Record

If you are unable to determine the root cause of a problem with the ODWEK Java
APIs, you can open a Problem Management Record (PMR) with the IBM
Software Support team.

To speed problem determination and avoid unnecessary delays, gather the
arswww.trace file and other such diagnostic data as described in the MustGather
ODWEK Java API documentation for your problem scenario. You can find the
MustGather information at the following address:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21145599#generalMu
stGather
 Chapter 13. Troubleshooting 273

http://www.alphaworks.ibm.com/tech/vpa
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21145599#generalMustGather
http://odusergroup.org/

274 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 277. Note that some of the documents referenced here may be available in
softcopy only.

� Content Manager OnDemand Guide, SG24-6915

� Implementing Content Manager OnDemand Solutions with Case Studies,
SG24-7511

Other publications

These publications are also relevant as further information sources:

� DB2 Content Manager OnDemand for Multiplatforms Ver 8.4: Installation and
Configuration Guide, SC18-9232

� DB2 Content Manager OnDemand: User's Guide, SC27-0836

� IBM Content Manager OnDemand for i5/OS Common Server ODWEK
Installation and Configuration Guide, SC27-1163

� IBM DB2 Content Manager OnDemand for Multiplatforms Ver 8.4: Web
Enablement Kit Implementation Guide, SC18-9231

� IBM Content Manager OnDemand: Messages and Codes, SC27-1379
© Copyright IBM Corp. 2008. All rights reserved. 275

Online resources

These Web sites are also relevant as further information sources:

� IBM Content Manager OnDemand product site

http://www.ibm.com/software/data/ondemand

Go to the specific product page by selecting the product (either OnDemand
for Multiplatforms, for i5/OS, or for z/OS and OS/390) and click Go. From the
specific product page, you can access the following information:

– Click the Information Center link to access the online information center.

– Click the Product documentation link to obtain all manuals (in different
languages) for the specific product.

– Click the Product support link to get to Redbooks and Redpapers
publications, technotes, and white papers.

– Click other links such as Demos, Developer resources, and Web casts
to obtain other information.

� Content Manager Ondemand V8.4 Information Center

http://publib.boulder.ibm.com/infocenter/cmod/v8r4m0/index.jsp

� IBM Content Manager OnDemand User Group (ODUG)

http://odusergroup.org

� IBM alphaWorks

http://www.alphaworks.ibm.com/

The Web site contains many tools mentioned in Chapter 13,
“Troubleshooting” on page 251:

– IBM Thread and Monitor Dump Analyzer

http://www.alphaworks.ibm.com/tech/jca

– HeapAnalyzer

http://www.alphaworks.ibm.com/tech/heapanalyzer

– HeapRoots

http://www.alphaworks.ibm.com/tech/heaproots

– Diagnostic Tool for Java Garbage Collector

http://www.alphaworks.ibm.com/tech/gcdiag
276 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

http://www.alphaworks.ibm.com/
http://www.alphaworks.ibm.com/tech/jca
http://odusergroup.org
http://www.alphaworks.ibm.com/tech/heapanalyzer
http://www.alphaworks.ibm.com/tech/heaproots
http://www.ibm.com/software/data/ondemand
http://publib.boulder.ibm.com/infocenter/cmod/v8r4m0/index.jsp
http://www.alphaworks.ibm.com/tech/gcdiag

– ConcurrentTesting - Advanced Testing for Multi-Threaded Applications
(ConTest)

http://www.alphaworks.ibm.com/tech/contest

– Visual Performance Analyzer (VPA)

http://www.alphaworks.ibm.com/tech/vpa

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 277

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.alphaworks.ibm.com/tech/contest
http://www.alphaworks.ibm.com/tech/vpa

278 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Index

Numerics
2MSL state 262

A
address space 225
AFP 145–146, 198
AFP convert to HTML 210
AFP data document 134
AFP data stream 92, 103, 136, 205
AFP document 79, 82, 104, 109, 136–137, 149,
157, 180, 182, 198–199

AFP2WEB transformation 195–196
rendered HTML version 204
viewing applet 204

AFP plug-in 198
custom code page configuration 157

AFP resource 109, 136–137, 179–180, 184, 246,
259

caching 264
data 114, 184, 187, 264
hit 36
ID 187

AFP spool, transform 180
AFP viewer 92, 151–152, 200, 205, 256, 258

getAFPViewerType() 26
location configuration 157
program 93

AFP Web Viewer plug-in 14–15
AFP2HTML 207

applet 198, 200, 204–205
afp2html.ini file 17
AFP2PDF 192

configuring 208
transformation utility 104

afp2pdf.ini file 17
AFP2WEB 194

integrating in ODWEK 209
licensing information 205
transformation 182, 195, 200

AFP2WEB Transform 15, 205
configuration 205
viewer conversions 210

AFP2XML 207
© Copyright IBM Corp. 2008. All rights reserved.
AllObjects option 208, 212
allocating memory 228
allsegs 183, 186
AND condition, operator for multiple ODCriteria
search objects 164
APIs

conversions 149
core classes 22

functional relationship 23
Javadoc 22
method 167, 186

applet callback
class 202
code 202–203
servlet 202

applets 14–15, 17, 150, 152, 181, 183, 197–198,
200

getAppletDirectory() 26
Java 205
Java AFP2HTML Viewer 14–15
Java Line Data Viewer 14–15

application 8
application group 9
description 32
disconnecting from server 90
disconnecting from the OnDemand server 90
globalization by using ICU 158
Java 226
multi-threaded 231, 250
name 32

referenced document 37
ODWEK 250
server 250

performance 250
termination, troubleshooting 260

application group 9, 166, 206, 211, 217, 219
application 9
application names 31
common query screen 9
deletes data 221
description 31
Field definition tab 219
field length and Unicode 153
fields 31
 279

folder 9
name, referenced document 37
names 31, 33
ODApplication 31
ODApplicationGroup 31
ODFolder 30
query fields 165

architecture
network 264
ODWEK Java APIs 12
system 4

archive storage 6
ARS3WAPI32.DLL not found 260
arsload process 147
arswww.ini file 132

ODConfig 24
arswww.trace file 252–254, 257

content of getTraceLevel() 26
directory 26

arsxenos.ini file 17, 211
ascending, descending sort search type 33

B
bean classes 55
BETWEEN 34
billing report 7
BMP 199
bottlenecks 254
browser

conversions 150
environment 204
plug-in 14
viewer 189

buffer size 248
byte array 169, 171, 183–184, 203

C
cabinet 9, 64

obtaining 63
cache 250

volume 5
callback 172

calls 63
implement custom callback 172
object 172

cancel() method 27
cancellation of long running requests 264
changePassword(String newPassword) 27

CLDR (Common Locale Data Repository) 159
client

application 17
client session 133
close() method 30
Code Analyzer 272
code page 144–146, 150, 152

character conversion 151
conversion 149
information 155
Unicode character model 144
values 145

code page conversion 151
code page, integrating custom 156
code snippet 54, 95–96, 122, 163, 165
com.ibm.edms.od Java package 14, 22
com.ibm.istowek.utils package 56
com.ibm.itsowek.beans package 55
com.ibm.itsowek.servlets package 56
command line parameters 236
Common Locale Data Repository (CLDR) 159
common query screen 9
compaction phase, garbage collection 232
components, ODWEK Java APIs 13
configuration

AFP plug-in custom code page 157
files for transforms 17
language in ODWEK 154
location 156
ODWEK 157
ODWEK to use Xenos transforms 211
stand-alone AFP viewer 157

connection
handling 108
initialization 132
log off 135
multiple 112
refused, troubleshooting 262
terminate 135

connection pooling 58, 94, 103, 108, 111–112,
116–118

code functions 120
code snippet 121
mechanism, using vectors 118
OnDemand 103
optimum usage 128
sample code 118

connect-search-retrieve workflow 23
consecutive time stamps 255
280 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

considerations for SQL search 166
console application, sample 39
constructor method 122
constructor ODServer method 113
Content Manager OnDemand

administrator 72, 99, 162–163, 192, 217, 221
application 8
application group 9, 162, 165

fields 32
cabinet 9, 64
client

application 17
session 133

connection 58–60, 93
initial set 99

data 6, 146
indexing and loading 10
model 7

database Unicode encoding 153
document 55, 77, 79, 99, 161, 169, 171
folder 9, 29, 55, 72, 93–94, 162–163

field 55, 70–72, 169
field value 93
information 66
search 70, 74, 99
search field 70

instance 146, 148
internal properties 36
Internet Client 4
Library Server 4
logical server 6
multicultural support library 157
Object Server 4
origin of ODWEK Java APIs 4
reports and documents 6
server 59, 70, 108–109, 112–114, 144, 168,
170, 181, 202, 227, 239, 255, 262

application disconnects 90
code page 154
connection 95
flow 246
index data 35
instance 153
memory 112
name 43
port 122
potential performance issues 170
side 112

server environment 4

session 130, 136, 156
statement 92
system 144–145
system architecture 4
system overview 4
Windows client code page configuration 156

ConTest 272
contrast images 199
Control Flow Analyzer 273
conversion

AFP to PDF 103
browser 150
code page in ODWEK 149
document data 150

converted data, retrieving 193
Counter Analyzer 272
creator of note 37
criteria search 108, 162–165
criterion

current operator 33
current values 33
display 34
name 33, 35
operator 34
query 34
required search value 34
search order 34
search value 34
search values 34
type 34
valid operators 34
valid search value 33

custom caching 186
custom callback 172
custom code pages, 156
custom font mapping, handling 149
customization

AFP resource caching 264
object generations 245
of heap size 244

D
data 6

conversion 93, 146–149, 181, 183, 191
CMOD deals 147
ICU engine 157

EBCDIC 180
index 10, 35, 147, 150, 221
 Index 281

indexing 10
loading 10
model 7
model classes 22
OnDemand 146
read only 129
resource 114, 137, 184–185, 218

internal ID 186
retrieval of converted data 193
transfer 199
type 25–27, 29, 92, 162, 165, 180, 193, 217,
221

using the information 193
database

code page, Unicode 152
log 250
manager 5
Unicode encoding 153
values

updating 216
date

search 170
date format 166, 170, 217, 220

database values 217
date•time note created 37
DBCS (Double Byte Character Set) 144
default value 207, 213, 220, 230
deleteDocs() method 222
diagnostic information 38
diagnostic tools

HPROF 269
Java 266
jhat 271
jmap command 267
jstat command 268

disconnecting the application from the OnDemand
server 90
disk

input 250
performance 250
processing 250
speed 250

display field value 36
display order 35, 66, 164, 167
distribution files 15
DLL not found 260
DLLs, rebasing 228
document 6

content

hit 36
content retrieval 36
data 112, 146–147, 180, 183, 246

conversion 147, 150
data retrieval

classes 35
data retrieval classes 23
deletion 222
ID 35, 103
indexing method 7
indexing process 6
large object support 263
Metacode 211–212
not retrieved, troubleshooting 265
notes 36
retrieval 36, 109, 142, 179–180, 260, 264

impractically long time 264
troubleshooting 263

retrieval, long-running 263
storing 219
storing and updating 109
type 32, 150, 191–192, 200

different actions 193
hit 36

updating database values 216
document data conversion 149
document ID 36
Document Update permission 218
doGet 57, 94
doPost 57, 94
Double Byte Character Set (DBCS) 144

E
EBCDIC 145, 149

data 180
big flow 180

error
code 38, 252
handling 38

class 23
ODException 38

ID code 38
message 38, 260
reporting 252

European code page 153
Extended Binary Coded Decimal Interchange Code
(EBCDIC) 145, 149
282 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

F
Faces components 54
FINWAIT2TIME, network performance 249
first segment 183, 188, 190, 208, 212, 265

remaining segments 183
folder 9

application group 9
common query screen 9
display a list of 70
obtaining 63
open 112
query 112

folder field 66, 70, 92, 162, 166
default format 163
default sort orders 167
OnDemand administrator 164

folder name
hit 36

folderinfo.JSP 57
folderinfo.jsp 68
font map file 208
frames 230
frequency

garbage collection 245
functional relationship of core API classes 23

G
garbage collection 38, 228, 231

frequency 245
generational collection 234
log outputs 245
memory availability 234
memory usage 233
phases 231
process 245
three-step process 231
throughput 233
too much time 245
tuning the process 233
wait time 233

Garbage Collector 231, 268, 271
single-threaded (serial) 231

-verbose 241
generational garbage collection 234

major collections 235
minor collections 235
permanent generation space 234
tenured generation space 234

getAFPViewerType() 26
getAppletDirectory() 26
getApplGrpNames() 30
getApplication(String name) 31
getApplicationGroupName() 37
getApplicationGroupNames() 33
getApplicationName() 37
getApplicationNames() 31
getApplNames(String applGroup) 30
getAscending() 33
getCabinets() 27
getConnection() 62
getCriteria() 30, 34
getCriteria(String name) 30
getDateTime() 37
getDefaultFmt 171
getDescription() 29–32
getDisplayValue(String criteriaName) 36
getDocId() 36
getDocType() 36
getDocument() 36, 188
getDocumentType() 32
getErrorId() 38, 252
getErrorMsg() 38
getFields() 31
getFixedValues() 33
getFolderDescription(String fldname) 28
getFolderName() 36
getFolderNames() 29
getFolders method 72
getFolders() 28
getHits() 30
getLanguageForMessages() 26
getLength() 37
getLineViewerType() 26
getLoadName() 37
getMaxNumberOfHitsToDisplay() 26
getMetaViewerType() 26
getMimeType() 36
getName() 29, 31–35
getNamedQuery() 30
getNamedQueryNames() 30
getNotes() 36
getNumCabinets() 27
getNumCriteria() 34
getNumFolders() 28–29
getNumSegments() 36
getOperator() 33, 35
getPageNum() 37
 Index 283

getPrinterNames() 36
getProperties() 36
getQueryOrder() 169
getResourceID() 187
getResources() 186
getResources(String fileName) 36
getSearchValues() 33, 35
getServerPrinters() 28
getStoreDocFields() 219
getTemporaryWorkingDirectory() 26
getText() 37
getTraceDirectory()

arswww.trace file 26
getTraceLevel()

arswww.trace file 26
getType() 34
getUserId() 37
getValidOperators() 34
getViewMimeType() 192
GIF 199
global summary 239
globalization 144

applications by using ICU 158

H
hardware

manual 250
platform 228

hash table 217
hasPermToDeleteDoc 222
heap 266

allocation strategy 234
configuration 268
dump 266

HeapRoots 266
leak 266

suspect objects 266
map 266
size 226–227, 244–245

garbage collection 245
swap 245

Heap Analysis Tool (hat) 271
-heap parameter 268
Heap Profiler (HPROF) 269
HeapAnalyzer 266
HeapRoots 266

heap dump 266
help 236

-histo parameter 267
hit

AFP resources 36
document content 36
document type 36
folder name 36
MIME type 36
number of segments 36
OnDemand internal properties 36
server printers 36

hitL results for maximum number 26
hitlist 74

allocation and release of resources and ses-
sions 137
troubleshooting 265

hitproperties.JSP 57
HPROF 269

output 269
HTML

code 201, 208, 210
convert from AFP 210
output 208, 210

HTTP
request 56, 264
session 26

HttpServletRequest request 202
HttpServletResponse response 202
HttpSession (session) object 58
HttpSession session 100
HttpSessionListener 89

I
I/O buffering 250
IBM JVM 244, 271
IBM Thread and Monitor Dump Analyzer for Java
Technology 266
ICONV

character set conversion engine 157
library 151

ICU (International Components for Unicode) 151
code 159
conversion engine 154
conversion library 151
globalizing applications 158
library 151, 157
support 16

ICU conversion library
code page conversion 151
284 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

multicultural support 151
services 151
text operations 151

image plug-in 198–199
Image Web Viewer plug-in 14–15
ImageMapFile option 208
implementation

timeout 141
inactivity timeout 138
incremented 137
index data 10, 147, 150, 221

OnDemand server 35
indexer 10
indexing

data 10
method

report 7
method, document 7
process 6
program 10
reports 10

INI file 206
initial stack size 230
initialization

connection 132
initialize ODServer method 114
initialize(String applicationName) 28
instance 146, 148
integrating custom code pages 156
International Components for Unicode (ICU) 151

application globaliztion 158
code 159
conversion engine 154
conversion library 151, 157
support 16

Internet user 94
isDisplayable() 34
isPublic() 37
isQueryable() 34
isRequired() 34
isServerTimedOut() 28

J
Java AFP2HTML Viewer

applet 14–15
toolbar 15

Java and native executable 14
Java API 16

conversions 149
Java applet 205
Java application 226
Java classes

packages 54
Java command

-help 236
-verbose 241
-X 238
-Xprof 238
-XX:+PrintGCDetails 241
-XX:+PrintGCTimeStamps 242

Java diagnostic tools 266
Java dump 132, 265

file 265
Java heap 226, 246, 259

contiguous free memory 231
default size 230
dump 266
leaks 266
used memory 231

Java Heap Analysis Tool (jhat) 271
Java Line Data Viewer applet 14–15
Java Native Interface (JNI) 226, 255
Java stack 226
Java virtual machine (JVM) 129, 201, 225–226,
259–260

dump 266
implementation 225, 230, 265
process 226, 228

java.io.tmpd ir 134
java.lang.String 267

filename 183
viewer 183

Java_com_ibm_edms_od_ 255
javacore 265
jhat 271
jmap command 267
JNI (Java Native Interface) 226, 255
Jprof 273
JSP 54, 56

level 54
jstat command 268
JSTL taglib 65, 68
JUnit 271
JVM (Java virtual machine) 129, 201, 225–226,
259–260

dump 266
implementation 225, 230, 265
 Index 285

process 226, 228

K
Keepalive_interval, network performance 249
keepServerAlive

ODServer 139
keepServerAlive() 28

L
language

configuration 154
parameter 135
supported 154

large file, avoiding memory issues 190
large object 14

handling 179
retrieval 181, 189
support 183, 187
versus small object 181

large object support 263
Library Server 4, 146–147

set of managers 5
LicenseFile option 212
lifetime 246
line data 84, 145–146, 149–150, 180–181, 198,
200

applet 84, 198, 203
applet callback 56
documents 84
Java applet, ODWEK 157

listfolders.JSP 57
load

expected load 245
generator program 245
ID 37

loading of data 10
locale 16

information 151
location configuration 156
logical server 6
logoff ODServer method 114
logoff() method 28
logon ODServer method 114
logon() method 28
logon.JSP 57
long-running request cancellation 264

M
major collections 235
mark phase, garbage collection 231
Max user port (32768) parameter 248
MaxConnect Backlog, network performance 249
maxHits 133, 167–168, 170, 253
maximum number 122, 170, 249
maximum transmission unit (MTU) 249
MaxUserPort 263
memory 109, 234, 250

allocation 226
allocation commands 242
availability 234

trade off 235
issues, avoiding, large files 190
leak

troubleshooting 266
module 250
physical 233, 245

performance 250
usage 233

monitor 245
ODWEK Java APIs 246
trade off 235

memory allocation 228
Metacode document 211–212
method, synchronized 129
middle-tier component 107
MIME

document type 104
type 36

minor collections 235
monitor 266
MTU_size, network performance 249
multicultural support

globalization 144
ICU conversion library 151
library in Content Manager OnDemand 157

Multiple Byte Character Set (MBCS) 144
multiple processors 231
multiple tab functionality 141
multi-threaded application 231, 250

N
name criterion 33, 35
named query

criteria 34
name 34
286 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

number of criteria 34
ODNamedQuery objects 34
ODNamedQueryCriteria 35

National Language Support 144
native format 149–150, 181, 183, 188

standard retrieval 181
native heap 226
native libraries 228
native memory 180–181, 188, 226, 228, 259–260

increasing consumption over time 185
large amounts 228

native retrieval 195
native shared libraries 16
native sockets interface 16
native stack 226
network adapter, network performance 249
network architecture optimization 264
network connection refused, troubleshooting 262
network performance 247

FINWAIT2TIME 249
Keepalive_interval 249
Max user port (32768) parameter 248
MaxConnect Backlog 249
MTU_size 249
network adapters 249
nodelayack option 248
sockets 247
TCP/IP buffer sizes 248
TcpTimedWaitDelay 249

NewRatio parameter 246
nodelayack option, network performance 248
NOT BETWEEN 34
note

creator 37
date/time created 37
get text 37
page number 37
public 37–38
set text 38

O
object

creation 231–232
generations, customizing 245
large 14
state 128
support 181, 201, 212, 265

document retrieval 265

thread safe 128
Object Server 4–5, 146
OD_SORT_LOCATION_MIDTIER 168
OD_SORT_LOCATION_NONE 168
OD_SORT_LOCATION_SERVER 168
ODApi.jar file 39
ODApplication

class 28
ODApplicationGroup

class 28
methods 31–32

ODApplicationGroupField
class 28

ODAuthenticate 98
ODCabinet 65

class 28–29
searches 29

ODCallback 172
ODConfig 62–63, 113, 115, 210, 213

class 132–133, 155, 183, 209, 213
constructors 24

methods 25–26
object 26, 60–61, 133, 155, 167, 170, 209, 213,
253

property 103
parameters 133
prior to 8.4 24

ODConfig()
all parameters 25
all parameters except advanced properties 25
no parameters 25

ODConnectionPool 95, 99
ODConstant.APP ET 134
ODConstant.APPLET 203, 210
ODConstant.NATIVE 134, 189
ODConstant.OPBetween operator 162
ODConstant.OPNotBetween operator 162
ODConstant.XENOS 211
ODCriteria 32, 116, 163, 169

object 29, 33, 70, 73–74, 98, 162–164
appropriate data 70
sort order 167
valid operators 163

search objects 164
ODDisplayDocument 56
ODException 38, 138, 221, 252

class 38, 252
methods 38

ODException class 23
 Index 287

ODFolder 32, 65, 116, 162, 172
class 28, 216, 219

application groups 30
methods 30
object 63, 94, 162–163

ODHit object 171
search 167
several ways 169

ODFolder.search 33, 35, 140, 162, 186
ODFolder.search() method 164
ODFolder.setOrSearchCriteria 33, 164
ODFolderBean 65, 68
ODFolderInfo 56, 68

servlet, processRequest method 67
ODHit 30, 77, 80, 103, 171, 180–181, 191, 193,
216–217

class 35, 182, 216
API function 188

instance 30, 182, 216
methods 36
object 30, 80, 103, 169, 171, 182–184, 187, 222

OnDemand document 80
selected relative location 103

odHit.getDocId 217–218
ODHit.getDocument 140, 186
ODHit.getProperties 37, 191
ODHitProperties 191

class 37
methods 37

ODInit 56
ODListener 56
ODListFolders 56, 64–65

servlet 57, 63
ODLogon 56, 64
ODNamedQuery 30, 32

class 34
ODNamedQueryCriteria 32

class 35
ODNote

methods 37
ODOpenHit 56
ODPassthru 56
ODPool 121
ODSearch 56
ODSearchEntry 56

servlet 70, 72
ODSearchRetrieve 99
ODServer 59, 63, 96, 113–115, 117, 185, 210, 214

class methods 113

connection 27, 94, 253
instance 94, 130, 137
keepServerAlive() 139
methods 27, 114
object 58, 60, 62, 94, 114, 117, 170, 185, 203,
209, 260
object reference 58
server connection Java class 26
session 130, 183, 186, 202

ODServer object
level 118

ODServer.getCabinets() method 29
ODServer.initialize

applicationName parameter 203
odServer.initialize 114, 202–203
ODServer.logoff 63, 89, 135
ODServer.logoff() method 27
ODServer.logon 27, 114
ODServer.open folder 29, 131
ODServer.terminate() method 27, 63, 89, 114, 135
ODServerConnection 56, 62, 65, 72
ODUG (OnDemand User Group) 273
ODUtils 56
ODWEK (OnDemand Web Enablement Kit)
143–144, 197–198, 223–224

application 250
configuring to use Xenos transforms 211
default 170
installation 198, 205
Java and native executable 16
Java applets 201
language

configuring 155
line data Java applet 157
location configuration 157
plug-ins 198
session 133, 135, 203
user interface 18
UTF-8 144

ODWEK Java APIs 1, 109, 146, 150, 168, 181,
202, 216, 254

architecture 12
binary distribution files 15
code page conversion 149
components 13
deletion of documents 222
dianostic information 38
distribution files 15
effective use 3
288 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

function 149
function overview 11
implementation 108
implementing synchronization 130
Java and native executables 14
Java component 246
language configuration 154
memory usage 246
multithreaded behavior 132
native components 39
object 114
origin 4
pool level 117
session 135
support multi-threading 130
update methods 216
viewers 14
Web applications 11

off-peak access 256
OnDemand User Group (ODUG) 273
OnDemand Web Enablement Kit (ODWEK)
143–144, 197–198, 223–224

application 250
configuring to use Xenos transforms 211
default 170
installation 198, 205
Java and native executable 16
Java applets 201
language

configuration 155
line data Java applet 157
location configuration 157
plug-ins 198
session 133, 135, 203
user interface 18

open() 29–30
openFolder(String fldname) 28
operating system 198, 200, 225–226, 250,
265–266
operator, criterion 33–34
optimization of the network architecture 264
option 241
OptionsFile option 209
OR condition

multiple ODCriteria search objects 164
OutOfMemoryError 230, 234–235
OutputType option 212

P
packages, Java class 54
page number of note 37
pages 225
page-swapping system 225
parametric search 162
ParmFile option 212
path for trace file 25
PCX 199
PDF document 180
performance 107, 109, 191

degrade, troubleshooting 262
disk 250
improve 245
issues 255
network 247
other areas 247
physical memory 250
problems 132
processor 250

Performance Inspector 273
permanent generation 235
permanent generation space 234
permission, Document Update 218
-permstat parameter 268
persistent document ID 36
physical memory 233, 245
physical memory performance 250
Pipeline Analyzer 272
plug-in

AFP 198
image plug-in 198

PMR (Problem Management Record) 273
printConfig() 26
printDocuments(java.util.Vector hits,String print-
er,int copies) 30
printing configuration settings 26
Problem Management Record (PMR) 273
processor 250

performance 250
Profile Analyzer 272
Properties prop 209, 213
public note 37–38

Q
query

application group fields 165
large object document 190
 Index 289

R
RAID (Redundant Array of Independent Disks) 250
Rational Application Developer 43, 54, 261

Web development environment setup 43
read-only data 129
rebasing DLLs 228
recreateHit(String docid) 30
Redbooks Web site 277

Contact us xiv
Redundant Array of Independent Disks (RAID) 250
referenced document

full length in bytes 37
name of application 37
name of application group 37
retrieval 36

relative location 171
report 6

indexing 10
indexing method 7

request
manager 5
parameter 60, 99

request.getSession 202
resource

consumption control 132
data 114, 137, 184–185, 218

internal ID 186
tuning 109

response.getOutputStream 202
result size 170
retrieval

converted data 193
document 179–180

content 36
troubleshooting 265

large object 189
segmented document 189

retrieve() method 203
retrieve(String viewer) 36
retrieveSegment 184, 189
retrieveSegment() method 194
retrieveSegment(int segment) 36
return code 213, 256, 258
rotating images 199
running JVM

memory map 267

S
same folder 112
sample console application 39
sample program

ODPing 40
SBCS (Single Byte Character Set) 144
scalability 107
ScriptFile option 212
search 169–170

by date 170
criteria search 162
criterion 30, 70, 92, 162, 168
document 108
folder 108
hit results, maximum number 26
Java classes 23
ODCriteria 32
ODFolder 32
ODNamedQuery 32
ODNamedQueryCriteria 32
operation 99
operator 35
page 163
result 74, 92–93, 140, 161, 164
result size 170
sorting results 167
SQL search 162
SQL search, considerations 166
type, ascending/descending sort 33
value 35, 74, 92, 162
value, criterion 33–34

required 34
search() 30
search(ODNamedQuery namedQ) 30
search(String sqlWhereClause) 31
searchCountHits() 31, 170
searchentry.jsp 57, 70
searchresults.JSP 57
searchresultsexternal.jsp 99
segment information, obtaining 190
segmented document 189

retrieval 189
viewer 189

segmented retrieval 181–182, 187, 200, 204
segments, hit 36
serial Garbage Collector 231
server 112–113, 144, 227, 239, 255, 262

code page 154
connection
290 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

Java classes 22
ODConfig 24
ODServer 26

connections, troubleshooting 262
environment 4
flow 246
instance 153
memory 112
port 122
print manager 5
printers 36
process 250
side 112

servlet 54, 94, 96, 115, 128, 202–203
classes 56

session 130, 136, 156
session object 63, 131, 203

object references 89
synchronization handling 131
synchronized 131

setOperator(int op) 34
setPublic(boolean isPublic) 38
setSearchValue(String val) 34
setSearchValues(String val1, String val2) 34
setSortLocation 168
setSortOrder(int val) 34
setText(String text) 38
Single Byte Character Set (SBCS) 144
single-threaded (serial) Garbage Collector 231
small object

retrieval 181
social security number (SSN) 9, 112
sockets, network performance 247
sort

order, field 34
search results 167

SQL search 31, 108, 162, 164
considerations 166
criteria search 162
Date values 166
WHERE clause 164

SSN (social security number) 9, 112
stack trace 265
StackOverflowError 230
stand-alone AFP viewer 157
startup parameters 236
storage volume 5
storeDocument 219–220
storing document 219

String appl_name 219
String appletDir 133, 253
String fileName 183
Struts 54
support

large object 263
supported languages 154
sweep phase, garbage collection 231
synchronization

methods 129
session object 131

synchronized code block 58
synchronized performance problem 132
sys 241
system 233
system architecture 4
system overview 4
System.gc() method 232

T
TCP/IP 248

buffer sizes, network performance 248
TCP_KEEPALIVE 249
TcpTimedWaitDelay 262

network performance 249
temporary directory 134
tenured generation space 234
terminate

connection 89
ODServer method 114

terminate() 28
testing tools

ConTest 272
JUnit 271
Visual Performance Analyzer (VPA) 272

text, note 37–38
thread 114

allocation 115
Thread and Monitor Dump Analyzer for Java Tech-
nology 266
thread-safe object 128
throughput 233

trade off 235
TIFF 199
time stamps

consecutive 255
TIME_WAIT state 262
timeout 137, 139
 Index 291

implementation 141
trace 254, 265

engine 253
file 134, 252, 254

absolute path 25
special note 134

log sample 256
logging 252

Trace Analyzer 273
traceLevel 253
trade off 235
transaction report 7
TransForm 63
transformation 63, 194
transforms 17

configuration files 17
troubleshooting 110

application termination 260
document retrieval 265
hitlist 265
long running document retrieval 263
memory leak 266
network connection refused 262
performance degrade 262
server connections 262

twice the maximum segment lifetime (2MSL) state
262
type, criterion 34

U
UCS (Universal Character Set) 144
Unicode 144, 153

application group field length 153
Content Manager OnDemand 153
database code page 152
database encoding 153
OnDemand server 144

Unicode Transformation Format (UTF) 144, 146
Universal Character Set (UCS) 144
UnsatisfiedLinkError 260
updateValuesForHits 216
updating

database values 216
UseApplet option 208
user access 116–117
user ID 92, 94, 115, 218, 222

application group 218
UTF (Unicode Transformation Format) 144, 146

UTF conversion 148
UTF-16 148
UTF-8 144
utilities 56
utility classes 56

V
valid operators, criterion 34
verbose garbage collection 271
viewer 194

and transforms 17
applet 14
browser plug-in 14
large object 14
parameter 183, 188
segmented document 189

viewerPassthru(String queryString) 28
viewers 14
virtual memory 225, 228
Visual Performance Analyzer (VPA) 272–273
VPA (Visual Performance Analyzer) 272–273

W
wait time 233

trade off 235
WarningLevel option 213
Web 2.0, WEBi 18
Web application 11, 53–54, 92, 103, 107, 112, 128,
130–131, 150, 156, 187, 193, 198, 200–201

ODWEK Java APIs 53
timeout implementation 141

Web development
environment setup 43

Web site 92–93, 267, 271
WEBi

client 17
components and architecture 18
retrieved bank statement 20
retrieved customer statement 20
retrieved hand-written customer inquiry 19
returned search result list 18
Web 2.0 18

WHERE clause
SQL search 164

Windows XP
Professional SP 2.07 43
292 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

X
Xenos transforms 211

configuration in ODWEK 211
-Xms parameter 243
-Xmx parameter 243
-Xprof

global summary 239
Java command option 238

-XX:+PrintGCDetails 241
-XX:+PrintGCTimeStamps 242
-XX:MaxHeapFreeRatio 244
-XX:MinHeapFreeRatio 244

Y
young generation space 234–236, 245

live objects 246
maximum size 246
relative size 245
same effect 246

Z
zooming images 199
 Index 293

294 IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

IBM
 Content M

anager OnDem
and W

eb Enablem
ent Kit Java APIs: The Basics and Beyond

®

SG24-7646-00 ISBN 0738431761

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM Content Manager OnDemand
Web Enablement Kit Java APIs
The Basics and Beyond

Develop Web
applications by
using ODWEK V8.4
Java APIs

Gain insightful best
practices, hints,
and tips

Tune and
troubleshoot
OnDemand Web
applications

IBM Content Manager OnDemand is the industry leading report
management product. It provides enterprise report management
and electronic statement presentment. It is high-performance
middleware for automatic management of formatted computer
output and reports. It helps companies gain significant return on
investment by transforming costly high-volume print output to
electronic information capture and presentation in support of
customer service.

In this IBM Redbooks publication, we provide an overview of the
OnDemand Web Enablement Kit (ODWEK) version 8.4 Java APIs and
explain the commonly used APIs for application development. In
addition, we examine the capabilities and usage of the APIs through
use cases, best practices, hints and tips, and code snippets. We
explain connection pooling, folder searching, document retrieval,
document storing and updating, memory and performance, and
troubleshooting in terms of application development.

ODWEK Java APIs can be incorporated into any Java-based
application, including stand-alone applications, portlets, servlets and
Web services. We illustrate the APIs by using servlet-based code.

This book is intended for application developers who are
responsible for developing Web applications that interface with
Content Manager OnDemand. It also serves as a good reference
guide for developers and system administrators to fine-tune and
troubleshoot Content Manager OnDemand Web applications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Programming with the ODWEK Java APIs
	Chapter 1. ODWEK Java API overview
	1.1 Origin of the ODWEK Java APIs
	1.2 Content Manager OnDemand system overview
	1.2.1 Content Manager OnDemand Library Server and Object Servers
	1.2.2 Content Manager OnDemand data
	1.2.3 Content Manager OnDemand data model
	1.2.4 Content Manager OnDemand data indexing and loading

	1.3 ODWEK Java APIs function overview
	1.3.1 Typical Web applications developed by using the ODWEK Java APIs

	1.4 ODWEK Java APIs architecture
	1.5 ODWEK Java APIs components
	1.5.1 ODWEK Java and native shared library
	1.5.2 Viewers
	1.5.3 ODWEK Java API distribution files

	1.6 WEBi client

	Chapter 2. ODWEK Java API classes
	2.1 Core API classes and their functional relationship
	2.1.1 Core API classes
	2.1.2 Functional relationship
	2.1.3 Server connection classes
	2.1.4 Content Manager OnDemand data model classes
	2.1.5 Search classes
	2.1.6 Document data retrieval classes
	2.1.7 Error handling class

	2.2 Sample console application
	2.3 Setting up a Web development environment by using Rational Application Developer

	Chapter 3. ODWEK Java API examples
	3.1 Examples overview
	3.1.1 Example files
	3.1.2 Program flow and control

	3.2 Making a connection to Content Manager OnDemand
	3.3 Obtaining a list of cabinets and folders
	3.4 Displaying OnDemand folder information
	3.5 Obtaining a list of OnDemand folder search fields
	3.6 Displaying an Content Manager OnDemand search results list
	3.7 Retrieving and displaying an OnDemand document
	3.7.1 Viewing line data documents with the applet

	3.8 Disconnecting from OnDemand

	Chapter 4. Internet use case
	4.1 Use case overview
	4.2 Connection pooling consideration for the use case
	4.3 Sample application for the use case

	Part 2 Best practices, hints, and tips
	Chapter 5. Introduction to best practices, hints, and tips
	Chapter 6. Connection pooling and connection handling
	6.1 Connection pooling overview
	6.1.1 Benefits of connection pooling

	6.2 Connection pooling objects and pooling technique
	6.2.1 The ODServer class
	6.2.2 ODWEK Java API objects and threads
	6.2.3 The ODWEK Java API pool levels

	6.3 A simple connection pool code example
	6.3.1 The pooling mechanism
	6.3.2 Connection pool code functions
	6.3.3 Connection pool code sample

	6.4 Thread safety
	6.4.1 Instance variables
	6.4.2 Synchronization
	6.4.3 Implementing synchronization in the ODWEK Java APIs
	6.4.4 Synchronizing servlet code

	6.5 Resource consumption control
	6.5.1 Connection initialization
	6.5.2 Logging off and terminating a client connection
	6.5.3 Allocation and release of resources and sessions

	6.6 Timeout
	6.6.1 Inactivity timeout
	6.6.2 Other timeouts
	6.6.3 Implementing an application timeout by using the ODServer.cancel() method
	6.6.4 Recommended timeout implementation for a Web application

	Chapter 7. Globalization
	7.1 Globalization overview
	7.2 Content Manager OnDemand character conversion architecture
	7.2.1 Index data and annotations conversions
	7.2.2 UTF conversion
	7.2.3 Document data conversions

	7.3 Code page conversion in ODWEK
	7.3.1 API conversions
	7.3.2 Browser conversions
	7.3.3 Document data conversions

	7.4 The ICU conversion library
	7.5 Using Unicode as the database code page
	7.6 ODWEK language configuration
	7.7 Integrating custom code pages
	7.7.1 Locations that require configuration
	7.7.2 ICU and ICONV
	7.7.3 Customizing code page mappings for ICU

	7.8 Globalizing applications by using ICU

	Chapter 8. Folder searching
	8.1 Criteria and SQL searches
	8.1.1 Criteria search
	8.1.2 SQL search

	8.2 Sort fundamentals
	8.3 Search results
	8.3.1 Query and display order
	8.3.2 Search result size
	8.3.3 Searching by date
	8.3.4 Selecting a document from the search result list

	8.4 Callbacks
	8.4.1 Why use callbacks
	8.4.2 Searching with callbacks
	8.4.3 Callback search example

	Chapter 9. Document retrieval
	9.1 The importance of a retrieval strategy
	9.1.1 AFP documents
	9.1.2 Large objects versus small objects
	9.1.3 Requiring only a small part of a large object
	9.1.4 Delivering documents

	9.2 Retrieval API overview
	9.2.1 Retrieval APIs in the ODHit class

	9.3 AFP resource retrieval and custom caching
	9.4 Segmented retrieval and large object support
	9.4.1 Retrieving segmented documents
	9.4.2 Obtaining segment information

	9.5 Avoiding memory issues for large files
	9.6 Getting document type information
	9.7 Retrieving converted data
	9.7.1 Supported data conversions and viewers

	Chapter 10. Applets, plug-ins, and transforms
	10.1 ODWEK plug-ins
	10.1.1 AFP plug-in
	10.1.2 Image viewer plug-in

	10.2 ODWEK Java applets
	10.2.1 Configuring and using the ODWEK applets
	10.2.2 Line data applet
	10.2.3 AFP2HTML applet

	10.3 AFP2WEB Transform
	10.3.1 Configuring the AFP2WEB Transform
	10.3.2 Integrating the AFP2WEB Transform in ODWEK

	10.4 Xenos transforms
	10.4.1 Configuring ODWEK to use Xenos transforms

	Chapter 11. Document storing and updating
	11.1 Updating document indexes
	11.1.1 Use cases for the update API
	11.1.2 Update methods in the ODWEK Java APIs
	11.1.3 Hints and tips

	11.2 Storing documents
	11.2.1 The storeDocument() method
	11.2.2 How the storeDocument() method works

	11.3 Deleting documents

	Chapter 12. Memory and performance
	12.1 Scope of performance tuning
	12.2 Memory
	12.2.1 Optimizing native memory

	12.3 Java heap
	12.4 The Java stack
	12.5 Garbage collection
	12.5.1 Garbage collection phases
	12.5.2 Garbage collection performance

	12.6 Startup parameters
	12.6.1 Supported commands and available options
	12.6.2 Performance and analysis commands
	12.6.3 Memory allocation commands
	12.6.4 Customizing the heap size
	12.6.5 Customizing the object generations
	12.6.6 ODWEK Java API memory usage

	12.7 Other performance areas
	12.7.1 Network
	12.7.2 Disk
	12.7.3 Processor
	12.7.4 Physical memory

	Chapter 13. Troubleshooting
	13.1 ODWEK error reporting and trace logging
	13.1.1 ODException class
	13.1.2 Trace logging
	13.1.3 Analyzing the trace file
	13.1.4 Trace log sample
	13.1.5 Return codes and message IDs

	13.2 Common problems and their solutions
	13.2.1 Application is unresponsive or JVM out-of-memory error occurs
	13.2.2 Application terminates with a ‘DLL could not be found’ message
	13.2.3 Performance degrades with a large number of server connections; the OnDemand server refuses network connections (Windows only)
	13.2.4 Document retrieval is long-running
	13.2.5 Folder search does not produce a correct hitlist after upgrading ODWEK
	13.2.6 Entire document is not retrieved

	13.3 Java dump (javacore)
	13.3.1 IBM Thread and Monitor Dump Analyzer
	13.3.2 HeapAnalyzer
	13.3.3 HeapRoots

	13.4 Other Java diagnostic tools
	13.4.1 The jmap command
	13.4.2 The jstat command
	13.4.3 Heap Profiler (HPROF)
	13.4.4 Java Heap Analysis Tool (jhat)
	13.4.5 Diagnostic Tool for Java Garbage Collector

	13.5 Testing tools
	13.5.1 JUNIT
	13.5.2 ConTest
	13.5.3 Visual Performance Analyzer

	13.6 Getting support
	13.6.1 OnDemand User Group
	13.6.2 Opening a Problem Management Record

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

